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Abstract: In this work, testing of factor effects to the observed data from
finite mixture distributions are discussed. Likelihood ratio tests are used to
test whether factors of interest have significant effects to the mixture dis-
tribution model. To carry out the likelihood ratio tests, different methods
about the computation algorithm for the maximum likelihood estimation
(MLE) of the parameters in the mixture models are studied. These meth-
ods are applied to the data obtained from a laboratory study on emergence
of Pontomyia oceana, where the effects of factors, such as sex and temper-
ature, to the distribution of the dates that Pontomyia oceana emerged are
investigated. From the results obtained, in some cases, three-component lo-
gistic distributions are fitted to the data with two peaks very close to each
other. This is somewhat surprising as merely from the histogram, it is not
easy to see and usually not expected to say there are two very close peaks.
From the practical point of view, as the laboratory conditions excluded the
possible effects related to semi-lunar tidal fluctuations that may have a dom-
inating influence in nature. Thus the laboratory results helps to identify all
the possible factors that have minor effects. Based on the results of this
study, the difference between males and females, nevertheless, suggests that
sex hormone may be involved in affecting the emergence dates. The sug-
gestion of a third peak is unexpected from our point of view and it implies
that there are factors we never suspected. It is worth noting that through
rigorous statistical analysis presented here, it helps to provide an objective
estimation on the distribution of the emergence dates as well as the cor-
responding proportions and the peak synchronous emergence dates in each
period under different factor effects. We only start to speculate its possible
adaptive meaning after the differences have been established as a true phe-
nomenon. From this study, it reveals some additional biological phenomena
worthy of more investigations.

Key words: EM algorithm, likelihood ratio tests, maximum likelihood esti-
mates, mixture of logistic distributions, synchronous emergence of pontomyia
oceana.
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1. Introduction

Pontomyia oceana(P. oceana in short) is a kind of marine midges at ocean
front. One of the characteristics of this kind of midges is that their life histories
consist of a relatively long period of benthic larval development(30-45 days) and
followed by a very short adult stage(2 hours). In nature, a semi-lunar rhythm of
the midge emergence was observed. The midges emerged around new moons and
full moons. It was also noticed that the midges might be concentrated in the first
or the last few days of the window suitable for emergence depending on season.
We had no idea what environmental factors might be affecting this trait, and we
had no idea if an endogenous rhythm was involved. The temperature treatments
in this study were an effort to test if an endogenous rhythm was involved. An
important characteristic of an endogenous rhythm is temperature-compensation,
i.e., the midges are expected to catch up under low temperatures. On the other
hand, the difference between males and females in emergence time of the day
is known with a convincing adaptive explanation (Soong et al 1999). However
difference in dates within a month has been suspected, but never proven. In
our study here, as the laboratory conditions excluded the possible effects related
to semi-lunar tidal fluctuations that may have a dominating influence in nature.
Thus the lab results helped to identify all the possible factors that have minor
effects. On the other hand, as an adult remained active for only about 2 hours,
during the short adult stage, males must find mates and females besides mat-
ing must place fertilized eggs in appropriate habitats. Hence, peak synchronous
emergence become very important to these short-lived midges. See Soong et al
(1999) for some details on the introduction of life histories about marine midges.
In this work, we have investigated whether the factor of temperature and sex in-
deed have an effect on synchronous emergence of P. oceana from statistical point
of view with the following laboratory experiment observations, where mixture
model describing the emergence distribution and the corresponding proportions
as well as peak synchronous dates for each factor combination has been used and
estimated. Here the standard ANOVA is not used as we also concern about how
many peak periods there are for the emergence date distribution, as well as what
are the corresponding peak dates and proportion emergenced during each period.
Standard ANOVA will not be able to distinguish all these differences.

The result of this analysis does not support the existence of an endogenous
semi-lunar rhythm in controlling the emergence dates of this marine midge. More-
over, the difference between males and females from the analysis, nevertheless,
suggests that sex hormone may be involved in affecting the emergence dates. The
suggestion of a third peak is unexpected from our point of view and implies that
there are factors we never suspected. The detailed modeling and analysis as well
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Table 1: Observed frequency counts
20oC 20oC 25oC 25oC 30oC 30oC

Day Female Male Female Male Female Male

23 1 1 6 6 3 3
24 0 0 9 8 3 3
25 1 4 24 10 42 27
26 3 2 37 5 63 65
27 2 2 56 30 34 9
28 2 3 34 24 29 21
29 6 3 7 4 5 0
30 13 9 4 0 7 0
31 10 1 3 0 3 4
32 0 0 2 4 0 0
33 1 0 1 3 3 12
34 0 0 5 6 4 3
35 0 0 8 6 9 4
36 1 1 11 14 6 1
37 1 0 19 21 7 2
38 0 1 26 14 12 7
39 1 0 67 33 13 4
40 0 0 67 33 7 1
41 3 0 64 24 6 4
42 6 7 36 19 1 0
43 5 4 21 22 0 2
44 9 3 20 12 0 0
45 9 6 16 14 0 1
46 5 2 14 6 2 1
47 8 2 11 5 0 0
48 4 5 4 1 0 0
49 21 11 4 6 1 0
50 19 7 6 6 2 0
51 36 13 1 2 0 0
52 23 4 3 0 0 1
53 10 5 7 0 0 0
54 1 0 1 0 0 0
55 1 1 5 0 0 0
56 0 0 0 0 0 0

n 202 97 599 338 262 175
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as discussion are presented below.

