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Abstract: In this paper, the repeated measurement linear model proposed
by Diggle (1988) is applied to two real data examples to predict future val-
ues for temporally correlated longitudinal data. This model incorporates the
population mean, variability among individuals, serial correlation within an
individual, and measurement error. In practice, however, the original data
may not fit well with the linearity assumption imposed on the mean func-
tion by Diggle’s model, thereby deteriorating the overall prediction ability
of the model. To overcome this potential drawback, the Box-Cox power
transformation (Box and Cox 1964) is considered, and two different ways
of conducting power transformations are suggested. One of these two ap-
proaches performs transformation inside of Diggle’s model, and the other
performs transformation outside of Diggle’s model. Given Diggle’s model
using the power transformed data, two prediction methods (the maximum
likelihood method and the approximate Bayesian approach) are used to pre-
dict future values. Using our real data examples, it is shown that both
values of mean absolute difference and mean absolute relative difference for
each of these two prediction methods without power transformation can
be reduced by more than 10% by simply performing power transformation.
Results indicate that the prediction ability of Diggle’s model can be signif-
icantly improved by employing power transformation, because lower levels
of both mean absolute difference and mean absolute relative difference can
be obtained.

Key words: Approximate Bayesian approach, Box-Cox power transforma-
tion, inverse gamma distribution, maximum likelihood method, noninforma-
tive prior, repeated measurement linear model.

1. Introduction

The repeated measurement linear model proposed by Diggle (1988) is an
extremely popular method of predicting future values for temporally correlated
longitudinal data. The chief advantage of this model is that it incorporates simul-
taneously the population mean, variability among individuals, serial correlation
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within an individual, and measurement error. In this paper, Diggle’s model is
applied to two real data examples. When tailor-made to fit our data structure as
described in Section 3, the model can be defined by

Yj = Xβ + τj1 + Vj + εj, (1.1)

for each j = 1, ···, n. Here, Yj is a p×1 random vector representing p observations
made at equally spaced times (1, · · ·, p) on the jth subject,

X =
(

1 1 · · · 1
1 2 · · · p

)T

a known p × 2 design matrix, and β = (β1, β2)T an unknown 2 × 1 vector of
regression coefficients. The τj is a normal random variable with mean 0 and
variance σ2

τ , 1 a p × 1 vector of 1’s, Vj a p × 1 normal random vector with mean
0 and covariance matrix σ2

V C, and εj a p × 1 normal random vector with mean
0 and covariance matrix σ2

ε I. Here, 0 < σ2
τ , σ2

V , σ2
ε < ∞, C stands for a p × p

correlation matrix, and I is a p × p identity matrix. Finally, for j = 1, · · ·, n,
τj , Vj and εj are all independent. For other related prediction methods, see, for
example, the monograph by Diggle, Liang and Zeger (1994).

By (1.1), through a straightforward calculation, the covariance matrix of Yj

can be expressed by
Cov(Yj) = σ2

V Σ,

where Σ = φ1 1 1T + C + φ2 I, φ1 = σ2
τ/σ

2
V and φ2 = σ2

ε /σ
2
V . To predict future

values, the covariance structure in Vj generally has to be extensible to the future
values of the individuals observed. In this paper, the dependence structure in Vj

is taken to be the autoregressive process of order 1 (Lee 1988); hence,

C =
(
φ
|i−j|
3

)
, (1.2)

for i, j = 1, · · ·, p, where φ3 ∈ (−1, 1) is the AR(1) parameter.
Using the model specified by (1.1) and (1.2), the purpose of this paper is to

predict the future value yj at the design point x = (1, p + 1), given the total
observed data Y = (Y T

1 , · · ·, Y T
n )T . Here, yj is a random variable representing a

future observation to be made at time p + 1 on the jth subject, for each j = 1,
· · ·, n. This is a time series prediction, and is therefore important in practice.
Under these circumstances, the estimation of parameters and the prediction of
future values have been considered in Diggle (1988) and Donnelly, Laird and
Ware (1995), respectively, by using the maximum likelihood method (MLM).

