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Abstract: HIV (Human Immunodeficiency Virus) researchers are often con-
cerned with the correlation between HIV viral load measurements and CD4+
lymphocyte counts. Due to the lower limits of detection (LOD) of the avail-
able assays, HIV viral load measurements are subject to left-censoring. Mo-
tivated by these considerations, the maximum likelihood (ML) method under
normality assumptions was recently proposed for estimating the correlation
between two continuous variables that are subject to left-censoring. In this
paper, we propose a generalized estimating equations (GEE) approach as
an alternative to estimate such a correlation coefficient. We investigate the
robustness to the normality assumption of the ML and the GEE approaches
via simulations. An actual HIV data example is used for illustration.
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1. Introduction

Viral load assessment via quantification of plasma viral RNA (Ribonucleic
Acid) plays an important role in current HIV (Human Immunodeficiency Virus)
research. It has provided valuable insights into the pathogenesis of HIV disease
and the activity of anti-viral drugs. However, inherent limits of detection (LOD)
in existing HIV RNA assays lead to the possibility of left-censored (also termed
missing) data. Such left-censored data is also characteristic of many other types
of bioassay studies (Lynn, 2001). As both CD4+ cell counts and plasma HIV
RNA are bio-markers of the progression of HIV disease, the study of the cor-
relation between the CD4 + cell count and the HIV viral load is often among
HIV researchers’ interests. Therefore, there is a need to estimate the correlation
between two variables, where one of them may be left-censored.

An ad hoc but convenient approach is to replace the censored values by, e.g.,
1, 1/2 or 1/

√
2 times the LOD, depending on the assumed shape of the left tail of

the distribution (Hornung and Reed, 1990; Olson, 1993). This method can cause
bias and even misinterpretation, especially when the censoring rate is high (Lyles
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et al., 2001). Two available parametric methods for the case of one left-censored
variable are multiple imputation (MI) and maximum likelihood estimation (ML)
assuming an underlying bivariate normal distribution. Comparing the two ap-
proaches, Lynn (2001) favored the ML approach in terms of bias. Lyles (2001)
found the two methods comparable for point estimates and argued for an MI
paradigm on the basis of confidence interval performance. However, the ML ap-
proach makes a full normality assumption and the performance of the ML method
with non-normal data has not been studied.

In this paper, we propose an alternative approach using generalized estimating
equations (GEE) to estimate correlations involving left-censored data, and we
compare it with the ML approach via simulated normal and non-normal data.
The GEE approach has been widely applied in many statistical applications due
to its less stringent distributional assumptions and robustness properties (Liang
and Zeger, 1986; Zeger and Liang, 1986). It has also been used to estimate
correlation coefficients when data are not censored (Qu et al, 1992; Catalano and
Ryan, 1992; Barnhart and Williamson, 2001).

In section 2, we present GEE models for estimating correlation coefficients
when one variable is subject to left-censoring. In section 3, we report several
simulation studies aimed at comparing the GEE and the ML approaches for both
normal and non-normal data. In section 4, we apply the proposed method to
a real data set stemming from clinical trials conducted in Bangkok, Thailand.
In this example, we investigate the correlation between cervicovaginal HIV viral
load measurements and CD4 + lymphocyte counts from HIV positive women.
We also include an example in this section to illustrate the potential advantage
of the proposed GEE approach when modeling covariates that may impact the
correlation coefficient. A discussion is presented in section 5.

2. GEE Approach

2.1 Method

Let X and Y be continuous random variables. Let XL be a left-censored
variable corresponding to X with LOD (cut point) Lx. Specifically, we define XL

as follows:

XL =
{

x if X = x ≥ Lx

x0 if X = x < Lx,

where x0 can be any fixed constant that is less than or equals to Lx (see section
2.3 regarding the choice of x0). We assume that (X,Y )

′
has a mean of (µx, µy)

′
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and a covariance matrix of

(
σ2

x ρσxσy

ρσxσy σ2
y

)
.

