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and Occupancy Data
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Abstract: Automatic vehicle detectors are now common on road systems
across the world. Many of these detectors are based on single inductive loops,
from which data on traffic volumes (i.e. vehicle counts) and occupancy (i.e.
proportion of time during which the loop is occupied) are available for 20
or 30 second observational periods. However, for the purposes of traffic
management it is frequently useful to have data on (mean) vehicle speeds,
but this is not directly available from single loop detectors. While detector
occupancy is related in a simple fashion to vehicle speed and length, the
latter variable is not measured on the vehicles that pass.

In this paper a new method for speed estimation from traffic count and
occupancy data is proposed. By assuming a simple random walk model for
successive vehicle speeds an MCMC approach to speed estimation can be
applied, in which missing vehicle lengths are sampled from an exogenous
data set. Unlike earlier estimation methods, measurement error in occu-
pancy data is explicitly modelled. The proposed methodology is applied
to traffic flow data from Interstate 5 near Seattle, during a weekday morn-
ing. The efficacy of the estimation scheme is examined by comparing the
estimates with independently collected vehicle speed data. The results are
encouraging.

Key words: Bayesian inference, inductance loop, Metropolis-Hastings algo-
rithm, measurement error, missing data.

1. Introduction

Road traffic management is becoming increasingly reliant on the availability
of real-time traffic flow data. In Melbourne, for example, SCATS (Sydney Co-
ordinated Adaptive Traffic System) makes use of such data to optimize signals
over the road network. Similar schemes operate in many other cities throughout
the world. Data collection is typically done by inductive loop vehicle detectors
embedded in (or lying on) roadways. A single detector loop provides information
on traffic volumes (i.e. vehicle counts over an observational period) and occu-
pancy (the proportion of an observational period during which the loop senses
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the presence of a vehicle). However, an increasing number of ITS (intelligent
transport system) initiatives aimed at congestion relief require estimates of (av-
erage) vehicle speeds, often as a precursor to estimating travel times. A prime
example from the United States is SWIFT (Seattle Wide Area Information for
Travelers). Accurate estimation of vehicle speeds is therefore a significant prob-
lem for traffic engineers. Furthermore, given the widespread use (and relatively
low cost) of single loop inductive detectors, methods for obtaining speeds from
the count-occupancy data produced by these detectors are of particular interest.
See Persuad and Hall (1989) and Dailey (1992, 1999) for related comments.

Data from loop detectors is (typically) not available at an individual vehicle
level, but rather aggregated over pre-set time intervals (often of 20 or 30 second
durations). Given information on vehicle lengths, one can hope to compute an
estimated speed based on the total length of vehicle passing the loop, and the time
it takes to do so (calculated from the occupancy). While single loop detectors
do not provide vehicle length data, large exogenous data sets of vehicle lengths
are available. Most estimation procedures proposed to date have been based
on an application of first order method of moments at each time interval. The
recent work of Dailey (1999) improved on this relatively crude methodology by
incorporating a second order correction, and applying a Kalman filter to smooth
mean speeds from consecutive intervals.

In this paper we take a novel approach to the problem of speed estimation,
concentrating on modelling at the level of individual vehicles. This avoids bias
due to aggregation which is inherent in earlier techniques. We also allow for mea-
surement error in the recorded occupancies, a feature of the data that is widely
recognised (see Coifman, 1999, for example) but has been ignored in published
work on speed estimation. Modelling at a disaggregate level means that we are
confronted with a great deal of missing data – namely the speeds and lengths of
each individual vehicle. Markov chain Monte Carlo (MCMC) methods provide
powerful tools for estimation in the presence of missing data. See Diebolt and Ip
(1996), for example. We use these techniques to obtain Bayesian estimates of the
mean vehicle speed over each time interval.

The paper is structured as follows. In the next section we describe our basic
model. Details of our MCMC algorithm are given in section 3. Issues regard-
ing the block structure of this algorithm and its relation to the mixing rate (see
Gamerman, 1997) are discussed. In section 4 our methodology is used to esti-
mate speeds from loop traffic count-occupancy data collected between 4:00am
and 9:30am on a weekday from Interstate 5 in Seattle. This data is available over
the World Wide Web from http://www.its.washington.edu/tdad, thanks to
the Traffic Data Acquisition and Distribution (TDAD) project managed by the
Intelligent Traffic Systems group at the University of Washington. The speeds es-



Estimation of Vehicle Speed 233

timated from this analysis are compared with independent observations obtained
from a speed trap positioned close to the detector loop under consideration. This
comparison produces encouraging results.