Note that the mean function Xβ in the right-hand side of (1.1) is linear. In
practice, however, the original data may not fit well with such linearity assump-
tions. In such a case, the prediction ability of the associated model may deterio-
rate. To avoid this possible situation, we apply the Box-Cox power transformation
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(Box and Cox 1964) to the original data. When the value of the Box-Cox power
transformation parameter is chosen adequately, the resulting transformed data
can fit better with the linearity assumption imposed on the mean function by Dig-
gle’s model, thus making Diggle’s model more appropriate for the transformed
data.

The Box-Cox power transformation method is described accordingly. Set the
real number λ as the Box-Cox power transformation parameter. Given the value
of λ, the power transformed value Y

(λ)
j for Yj is a p×1 vector and its kth element

Y
(λ)
jk is defined by

Y
(λ)
jk = {(Yjk + ωjk)λ − 1}/λ, for λ = 0.

= log(Yjk + ωjk), for λ �= 0,

Here, Yjk is the kth element of Yj, and ωjk is a known constant such that Yjk +
ωjk > 0, for each k = 1, · · ·, p. In practice, ωjk = 0, if Yjk is positive.

In practice, two different ways of choosing the value of λ are suggested to
perform power transformation. The first approach treats λ as a parameter of
Diggle’s model; then, following the idea of (1.1), it fits Y

(λ)
j as

Y
(λ)
j = Xβ + τj1 + Vj + εj, (1.3)

for each j = 1, · · ·, n. The second approach does not treat λ as a parameter
of Diggle’s model. It simply and directly transforms the original data such that
the power transformed data set have the best linear fit. Specifically, it takes the
minimizer λ∗ of the function TSSE(λ) defined below as the selected value of λ.
Given the value of λ, the total sum of squared error TSSE(λ) (Neter, Wasserman
and Kutner 1989) is defined by

TSSE(λ) =
n∑

j=1

‖Y (λ)
j − Xβ̂j(λ)‖2.

Here, β̂j(λ) = arg minβ ‖Y (λ)
j −Xβ‖2, X and β have been given in (1.1), and the

notation ‖ · ‖ stands for the Euclidean norm. When the value of λ∗ is obtained,
we fit the power transformed data Y

(λ∗)
j for (1.1) accordingly

Y
(λ∗)
j = Xβ + τj1 + Vj + εj, (1.4)

for each j = 1, · · ·, n.
This article is organized as follows. Section 2 employs both the MLM and the

approximate Bayesian approach (ABA) to predict yj, given each model specified
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by (1.2) and (1.3), and by (1.2) and (1.4). Section 3 illustrates the prediction
ability of Diggle’s model using two real data examples.

2. Prediction

In this section, both the MLM and the ABA are employed to predict the
future value yj, given the observed data Y . Their formulations for the model
specified by (1.2) and (1.3) are given in Subsections 2.1 and 2.2, respectively;
and those for the model described by (1.2) and (1.4) are contained in Subsection
2.3. For the sake of simplicity, assume that Yjk are positive, for all j and k.

2.1 The MLM

According to the results obtained by applying the MLM to both (1.2) and
(1.3), the likelihood function of β, σ2

V , φ1, φ2, φ3 and λ, given Y , can be expressed
by

L(β, σ2
V , φ1, φ2, φ3, λ|Y ) ∝ (det σ2

V Σ)−n/2 ×

exp[−1/(2σ2
V )

n∑
j=1

{Y (λ)
j − Xβ}T Σ−1{Y (λ)

j − Xβ}] |J |. (2.1)

Here, J =
∏n

j=1

∏p
k=1 Y λ−1

jk , the notation detA denotes the determinant of
the matrix A, and an ∝ bn means that there is a normalizing constant c such
that an = c bn.

By (2.1) and the idea of generalized least squares (Seber 1977), given φ1,
φ2, φ3 and λ, the maximum likelihood estimators of β and σ2

V can be expressed
respectively as

β̃(φ1, φ2, φ3, λ) = (n XT Σ−1X)−1{
n∑

j=1

XT Σ−1Y
(λ)
j },

σ̃2
V (φ1, φ2, φ3, λ) = (np)−1

n∑
j=1

{Y (λ)
j − Xβ̃}T Σ−1{Y (λ)

j − Xβ̃}.