Our main interest is to estimate the correlation ρ between X and Y, where X is
subject to left-censoring. For simplicity, we do not introduce covariates initially;
an extension to incorporate covariates will be presented later. Although we make
use of the bivariate normal distribution when computing expectations in the
development of the methodology specified below, the full bivariate normality
assumption is not theoretically necessary. Rather, the GEE approach requires
only that the moment specifications are approximately correct.

We present two sets of generalized estimating equations for estimating the cor-
relation coefficient ρ, given paired observations of the left-censored variable (XL)
and the complete variable (Y ). Let {xLi, yi}, i = 1, · · · , N , be random realiza-
tions of XL and Y. In order to estimate the correlation coefficient, one first needs
to estimate the parameter θ = (µx, µy, σx, σy)

′
. Letting Zi = (xLi, yi, x

2
Li, y

2
i )

′,
i = 1, · · · , N, we propose the first GEE equation to estimate θ by modeling the
marginal mean of Zi with E(Zi) = U(θ) as follows:

N∑
i=1

D′
iVi

−1(Zi − U(θ)) = 0 (2.1)

where U(θ) = (U[1], µy ,U[3], σ2
y + µ2

y). Computing moments as if X and Y are
distributed as bivariate normal, then, U[1] = x0Φ(τx) + µxΦ(−τx) + σxφ(τx) and
U[3] = x2

0Φ(τx)+ (µ2
x +σ2

x)Φ(−τx)+ (Lx +µx)σxφ(τx), where τx = (Lx −µx)/σx,
Φ(x) denotes the standard univariate normal cumulative density function and
φ(x) refers to the standard normal density function. Di = ∂U/∂θ is a 4×4 matrix
(see Appendix) and Vi is the working covariance matrix. The GEE approach uses
empirical covariance estimates to adjust for a mis-specified covariance structure
without loss of much efficiency (Liang and Zeger, 1986; Zeger and Liang, 1986).
For convenience, we take Vi as a diagonal matrix with diagonal entries as the
variances of XL, Y, X2 and Y 2 that apply under normality. Thus, we have Vi

= diag(U[3]−U[1]2 , σ2
y , 2σ4

x + 4µ2
xσ2

x, 2σ4
y + 4µ2

yσ
2
y), where diag(A) denotes the

diagonal matrix with vector A as the diagonal elements.

We propose to estimate ρ by modeling the mean of the conditional distribution
of XLi|Yi. Note that under normality, X|Y is distributed as N(µx + ρσx(y −
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µy)/σy, (1 − ρ2)σ2
x). Let νy(Y ) = (Y − µy)/σy. Then,

γi(ρ,θ) = E(XLi|Yi)

=
∫ ∞

Lx

xf(x|yi)dx + x0

∫ Lx

−∞
f(x|yi)dx

= x0Φ(ωxy(yi)) + (µx + ρσxνy(yi))Φ(−ωxy(yi))

+ σx

√
1 − ρ2φ(ωxy(yi)),

where
ωxy(Y ) = τx/

√
1 − ρ2 − ρνy(Y )/

√
1 − ρ2.

We solve for ρ using the following second estimating equation:

N∑
i=1

C ′
iW

−1
i (xLi − γi(ρ,θ)) = 0 (2.2)

where

Ci =
∂γi

∂ρ

= σxνy(yi)Φ(−ωxy(yi)) − [
∂ωxy(yi)

∂ρ
](Lx − x0)φ(ωxy(yi))

− ρ√
1 − ρ2

σxφ(ωxy(yi)),

and

∂ωxy(yi)
∂ρ

=
ρ

(1 − ρ2)3/2
τx − 1

(1 − ρ2)3/2
νy(yi).

Here, Wi is the working variance of XLi|Yi. In practice, we use Wi = var(X|Y ) =
(1 − ρ2)σ2

x, as obtained under normality. To obtain the point estimate of ρ, a
modified Fisher-scoring iterative procedure is used. Specifically, we obtain the
estimate of θ, by the iteration process,

θ̂
(t+1)

= θ̂
(t)

+

(
N∑

i=1

(D̂(t)
i )′(V̂(t)

i )−1(D̂(t)
i )

)−1 N∑
i=1

(D̂(t)
i )′(V̂(t)

i )−1(Ẑi − Û(θ̂
(t)

)).