2. Modelling

An inductive loop vehicle detector incorporates an insulated electric wire
through which an alternating current is driven to set up an electromagnetic field.
Any (metallic) vehicle which passes through this field will decrease the inductance
of the loop, and cause the detector to register the vehicle’s presence. While the
shape and size of the loops can vary, many are squares of side approximately 6
ft. (and we shall assume this shape henceforth). A loop detector registers that
it is occupied from the moment that the front end of a vehicle enters its region
of sensitivity on one side of the square to the time when the rear of the vehicle
leaves that region on the other side. The region of sensitivity may extend a little
beyond the physical boundaries of the loop. The 6 ft. loops used in the Seattle
area have a sensitivity of about 8 ft. according to documentation from the Wash-
ington State Department of Transport, although this range varies a little from
detector to detector. See Kell et al. (1990) for further details on this type of
vehicle detector.

Consider a vehicle of length λ ft. entering a loop with sensitivity range of
λ0 = 8 ft. The time, x, (in seconds) for which the vehicle occupies the loop
is also the time required for the vehicle to travel a distance l = λ + λ0, the
effective vehicle length. Hence the speed of the vehicle (in feet per second) is
given by s = lx−1. Now, data is collected at an aggregate level over a number
of consecutive intervals each of length δ (20 seconds for the Seattle data) so we
shall extend the notation so that sij and lij are the speed and effective length
respectively of the jth vehicle during the ith interval (where i = 1, . . . ,m) . Let
ni denote the vehicle count during the ith interval, and let xi be the length of time
in that period during which the loop was occupied (i.e. the sum of the individual
x’s from each vehicle). (Note that traffic engineers typically refer to occupancy
as a proportion, xiδ

−1.) Then the individual vehicle effective lengths and speeds
are related to the (exact) occupancies through

xi =
ni∑

j=1

lij
sij

. (2.1)

The observed data are pairs (ni, yi) (i = 1, . . . ,m), where yi is the occupancy
for the ith interval as recorded by the vehicle detector. In practice xi and yi will
not be identical due to measurement error. (This measurement error is due to a
number of factors, including variations in the profile of metal distribution across
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the bodies of different vehicles.) For a modern, well calibrated inductive vehicle
loop, the magnitude of this error will typically be around 5%; see Coifman (1999)
and the references therein, for example. Denoting the measured occupancy in the
ith interval by yi, we model the measurement error in a multiplicative fashion by

yi = xi(1 + zi) (2.2)

where z1, . . . , zm are independent and normally distributed, each with mean zero
and variance σ2

z .
Almost all methods in the literature for estimating the mean speed s̄i dur-

ing the ith interval have used a first order method of moments approach. See
Kurkjian et al. (1980) and Leutzbach (1988), for example. Following this method-
ology provides an estimator s̆i = µ̂ly

−1
i , where µ̂l is an estimator of mean effective

vehicle length, obtained from some exogenous data set. A disadvantage of s̆i is
that it is biased, a result of interchange from harmonic to arithmetic mean in the
derivation of this estimator from equation (2.1) (with exact and observed occu-
pancies interchanged). A second drawback is that s̆i makes no use of the temporal
dependence that one would expect to exist in the sequence s̄1, s̄2, . . . , s̄m. We take
account of this characteristic of the traffic flow processes by assuming that the
individual vehicle speeds form a random walk. Specifically,

sij = si(j−1) + εij (i = 1, . . . ,m j = 1, . . . , ni i, j > 1) (2.3)

where {εij} are independent N(0, σ2
ε ) random variables, and we use the convention

s(i+1)0 = sini . This model was chosen in light of the lack of stationarity in traffic
speeds during time periods containing a congested ‘peak hour’ (as is the case
with our Seattle data).