Fitting these results into (2.1), through a straightforward calculation, we
obtain the profile likelihood function of φ1, φ2, φ3 and λ:

�(φ1, φ2, φ3, λ) ∝ σ̃V (φ1, φ2, φ3, λ)−np(detΣ)−n/2 |J |.

By maximizing �(φ1, φ2, φ3, λ), the maximum likelihood estimates φ̂1, φ̂2, φ̂3 and
λ̂ of φ1, φ2, φ3 and λ can be derived; hence, the maximum likelihood estimates
β̂ = β̃(φ̂1, φ̂2, φ̂3, λ̂) and σ̂2

V = σ̃2
V (φ̂1, φ̂2, φ̂3, λ̂) for β and σ2

V follow.
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The conditional prediction of yj, given Y , is now introduced as follows. By
(1.3), through a straightforward calculation, the conditional density function of
the Box-Cox power transformed variable y

(λ)
j , given β, σ2

V , φ1, φ2, φ3, λ and Y ,
can be expressed by

p(y(λ)
j |β, σ2

V , φ1, φ2, φ3, λ, Y ) ∝ (det σ2
V Λ22·1)−1/2 ×

exp[−1/(2σ2
V ){y(λ)

j − µ
(λ)
2·1}T Λ−1

22·1{y(λ)
j − µ

(λ)
2·1}]. (2.2)

Here, Λ22·1 = Λ22 − Λ21Λ−1
11 Λ12, µ

(λ)
2·1 = xβ + Λ21Λ−1

11 {Y (λ)
j − Xβ}, Λ11, Λ12, Λ21

and Λ22 are p × p, p × 1, 1 × p and 1 × 1 matrices, respectively, defined by

Cov

(
Y

(λ)
j

y
(λ)
j

)
= σ2

V (φ1 1 1T + C + φ2 I) = σ2
V Λ = σ2

V

(
Λ11 Λ12
Λ21 Λ22

)
,

1 is a (p + 1) × 1 vector of 1’s, I is a (p + 1) × (p + 1) identity matrix, and
C =

(
φ
|i−j|
3

)
, for i, j = 1, · · ·, p + 1.

By (2.2), we have the conditional expectation of y
(λ)
j , given β, σ2

V , φ1, φ2, φ3,
λ and Y :

E(y(λ)
j |β, σ2

V , φ1, φ2, φ3, λ, Y ) = µ
(λ)
2·1 ,

for each j = 1, · · ·, n. A natural predictor ŷj for yj, given Y , obtained by the
MLM is

ŷj = (1 + λ̂)1/λ̂, for λ̂ �= 0,

= exp(µ̂2·1), for λ̂ = 0, (2.3)

for each j = 1, · · ·, n. Here, µ̂2·1 is µ
(λ)
2·1 with its φ1, φ2, φ3 and λ replaced

respectively by their maximum likelihood estimates φ̂1, φ̂2, φ̂3 and λ̂.

2.2 The ABA

Given the model specified by (1.2) and (1.3), the following two different types
of priors for β, σ2

V , φ1, φ2, φ3 and λ are used to predict yj:

Π(β, σ2
V , φ1, φ2, φ3, λ) ∝ σ−2

V , (2.4)
Π(β, σ2

V , φ1, φ2, φ3, λ) ∝ σ−2
V π(φ1) π(φ2), (2.5)

where the function π is the inverse gamma distribution with the hyperparameters
ζ > 0 and θ > 0. Specifically,

π(x) = IG(ζ, θ) ∝ x−(ζ+1) exp(−θ/x).
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In both (2.4) and (2.5), it is assumed that β, λ, σ2
V , φ1, φ2 and φ3 have

independent prior distributions. In (2.4), no information is available for each pa-
rameter, and is therefore referred to as noninformative prior (Edwards, Lindman
and Savage 1963, and Zellner and Tiao 1964). Conversely, in (2.5), the prior
is composed of inverse gamma distributions (Gelfand, Hills, Racince-Poon and
Smith 1990). Note that the priors for φ1 and φ2 given in the right-hand side
of (2.5) can be generalized by using different sets of hyperparameters in their
inverse gamma distributions. Here, for the sake of simplicity, the same set of
hyperparameters is given for the two inverse gamma distributions.