By replacing θ with θ̂ in equation (2.2), the estimate of ρ is obtained by the
iteration process,

ρ̂(t+1) = ρ̂(t) +

(
N∑

i=1

(Ĉ(t)
i )′(Ŵ (t)

i )−1Ĉi

)−1 N∑
i=1

(Ĉ(t)
i )′(Ŵ (t)

i )−1(xLi − γi(ρ̂(t), θ̂)).



Estimating Correlation Coefficients with Left-censored Variables 249

Following prior arguments regarding generalized estimating equations (Liang,
Zeger and Qaqish, 1992), we can readily show that the parameter estimates are
consistent provided that U(θ) and γi(ρ,θ) are correctly specified. This is true
regardless of whether the working covariance matrices in the two sets of equations
are correctly specified. To obtain the standard error of ρ̂, we follow the similar
procedures as in Prentice (1988) and Barnhart and Williamson (2001).

2.2 Evaluating impact of covariates on the correlation

A particular advantage of the proposed GEE approach is that it can easily
be extended to investigate covariates’ impact on the correlation. Let Q1 denote
the design matrix formed by covariates. First, we model θ as θ = Q1β, where
the parameter estimates of β can be obtained by modifying equation (2.1) as

N∑
i=1

D′
iVi

−1(Zi − Ui(β)) = 0 (2.3)

where Di = ∂Ui/∂β. Second, we use Fisher’s Z-transformation to model the
correlation coefficient as

1
2

log
1 + ρ

1 − ρ
= Q2α.

We use Fisher’s Z-transformation here because it ranges from −∞ to ∞ and its
quantity is more stable than ρ. Q2 is a design matrix of covariates impacting ρ
that may or may not be the same as Q1. The estimates of α can be solved by
modifying equation (2.2) as

N∑
i=1

C′
iW

−1
i (xLi − γi(α,β)) = 0, (2.4)

with γi(α,β) = E(XLi|Yi), a function of α and β, Ci = ∂γi(α,β)/∂α.

2.3 Remark on the choice of x0

The censored observations of X are assigned to a fixed value, x0 (less than or
equal to the LOD). In general, the consistency of the proposed GEE estimator
holds regardless of the choice of x0. We have performed simulations to evaluate
different choices of x0 (not shown) and found minimal bias in the GEE estimate
in each case. However, defining x0 based on the appealing condition that E(X) =
E(XL) tends to provide improved efficiency and 95% coverage. This implies that

x0 = µx − σx
φ(τx)
Φ(τx)

. (2.5)
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Because µx and σx are unknown, we employ the following procedure in solving
equation (2.1). First, x0 = Lx/2 is used as the initial value, then x0 is updated
with the updated θ̂. Alternatively, one can insert ML estimates (e.g., Cohen,
1959) of µx and σx assuming a univariate left-censored normal model to get
reasonable estimate for x0.

3. Simulations

We summarize two simulation studies in this section. The first is designed to
assess the performance of the GEE estimates for ρ, and to compare them with the
MLEs based on normal data. For ease of comparison, simulations were performed
using the same true parameter settings as in Lyles et al. (2001). Without loss of
generality, we set θ = (0, 0, 1, 1)′ . The second simulation study is conducted to
assess the robustness to the normality assumption using both the proposed GEE
approach and the ML approach of Lyles et al. (2001).