Having developed a basic model for vehicle speeds we now turn our attention
to the missing effective vehicle lengths in equation (2.1). We assume speed-length
independence so that a priori {lij} is a random sample from a distribution fl. The
distribution fl can be estimated from an exogenous data set of vehicle lengths,
λ1, . . . , λν (to which λ0 must be added to obtain effective vehicle lengths). In
some applications a random sample of vehicle lengths for the road in question
will be available. This is the case for Seattle Interstate 5, where we have such
a data set of size ν = 17528. On other occasions length data from traffic on
a comparable type of road will have to suffice. The distribution of the Seattle
length data is displayed in Figure 1 using a kernel density estimate (see Wand
and Jones, 1995). We actually plot the density of the natural logarithms of the
effective vehicle lengths, since important structure is most easily seen on the log
scale. The three clear modes in the distribution suggest that the distribution
of the lengths is a mixture with three components. These components may be
naturally interpreted (in order of increasing vehicle length) as corresponding to
cars, vans and small lorries, and large lorries and road trains respectively.
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Figure 1. Kernel density estimate of natural logarithms of effective vehicle
lengths (in feet) from Seattle Interstate 5. Sample size ν = 17528, bandwidth
h = 0.050.

To complete the specification of our model (within a Bayesian framework)
it remains to select prior distributions for s11 (the speed of the first vehicle ob-
served), σ2

ε and σ2
z . For the Seattle data we employed a uniform prior on the

interval (0, 150) feet per second for s11, although a diffuse normal prior would
have been equally appropriate. Gamma priors were employed for the precisions
τε = σ−2

ε and τz = σ−2
z throughout our work. For τε we considered both vague

Gamma(0.001, 0.001) as well as informative priors such as Gamma(0.11, 1), which
gives most weight to values of σε close to 3 feet per second (i.e., about 2 miles
per hour) reflecting a belief that speeds of consecutive vehicles are unlikely to
differ by much more than 5 miles per hour. For τz we considered only informa-
tive priors. The observed data provide very little information about σz, so prior
information plays an important role with this parameter. Our preferred prior for
τz was Gamma(400, 1) which gives most weight to values of σz close to 0.05, in
line with the ‘5% measurement error’ mentioned above. We also looked at priors
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corresponding to values of σz close to 0.01 and 0.1. Sensitivity of speed estimates
to changes in the priors is discussed in section 4.

3. MCMC Inference

In this section we discuss the exploration of the posterior distribution by
Markov chain Monte Carlo methods (see Gamerman, 1997, for example). Deriva-
tion of the full set of conditional posterior distributions in closed form does not
seem possible. We therefore use a Metropolis-Hastings algorithm for sampling
from the posterior distribution. (See Chib and Greenberg, 1995, for an overview
of the Metropolis-Hasting methodology.) This approach produces a chain of simu-
lations {(s(t), l(t), z(t), σ

(t)
ε , σ

(t)
z ) : t = 1, 2, . . .} (where s and l denote the vectors

of vehicle speeds and corresponding effective lengths ordered chronologically, and
z the vector of multiplicative measurement errors). The basic structure of our
algorithm is as follows.

1. Initialize: t = 1, s(t) = s0, l(t) = l0, z(t) = z0, σ
(t)
ε = σε0 and σ

(t)
z = σz0.

2. For i in {1, 2, . . . ,m}:
(a) Generate vector of candidate vehicle speeds in interval i:

s†i ∼ [si | s(t+1)
i− , s

(t)
i+]

Here si− is the vector of vehicle speeds in intervals before i, and si+

is the vector of vehicle speeds in intervals after i. Also [a| b] denotes
the conditional distribution of a given b.

(b) Generate vector of corresponding candidate effective lengths for all
vehicles in interval i:

l†ij ∼ f̂l j = 1, . . . , ni

where f̂l represents the empirical distribution of effective vehicle lengths
(obtained with the use of exogenous data).

(c) Define

z†i = yi




ni∑
j=1

l†ij
s†ij




−1

− 1

following equations (2.1) and (2.2). Writing l†i for the vector of candi-
date lengths in interval i, accept (s†i , l†i , z†i ) with probability

β = min

(
1, exp

[
(z(t)

i )2 − (z†i )
2

2σ2
z

])
.
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(d) If candidate accepted then s
(t+1)
i = s†i , l

(t+1)
i = l†i and z

(t+1)
i = z†i .

Otherwise s
(t+1)
i = s

(t)
i , l

(t+1)
i = l

(t)
i and z

(t+1)
i = z

(t)
i .

3. Generate
τ (t+1)
ε ∼ [τε| s(t+1), l(t+1), z(t+1)]

and let σ
(t+1)
ε =

√
τ
−(t+1)
ε . Similarly, generate

τ (t+1)
z ∼ [τz| s(t+1), l(t+1), z(t+1)]

and let σ
(t+1)
z =

√
τ
−(t+1)
z

4. t← t + 1. Go to step 2.