In order to employ the prior distribution specified in (2.5), Rissanen (1986)
and Lee and Tsao (1993) suggest using the minimum accumulated prediction
error (MAPE) criterion to choose the values of the hyperparameters ζ and θ of
the inverse gamma distributions. Accordingly, the authors take the minimizer ζ̂
and θ̂ of the function S(ζ, θ) over both ζ and θ as the selected values of ζ and
θ, respectively. For the given values of ζ and θ, the accumulated prediction error
S(ζ, θ) of the corresponding ABA is defined by

S(ζ, θ) =
n∑

j=1

p∑
k=4

|Yjk − Ŷjk(ζ, θ)|.

Here, Ŷjk(ζ, θ), the predicted value of Yjk, is ŷj in (2.7) when p = k − 1 is
used in (1.3), and ζ and θ are employed in (2.5). Recall that yj is the future
observation to be observed at time p + 1. To compute its estimate ŷj, the values
of the six parameters, including β1 and β2, need to be estimated by using the
np observations made at equally spaced times 1, · · ·, p on the n subjects. To
make the estimates for these linear regression parameters β1 and β2 with more
meaning, the minimum value of p is taken as 3 by Rissanen (1986) and Lee and
Tsao (1993); hence, the value of the subindex k in S(ζ, θ) starts at 4. In this
paper, the prior given in (2.4) is referred to as prior 1 and that in (2.5) with the
selected hyperparameters (ζ̂ , θ̂) is prior 2.

The conditional prediction of yj , given Y , is now considered. By applying
the approximate method in Ljung and Box (1980), through a straightforward
calculation, we have the approximate predictive distribution of y

(λ)
j , given Y :

y
(λ)
j |Y ∼ T1[µ̂y, Ŝy{(np − 2)Ĝ22}−1, np − 2]. (2.6)

Here, T1(µ, σ, q) stands for the distribution of the univariate random variable U
such that (U − µ)/σ has a Student’s t distribution with q degrees of freedom
(Dickey 1967), and µ̂y, Ŝy and Ĝ22 are µy, Sy and G22 with their φ1, φ2, φ3 and
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λ replaced respectively by φ̂1, φ̂2, φ̂3 and λ̂ which maximize

p(φ1, φ2, φ3, λ|Y,prior 1) ∝ (det Σ)−(n−1)/2 ×
(detΛdet QdetG22)−1/2 S−(np−2)/2

y |J |,
p(φ1, φ2, φ3, λ|Y,prior 2) ∝ (φ1φ2)−(ζ̃+2−1) exp(−θ̃/φ1 − θ̃/φ2) ×

(detΣ)−(n−1)/2 (det Λdet QdetG22)−1/2 S−(np−2)/2
y |J |.

Moreover,

µy = xβ∗
j − G−1

22 G21{Y (λ)
j − Xβ∗

j },

Sy =
n∑

�=1,� �=j

{Y (λ)
� − Xβ∗

j }T Σ−1{Y (λ)
� − Xβ∗

j } +

{Y (λ)
j − Xβ∗

j }T G11·2{Y (λ)
j − Xβ∗

j },
Q1 = (n − 1)XT Σ−1X, Q2 = X̃T Λ−1X̃,

X̃ =
(
X
x

)
=

(
1,1,···,1
1,2,···,p+1

)T
, β∗

j = Q−1
1 {

n∑
�=1,� �=j

XT Σ−1Y
(λ)
� },

G = Λ−1X̃Q−1
2 Q1(Q1 + Q2)−1X̃T Λ−1 + Z(ZT ΛZ)−1ZT =

(
G11 G12
G21 G22

)
,

G11·2 = G11 − G12G
−1
22 G21,

where Z is a (p + 1)× (p + 1− 2) matrix satisfying X̃T Z = 0, and G11, G12, G21

and G22 are p × p, p × 1, 1 × p and 1 × 1 matrices, respectively.
By (2.6), a natural approximate predictor for y

(λ)
j is µ̂y, the expectation of

the approximate predictive distribution of y
(λ)
j , given Y . Hence, the predictor ŷj

for yj produced by the ABA with each prior 1 and 2 can be expressed by

ŷj = (1 + λ̂ µ̂y)1/λ̂, for λ̂ �= 0,

= exp(µ̂y), for λ̂ = 0 (2.7)

for each j = 1, · · ·, n.