We first generated continuous responses {xi, yi}, i = 1, · · · , N, from the stan-
dard bivariate normal distribution. Then, {xLi} was generated from {xi} accord-
ing to Lx. The true value of Lx is determined by the censoring rate and the
true parameter settings. Simulations were conducted for several combinations
of censoring rate (20%, 60%), the true value of ρ (0.25, 0.5, or 0.75) and sam-
ple size N (50 or 100), with a total of 12 simulation settings. A total of 1000
simulated data sets were generated for each combination. Table 1 summarizes
these simulation results. We report the means of ρ̂, the means of the empirically
corrected standard error of ρ̂, the standard deviation of the 1000 ρ̂’s and the 95%
coverage based on the estimated standard error of ρ̂. Corresponding results using
ML (Lyles et al., 2001a) are also included for comparison. We observe that the
GEE approach performed similarly to ML, although there is a tendency toward
underestimation of the standard error of ρ̂ for sample size N = 50. As suggested
by Barnhart and Williamson (2001), an adjustment to the estimated standard
error, such as multiplying by

√
N/(N − 1) or

√
(N/(N − 2), may be useful when

N is less than or equal to 50.
To explore the robustness to non-normality of the GEE and ML approaches,

we considered two kinds of non-normally distributed data: correlated uniform
data in the interval (−1, 1), and correlated chi-square data (with degrees of free-
dom 10, moderately skewed). These correlated non-normal data were generated
by a method similar to that of Saucier (2000). Although data were generated
from non-normal distributions, the mean specifications in the two sets of esti-
mating equations and the full likelihood for the ML method were based on the
normality assumption and thus misspecified, motivating the robustness study.

Simulations were performed for each combination of the censoring rate (20%,
60%) and true ρ (0.25 or 0.5). We used a sample size of 100 and a total of
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Table 1: Simulation Study for the Case of One Left-censored Variable

Sample Mean Empirical 95%
True ρ Size Method Mean ρ̂ Std.err Std. Dev. Coverage

X is 20% left-censored, Lx = −0.842
0.25 50 MLE 0.256 – 0.135 0.930

GEE 0.249 0.130 0.137 0.928
100 MLE 0.248 – 0.099 0.933

GEE 0.249 0.094 0.097 0.928
0.50 50 MLE 0.499 – 0.111 0.927

GEE 0.498 0.106 0.112 0.924
100 MLE 0.500 – 0.080 0.926

GEE 0.498 0.077 0.079 0.924
0.75 50 MLE 0.749 – 0.069 0.930

GEE 0.749 0.065 0.070 0.919
100 MLE 0.747 – 0.047 0.918

GEE 0.749 0.047 0.049 0.924

X is 60% left-censored, Lx = 0.253
0.25 50 MLE 0.248 – 0.160 0.915

GEE 0.250 0.152 0.162 0.915
100 MLE 0.254 – 0.110 0.936

GEE 0.249 0.110 0.114 0.927
0.50 50 MLE 0.498 – 0.130 0.923

GEE 0.499 0.130 0.141 0.900
100 MLE 0.500 – 0.091 0.932

GEE 0.499 0.094 0.096 0.927
0.75 50 MLE 0.751 – 0.081 0.903

GEE 0.750 0.084 0.092 0.908
100 MLE 0.750 – 0.055 0.928

GEE 0.749 0.060 0.063 0.930

1000 simulated data sets in each case. As shown in Table 2, both the GEE
and ML approaches continue to perform reasonably well for correlated uniform
data and correlated chi-square data in the context of point estimates and 95%
coverage. The point estimate for ρ from the GEE approach shows minimal bias
for correlated uniform data with a low or moderate censoring rate, and a slight
tendency toward underestimation for moderately skewed correlated chi-square
data. Compared with the GEE estimates, the MLEs of ρ tend to be slightly
larger in the latter case. For correlated uniform data, the mean standard error
based on the GEE method is closer to the empirical standard deviation than
the one based on the ML method, where the empirical standard deviation is
calculated from 1000 estimates obtained from the 1000 simulated data sets. The
disparity between the two based on ML translates into the overly conservative
95% coverage observed in Table 2.