Remark 1: At initialization, all elements of l0 were set equal to the mean of the
(estimated) effective length distribution. The vehicle speeds for the ith inter-
val were initialized at s̆i, the first order method of moments estimator described
above. Since these initial speeds and lengths satisfy (2.1) with yi = xi, so all
elements of z0 were set to zero. The parameter σε was initially set at σε0 = 3.
The parameter σz was initialized at the mean of its marginal prior distribution.

Remark 2: Computation of the conditional distributions at stage 2(a) of the al-
gorithm is straightforward because of the random walk model for vehicle speeds.
Details are provided in the appendix, where we also describe the conditional dis-
tribution of τε and τz.

Remark 3: The algorithm is structured so that parameters from each interval are
blocked together for updating. It is possible to update each single (scalar) param-
eter in turn, or to update parameters for each single vehicle in turn. However,
while these approaches would provide a higher acceptance rate than obtained
using the algorithm above, the resulting Markov chains would mix very poorly.
This is due to the fact that the length distribution is essentially a mixture with
three components. Transitions of a given vehicle length between components
(and in particular, from the ‘road train’ component to the other components)
are highly unlikely because they give rise to substantial changes in xi and hence
relatively large (and thus improbable) values for zi. By defining blocks in terms
of speeds and lengths over an entire interval, our algorithm mixes at a reasonable
rate without the acceptance rate becoming too small.

In applying this algorithm to the Seattle data the chain was run for 100000
iterations. Simulations from the first 20000 iterations were discarded as the burn-
in period. Convergence of the chain after this burn-in was confirmed by employing
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Figure 2. Estimates of interval mean speeds for traffic on Interstate 5, near
Seattle. The grey dashed line depicts mean speeds obtained from a speed trap,
while the solid black line depicts mean speeds estimated from count-occupancy
data from a single vehicle detector.

Geweke’s (1992) methodology, and (utilizing results obtained from a parallel sim-
ulation) by Gelman and Rubin’s (1992) method. The acceptance rate (at stage
2c of the algorithm) was about 7% in equilibrium. Naturally a higher rate would
have been preferable, but it appears to be impossible to obtain such an im-
provement without a substantial slowing of the mixing rate of the algorithm (cf.
Remark 3 above). A thinning interval of 10 was applied to the simulation out-
put for the sake of parsimony in computer storage (a matter of some importance
since 1000 mean vehicle speeds had to be stored at each monitored iteration).
All computation was done using the statistics language R (Gentleman and Ihaka,
1996) running on a 1900MHz PC operating under Linux.
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Figure 3. The envelope of a 95% credible intervals for interval mean vehicle
speed is shaded grey. Speed trap data is plotted as a solid black line.

4. Discussion of Results

In this section we discuss the results from an analysis of the Seattle data.
Data were observed over 1000 twenty second intervals (from 4:00am until just
after 9:30am). The quantities of principal interest are the mean vehicle speeds
for each interval, {s̄i}. The posterior means for these speeds constitute natural
point estimates, and are plotted (after conversion to miles per hour) in Figure
2. A useful comparison for our estimates is provided by a set of independent
observations on interval mean speeds obtained from a speed trap located close to
the inductance detector under study on Interstate 5. We shall refer to the speed
trap data as measured speeds (although it is important to recognise that speed
traps are by no means entirely error-free). These measured speeds (in miles per
hour) are also plotted in Figure 2.

The results in Figure 2 indicate that our methodology is doing a very reason-
able job of reproducing the measured speeds. The root mean squared difference
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Figure 4. Speed estimates using the following priors for τZ : Gamma(400, 1)
(solid black line), Gamma(100, 1) (dashed black line), and Gamma(10000, 1)
(dotted black line).

between our estimates and the speed trap data is 4.3 miles per hour. This is
a very substantial improvement on the figure of 10.2 miles per hour which we
obtained using the first order method of moments approach described in section
2. Not surprisingly, the first order method of moments results can be improved
by smoothing the estimates {s̆i} using locally weighted regression. However,
even when the smoothing parameter is chosen optimally to minimise the root
mean squared distance from the measured speeds (an unrealistically good choice
for practical purposes), the resulting speed estimates are still worse than our
MCMC estimates.