2.3 Both the MLM and the ABA for the model secified by (1.2) and
(1.4)

Given the model described by (1.2) and (1.4), through a straightforward cal-
culation, the predictor ŷj for yj, given Y , obtained by the MLM is

ŷj = (1 + λ∗ µ∗
2·1)

1/λ∗
, for λ∗ �= 0,

= exp(µ∗
2·1), for λ∗ = 0, (2.8)
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for each j = 1, · · ·, n. Here, µ∗
2·1 is µ̂2·1 in (2.3) derived both by replacing Y

(λ)
j

with Y
(λ∗)
j and by deleting the random variable λ in Subsection 2.1. Also, given

the value of λ∗, the predictor ŷj for yj, given Y , produced by the ABA with each
prior 1 and 2 can be expressed by

ŷj = (1 + λ∗ µ∗
y)

1/λ∗
, for λ∗ �= 0,

= exp(µ∗
y), for λ∗ = 0, (2.9)

for each j = 1, · · ·, n. Here, µ∗
y is µ̂y in (2.7) derived both by replacing Y

(λ)
j with

Y
(λ∗)
j and by deleting the random variable λ in Subsection 2.2.

3. Examples

Empirical studies were carried out as a means of obtaining further insight
into the results of Section 2. In this section, models specified by (1.1) and (1.2),
by (1.2) and (1.3), and by (1.2) and (1.4) are referred to as models 1, 2 and 3,
respectively. Given each model 1, 2 and 3, the three prediction methods described
in Section 2, MLM, ABA with prior 1 and ABA with prior 2, were applied to two
real data examples. The performance of each prediction method was measured
by both the mean absolute difference (MAD) and the mean absolute relative
difference (MARD), whereas

MAD = n−1
n∑

j=1

|ŷj − yj|, MARD = n−1
n∑

j=1

|ŷj/yj − 1|.

Example 3.1. The first data set consists of the weights of 30 calves, each being
observed from 0 to 18 weeks in increments of 2 weeks. This data set is given in
Group B of Table 6.1 of Diggle, Liang and Zeger (1994) with the weights on the
19th week excluded. The weights of the calves on the 18th week were predicted by
using the data collected in the first 16 weeks. To avoid “overflow” or “underflow”
problems for numerical computation, the weights of the calves were divided by
100. The resulting data are plotted in Figure 1a.
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Figure 1: Plot of the original weights of 30 calves (1a), their corresponding
power transformed values produced by the ABA with prior 2 for model 2 (1c)
and by model 3 (1d), and the SSE (1b) derived by fitting the standardized
linear regression model to the data for each calf in (1a), (1c), and (1d).

The data shown in Figure 1a were fitted to model 1 without applying the
Box-Cox power transformation. For this, the data shown in Figure 1a were
examined, and were shown to have a linear trend. By this and the equally
spaced times of measurement, the vector of regression coefficients was taken to

be β = (β1, β2)T , and the design matrix was taken to be X =
(

1,1,···,1
1,2,···,9

)T
for

each calf. To employ prior 2, the MAPE criterion was used to select the inverse
gamma hyperparameters ζ and θ over the rectangle (1, 40]×(0, 10]. The values of
S(ζ, θ) were calculated on 1950× 500 equally spaced grid points in the rectangle.
The minimizer of these values occurred at (ζ̂ , θ̂) = (28.7, 1.5), and was taken to
be the selected value of (ζ, θ) for prior 2. Then, the weights of the calves on the
18th week were predicted using each of the above three methods.

Similar computation procedures were also performed to fit the data shown
in Figure 1a to each model 2 and 3 with the Box-Cox power transformation.
Here, the selected values of (ζ̂ , θ̂) for prior 2 were (1.05, 0.30) and (2.55, 1.78) for
these two models, respectively. The estimated values λ̂ of the Box-Cox power
transformation parameter λ were 0.96, 1.12 and 2.52 obtained respectively by
the three prediction methods for model 2. The value of λ∗ was 1.76 for model 3.
Note that the values of λ̂ derived by both the MLM and the ABA with prior 1
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Table 1: Comparison of prediction accuracy of yj for the weights of 30 calves.
MLM Prior 1 Prior 2