In summary, the proposed GEE method performs very consistently with ML
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Table 2: Simulation Study for Investigating Robustness of Normality Assumption (N =
100)

Censored Mean Empirical 95%
True ρ Rate Method Mean ρ̂ Std.err Std.dev Coverage

Correlated Uniform Data

0.25 20% GEE 0.254 0.077 0.080 0.932
MLE 0.252 0.094 0.079 0.970

60% GEE 0.237 0.102 0.099 0.952
MLE 0.249 0.111 0.098 0.967

0.50 20% GEE 0.500 0.061 0.063 0.928
MLE 0.498 0.075 0.059 0.980

60% GEE 0.477 0.089 0.089 0.945
MLE 0.510 0.089 0.077 0.968

Correlated Chi-square Data
0.25 20% GEE 0.248 0.093 0.095 0.936

MLE 0.245 0.095 0.096 0.944
60% GEE 0.239 0.102 0.100 0.945

MLE 0.258 0.106 0.101 0.947
0.50 20% GEE 0.488 0.077 0.081 0.924

MLE 0.505 0.075 0.082 0.916
60% GEE 0.464 0.090 0.094 0.922

MLE 0.515 0.084 0.086 0.921

for point estimation under bivariate normality. For heavy-tailed and moderately
skewed non-normal data, both the GEE and ML methods remain relatively ro-
bust, with the GEE method marginally better than ML with respect to closeness
of the estimated standard errors to the empirical standard deviations based on
simulated data sets .

4. Examples

Ever since the emergence of HIV viral load as a new virologic marker for
describing HIV/AIDS progression, researchers have been interested in the cor-
relation of the HIV viral load measurements with the immunologic marker, the
CD4+ cell count, which was traditionally the standard benchmark for prognosis
of HIV patients (Mulder, et al., 1994; Mellors et al., 1995). Because the assay
for HIV viral load has a lower limit of detection, it is important to account for
this in estimating the correlation between the HIV viral load and CD4+ cell
counts. We apply the proposed methods to estimate this correlation from a HIV
study from a Centers for Disease Control and Prevention (CDC)-sponsored clin-
ical trial, conducted in Bangkok, Thailand. Data were collected from 154 women
in a Zidovudine-treated subgroup of the study. Available data are CD4+ cell
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counts (Y) at 36 weeks’ gestation and HIV viral load from cervicovaginal lavage
(CVL, XL) at 38 weeks’ gestation. Details of the study and the data were re-
ported elsewhere (Shaffer et. al., 1999). A total of 120 out of 154 women had
non-detectable CVL measurements, implying a 77.9% left censoring rate. As sug-
gested by Lyles et al. (2001), a log transformation was applied to the CVL mea-
surements. As the lower limit of detection of the assay is 400 copies/ML, we have
Lx = log10(400) = 2.60206 in this example. Results of the analysis are presented
in Table 3. We also include results based on 1000 simulated data sets, where the
true parameters are set to the GEE estimates θ̂ = (1.572, 444.63, 1.335, 201.78)′

and the sample size is the same as in the data set. The corresponding results
from ML and the ad hoc method that replaces censored values by LOD/2 are also
included for comparison. Both the GEE and ML methods give similar results,
while the ad hoc approach is strongly biased. These results suggest that the cor-
relation between CVL measurements and CD4+ counts for HIV-infected women
in the zidovudine group is negative, with an estimated magnitude of 0.24.

Table 3: Correlation between CD4+ cell counts and log-transformed HIV RNA in CVL

Analysis Results Results based on simulations
Method ρ̂ 95%CI Mean ρ̂ Std.dev Coverage

MLE¶ -0.2430 (−0.4610,−0.0250) −0.2420 0.1040 0.939
GEE† -0.2385 (−0.4774, 0.0004) −0.2386 0.1102 0.933
Ad hoc§ -0.1420 – −0.1800 0.0780 –

¶. Simulations are based on parameters setting θ = (1.558, 444.63, 1.348, 201.78)
′
,

and ρ = −0.2430
†. Simulations are based on parameters setting θ = (1.572, 444.63, 1.335, 201.78)

′
,

and ρ = −0.2385
§. Values of CVL below LOD are set to LOD/2.