So far we have concentrated on point estimates of speeds. We can obtain
(pointwise) 95% credible intervals from the quantiles of the sampled values of {s̄i}
in a straightforward manner. The envelope of these credible intervals is shaded
in Figure 3 (since this is easier to visualize than the pointwise limits themselves
which tend to be obscured due to the rapid fluctuations in speed estimates). The
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plot of the measured speeds is superimposed for comparative purposes. Note the
speed trap data lie within the credible intervals for the vast majority of the time.

The sensitivity of the results to choice of prior was investigated. Not sur-
prisingly, the precise forms of vague priors for s11 and τε were of no practical
significance in terms of the final speed estimates. This was also the case when
a moderately informative Gamma(0.11, 1) prior was assigned to τε. In all cases
the posterior mean for σε was between 1.4 and 2.0 feet per second (i.e. between
1.1 and 1.4 miles per hour). The choice of prior for τz was considered a far more
serious, since the data provide almost no information about this parameter. We
consider three choices of prior – Gamma(400, 1) (corresponding to approximately
5% measurement error); Gamma(100, 1) (corresponding to approximately 10%
measurement error); and Gamma(10000, 10) (corresponding to approximately 1%
measurement error). The resulting speed estimates are displayed in Figure 4. It
is difficult to distinguish many differences in speed estimates using these different
priors, suggesting that the exact choice of prior for τz is not critical.

We conclude with some comments on a possible refinement of our method-
ology. In developing our estimation methodology we have implicitly assumed
that the distribution of vehicle lengths remains constant over time. Nonetheless,
on some roads one might expect a small but significant change in this distribu-
tion through the day, with (for example) large freight carrying vehicles having a
higher relative frequency during the night than during the morning peak hour.
Such temporal variation in the length distribution will have an effect on the speed
estimates, since (intuitively speaking) a long vehicle must be travelling at a higher
speed than a short vehicle in order to give the same occupancy. It follows that
any inadequacies in using a constant length distribution may well be visible in
terms of a time varying bias in the speed estimates. While our results do not
provide clear evidence of such behaviour in the Seattle Interstate 5 data, the need
for a time dependent length distribution will be dependent on the road system
under study, and possibly on the time of year. When temporal variation in the
length distribution is required, a possible approach is to model the log-length
data using a normal mixture model in which the mixture proportions depend on
time. (Visual inspection of Figure 1 suggests that the use of a normal mixture
is not unreasonable.) This could be achieved using a ‘constructive definition’
(or ‘stick breaking’ representation) of the mixture proportions (see Walker et al.,
1999), and modelling each the logit of each relative probability by employing cu-
bic splines. We believe that this approach may open up some interesting avenues
for further work on speed estimation.
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Apendix: Conditional Distributions

Sampling from the conditional distribution

[si | s(t+1)
i− , s

(t)
i+]

is rendered straightforward by the Markov property of the random walk of (2.3).
There are three distinct cases that need to be covered.

(i) When i = 1 the conditional density is given by

f(s1 | s1+) = f(s1n1 | s21)
n1−1∏
j=1

f(s1j | s1(j+1))

∝ φσ(s1n1 − s21)
n1−1∏
j=1

φσ(s1j − s1(j+1))I(0 < s11 < 150)

where φσ(x) is a N(0, σ2) density evaluated at x, and I(A) is the indicator
of the event A.

(ii) When i = m we have (in similar fashion)

f(sm | sm−) = φσ(sm1 − s(m−1)(nm−1))
nm∏
j=2

φσ(smj − sm(j−1)).

(iii) When 1 < i < m,

f(si | si−, si+) =
ni∏

j=1

φσij (sij − µij)

where

µij =
(ni − j + 1)si(j−1) + s(i+1)1

ni − j + 2
,

and

σ2
ij =

(ni − j + 1)σ2

ni − j + 2
.
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Finally, note that

[τε | s, l, z] = [τε | s] = Gamma


2−1n + 0.001, 2−1

m∑
i=1

ni∑
j=1

(sij − si(j−1))
2 + 0.001




where we define s10 = s11 and a Gamma(0.001, 0.001) prior is assigned to τε; and

[τz | s, l, z] = [τz |z] = Gamma

(
2−1n + 400, 2−1

m∑
i=1

z2
i + 1

)

when a Gamma(400, 1) is employed for τz.
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