Model 1
MAD 0.0894 0.0889 0.0829

MARD 0.0287 0.0285 0.0266
Model 2

MAD 0.0898 0.0879 0.0771
MARD 0.0288 0.0282 0.0246

Model 3
MAD 0.0813 0.0810 0.0752

MARD 0.0260 0.0259 0.0232

for model 2 are close to 1; hence, the resulting Box-Cox power transformed data
are nearly the same as the original data. Judging from this, it is expected that
the prediction abilities of these two methods would not be significantly improved
by using the Box-Cox power transformation. On the other hand, Figures 1c and
1d show the Box-Cox power transformed data of Figure 1a as produced by the
ABA with prior 2 for model 2, as well as obtained by model 3, respectively.

Because the main focus of the study was to ascertain whether the power trans-
formed data in Figures 1c and 1d have better linear fit than the original data in
Figure 1a, the data shown by each curve in these figures were fitted to the stan-
dardized linear regression model, and their corresponding error sum of squares,
denoted by SSE, was calculated. Here, the SSE represents the measurement of
the distance between the given curve and its associated straight line obtained
by the linear regression model. The lower the value of the SSE, the better the
linear fit. Figure 1b shows the SSE for each curve in Figures 1a, 1c and 1d.
The sample 25th, 50th and 75th percentiles of these SSE for the 30 calves were
(0.130,0.233,0.370), (0.100,0.198,0.323) and (0.104,0.202,0.330) for the data in
Figures 1a, 1c and 1d, respectively. According to the results, these power trans-
formed data exhibit better linear fit than the original data. It is also expected
that the prediction abilities of the methods corresponding to Figures 1c and 1d
would be better.

The numerical results for the weights of the calves are given in Table 1. Table
1 contains the MAD and MARD of the predicted values obtained by the three
prediction methods using each model 1, 2 and 3. It shows that the prediction
abilities of the three methods for model 1 can be significantly improved by using
power transformation, in the sense that they have lower levels of both MAD and
MARD. For example, using the ABA with prior 2, 7.00% and 9.29% of the value
of MAD for model 1 without power transformation can be reduced by simply
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Table 2: Weights (with unit as 10 kg) of 18 students.

Time in semesters
# 1 2 3 4 5 6 7 8 9 10 11
1 2.04 2.20 2.18 2.40 2.50 2.70 2.92 3.00 3.50 3.80 4.08
2 1.92 2.22 2.22 2.45 2.58 2.70 2.92 3.04 3.02 3.44 3.44
3 1.96 2.12 2.16 2.34 2.40 2.50 2.62 2.98 3.36 3.62 3.72
4 2.00 2.40 2.50 2.90 3.20 3.60 3.65 4.06 4.12 4.26 4.30
5 1.90 1.94 2.08 2.32 2.42 2.62 3.02 3.10 3.46 3.72 3.92
6 2.02 2.20 2.16 2.46 2.38 2.56 2.62 2.94 3.50 3.85 4.02
7 2.46 2.58 2.60 2.90 3.30 3.20 3.76 3.70 4.34 4.46 4.90
8 2.50 2.62 2.80 3.01 3.32 3.48 3.90 4.10 4.44 4.90 4.98
9 1.52 1.60 1.54 1.72 1.84 1.88 2.08 2.16 2.22 2.40 2.50
10 2.54 2.60 2.74 3.02 3.64 4.04 4.40 4.52 4.88 5.20 5.90
11 3.00 3.26 3.60 3.60 4.10 4.10 4.40 4.60 4.80 4.88 5.30
12 1.94 2.02 2.10 2.40 2.36 2.58 2.78 2.80 3.04 3.14 3.36
13 2.68 2.90 3.32 3.55 3.84 4.02 4.44 4.50 5.20 5.40 5.60
14 2.32 2.44 2.50 2.80 2.94 3.06 3.48 3.58 4.50 4.58 4.82
15 1.82 2.00 2.10 2.30 2.30 2.40 2.62 2.70 2.94 3.02 3.08
16 2.50 2.56 2.96 3.10 3.46 3.88 4.18 4.66 5.14 5.70 6.04
17 2.18 2.38 2.44 2.70 2.70 2.86 3.00 3.20 3.24 3.50 3.56
18 2.18 2.40 2.38 2.60 2.74 3.00 3.20 3.28 3.40 3.60 4.30

employing models 2 and 3 with power transformation, respectively. A similar
conclusion can be drawn for the value of MARD. Table 1 also demonstrates that
the ABA with prior 2 has the best prediction ability, regardless of whether or not
power transformation is performed. This is evidenced by a significant improve-
ment in both MAD and MARD. This advantage that the ABA with prior 2 has
better prediction ability than the ABA with prior 1 might be due to the fact that
prior 2 provides more information about the parameters than prior 1.