To illustrate the GEE approach for data with covariates, we use additional
data from the same study as in the first example by including an additional 155
women who received a placebo instead of Zidovudine. A total of 74 women in the
placebo group had non-detectable measurements of HIV RNA in CVL, implying
a 47.7% censoring rate, as compared to the 77.9% censoring rate among women
in Zidovudine group. We seek to determine whether the correlation between
CD4+ counts and HIV RNA measurements in CVL for women in the Zidovudine
group is significantly different from that in the placebo group. We model θ
by θ = Q1β = β0 + β1x and (1/2)log((1 + ρ)/(1 − ρ)) = Q2α = α0 + α1x,
where x is the indicator variable for the Zidovudine group. The estimate of



254 J. Song, H. X. Barnhart and R. H. Lyles

α = (α0, α1)′ is (−0.323, 0.090)′ with standard error of (0.189, 0.274). Thus
the estimated correlations are −0.23 and −0.31 for the Zidovudine and placebo
groups, respectively. This GEE result immediately implies a p-value of 0.37 for
testing α1 = 0, indicating that the correlation between CD4+ cell counts and HIV
RNA measurements in CVL for HIV-infected women in the Zidovudine group is
not significantly different from that in the placebo group.

5. Discussion

We have proposed a GEE approach for estimating the correlation between two
continuous variables, where one variable is subject to left censoring. We evaluated
the method by simulation studies and illustrated it with a clinical example. We
also investigated the robustness to the normality assumption for both the ML
approach and the GEE approach via simulations. As an alternative to ML, the
GEE estimates for ρ performed comparably in both simulation studies and on
real data sets. In addition to providing a unified framework for estimation of and
inference about ρ, GEE may be easier to use than ML with respect to modeling
covariates’ impact on the correlation. Although we make use of the bivariate
normality assumption in computing expectations, the full normal distribution is
not required as long as the means are correctly specified in the two GEE sets.
Based on the simulation study for non-normal data with misspecified means, we
found that the GEE method performed similarly to or marginally better than the
ML method for uniform and moderately skewed data.

Although the ML approach may be used as a standard method for estimating
the correlation between left-censored variables, we tend to favor use of the GEE
approach because of its theoretical advantage, because it performs similarly to
ML without requiring optimization routines, and because of its convenience for
modeling covariates’ impact on correlation. When one or both variables under
study are very strongly skewed, we recommend use of a log or other transforma-
tion before applying either approach (as seen in the real data examples). Ad-
ditional simulation studies (not detailed here) for highly right-skewed bivariate
log-normal data indicated potentially poor confidence interval coverage without
a transformation.

We have employed a two-stage estimating equations approach. Specifically,
we estimate θ in the first set of equations and then plug into the second set of
equations to estimate ρ. Another alternative (not explored here) would be to use
a three-stage approach, i.e, to estimate (µy, σy)′ in the first equation, estimate
(µx, σx)′ in the second equation, and then estimate ρ in the third equation. We
believe that the 2-stage approach is more efficient than the 3-stage approach in
estimating θ (Liang, et al., 1992).

An alternative way to estimate ρ is to model the mean of the product (E(XLY )),
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instead of the conditional mean (E(XL|Y )). However, E(XLY ) involves double
integration and is thus computationally intensive. Furthermore, according to
Carey et al. (1993), modeling the conditional mean has reasonable efficiency
as compared to modeling the mean of the product. Therefore, we prefer our
approach to estimate ρ by modeling the conditional mean.

The computer programs used in this research were written in Splus (Windows
2000) and R (Version 1.5.1, 2002). All programs are available from the first author
upon request.
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Appendix

Referring to equation (2.1), we have

Di =
∂Ui

∂θ
=




d11 0 d13 0
0 1 0 0
d31 0 d33 0
0 2µy 0 2σy


 ,

where
d11 = Φ(−τx) + (Lx − x0)φ(τx)/σx,
d13 = φ(τx)[τx(Lx − x0)/σx + 1],
d31 = 2µxΦ(−τx) + φ(τx)(L2

x + 2σ2
x − x2

0)/σx, and
d33 = 2σxΦ(−τx) + φ(τx)[(Lx + µx)(1 + τ2

x) + τx(µ2
x + σ2

x − x2
0)/σx].
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