Example 3.2. The second data set consists of the weights of 18 students in the
same class at a primary school operating the government-provided lunch program
in Hualien, Taiwan, R.O.C. The weight of each student was measured at the be-
ginning of each semester. According to government regulations, this data set was
collected with the purpose of monitoring the weight growth status of each student
so that physical drawbacks could be discovered early, and so that proper teaching
activities could be provided to eliminate such drawbacks. Such regulations can
be found at the URL address http://www.edu.tw/physical/rules/0724-2.htm. In
this project, the weights of the students in the 11th semester were predicted by
using those obtained in the first 10 semesters. To avoid “overflow” or “underflow”
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problems in numerical computation, the weights of the students were divided by
10. The resulting data for these students are plotted in Figure 2a and listed in
Table 2.

Figure 2: Plot of the original weights of 18 students (2a), their corresponding
power transformed values produced by the ABA with prior 2 for model 2 (2c)
and by model 3 (2d), and the SSE (2b) derived by fitting the standardized
linear regression model to the data for each student in (2a), (2c), and (2d).

Given each model 1, 2 and 3, the three prediction methods were applied to
the data in Example 3.2. The numerical results are now presented. By both the
linear trend of the data presented in Figure 2a and the equally spaced times of
measurement, the vector of regression coefficients was taken to be β = (β1, β2)T

and the design matrix was taken to be X =
(

1,1,···,1
1,2,···,10

)T
for each student. Given

each model, to select the values of ζ and θ for prior 2, the values of S(ζ, θ) were
evaluated on 1950×500 equally spaced grid points in the rectangle (1, 40]×(0, 10].
For each model 1, 2 and 3, the selected value of (ζ̂, θ̂) for prior 2 was (30, 1.58),
(4.55, 0.03) and (5, 0.11), respectively. On the other hand, the estimated values
λ̂ of the power transformation parameter λ were 0.57, 0.49 and −0.28 obtained
respectively by the three prediction methods for model 2. The value of λ∗ was
−0.16 for model 3.

Figures 2c and 2d show the power transformed data of Figure 2a produced
by the ABA with prior 2 for model 2, as well as obtained by model 3, respec-
tively. Comparing visually the curves in Figures 2a, 2c and 2d, it is clear that



Temporally Correlated Longitudinal Data 271

Table 3: Comparison of prediction accuracy of yj for the weights of 18 students.

MLM Prior 1 Prior 2
Model 1

MAD 0.1762 0.1755 0.1758
MARD 0.0489 0.0487 0.0489

Mode 2
MAD 0.1699 0.1664 0.1654

MARD 0.0404 0.0396 0.0393
Mode 3

MAD 0.1557 0.1555 0.1559
MARD 0.0375 0.0374 0.0378

those in Figure 2a have larger curvature. Figure 2b contains the SSE obtained
by fitting the data presented by each curve in Figures 2a, 2c and 2d to the stan-
dardized linear regression model. The sample 25th, 50th and 75th percentiles of
these SSE for the 18 students were (0.151,0.266,0.499), (0.137,0.231,0.335) and
(0.134,0.228,0.333) for the data in Figures 2a, 2c and 2d, respectively. By the
results, we conclude that the power transformed data in Figures 2c and 2d have
better linear fit than the original data in Figure 2a.

Table 3 contains the MAD and MARD of the predicted values obtained by
the three prediction methods using each model 1, 2 and 3. Considering the values
of both MAD and MARD, Table 3 shows that the prediction abilities of the three
methods for model 1 can be significantly improved by using the Box-Cox power
transformation. For example, using the ABA with prior 2, 5.92% and 11.32% of
the value of MAD for model 1 without power transformation can be reduced by
employing models 2 and 3 with power transformation, respectively.
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