Now consider the following experiment performed by a laboratory in Na-
tional Sun Yat-sen University of Taiwan: at first adult P. oceana were collected
in southern Taiwan and then placed in beakers to collect fertilized eggs. After
approximately 20 days of culture, the emergence day observations from female
and male P. oceana under three different temperatures, say 20o, 25o, and 30o

respectively were recorded. See Lee (2000) for a detailed description of the ex-
periments. The sets of observed frequency counts nijk for each of the factor
combination(i, j), i = 1, 2, j = 1, 2, 3 on the kth day in histogram form are pre-
sented in Table 1 and Figure 1. It can be seen from Figure 1, the time distributions
appear to be mixture models with two or three distributions. The effect of tem-
perature seems to be more significant than sex. Meanwhile, it seems that high
temperature advances the day of emergence. We discuss all these phenomena by
using statistical technique.
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Figure 1: Histograms for quantities of emerged P. oceana
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In this work, a two-factor factorial design with factors sex and temperature is
considered although the response of emergence day for each P. oceana is assumed
to be a random variable with mixture distribution, where the parameters of the
distribution such as the mixture proportions, parameters for each distribution in
the mixtures, depend on the factors. In the following, we will first consider the
general mixture model and describe the methods we are going to use to do the
estimation and perform the appropriate tests.

Let yijk be the observed response of the emergence day with factor A at the
ith level (i = 1, 2, . . . , a) and factor B at the jth level (j = 1, 2, . . . , b) for the
kth replicate (k = 1, 2, . . . , nij). yijk, k = 1, 2, . . . , nij are assumed to be i.i.d.
random variables with common mixture distribution function F (·;θij), where θij

is the unknown parameter vector for F (·;θij). We will estimate these parameters
first and perform the factor testing later.

In the practical problem here it is of interest to know whether the factors of
temperature and sex have effects on the emergence day of P. oceana, and under-
stand how those factors would affect the peak periods for the emergence to occur.
In this work we first identify the pattern of the emergence time as following a mix-
ture distribution, then distinguish whether there are significant differences on the
mixture distributions of emergence day under different factor influences. Later
the peak periods with the estimated mixture distributions are estimated through
the mean estimate for each component. In order to do that, likelihood ratio tests
are used here to accomplish our investigations. To perform the likelihood ratio
tests, we have to determine what kind of mixture distribution function are ap-
propriate for the data in hand first. Moreover, among the many popular existing
methods for computing the maximum likelihood estimations(MLE), which one is
more suitable to be used for our data will be explained in the following sections.
The approaches and the methods we adopt here will be briefly described although
still keep the presentation clear.

In Section 2 we introduce the definition of a finite mixture distribution and
different existing methods to estimate the parameters, such as the method of
moments and the maximum likelihood. The computation algorithms for finding
MLE of parameter vectors of mixture distributions under different considerations
to accommodate the practical situation are also introduced, namely, the EM algo-
rithm proposed first by Demmpster, Laird,and Rubin (1977), the EM algorithm
for grouped and truncated data proposed by McLachlan and Jones (1988) and
Newton-Raphson iterative scheme by Hasselblad (1966). Later the mixture of
normal distributions as well as the mixture of logistic distributions, both will be
used to analyze our data. Moreover a method for estimating a probability den-
sity function nonparametrically proposed by Minnotte (1998) is considered, so as
to recompute data in each interval and estimate mixture distributions afresh for
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comparison with the results from parametric models. The Pearson’s chi-squared
goodness of fit test for ascertaining whether an assumed probability distribution
is consistent with a given set of data is also stated. In Section 3 likelihood ratio
tests for testing the effects of main factors are formulated, a F-test is also used
for testing the factor interaction. In Section 4 we applied all these methods to
the emergence data of P. oceana, and in Section 5 we conclude with a discussion.

2. Mixture Distributions and Methods of Estimation of Parameters

The probability density function (p.d.f.) of a mixture distribution with finite
components is usually expressed as

f(x) =
c∑

i=1

pigi(x;θi). (2.1)

where pi, i = 1, . . . , c, are the mixing proportions satisfing
∑c

i=1 pi = 1 and
gi(x;θi), i = 1, . . . , c, are the p.d.f. depending on an m-dimensional parameter
vector θi, see Everitt and Hand (1981, p.4) for more details.

Assume n independent observations, x1, . . . , xn, were obtained from a mix-
ture distribution, the parameters of the distribution will be estimated. Let
∆ = (θ′,p′)′ denote the vector of all unknown parameters of (2.1), where θ =
(θ′

1, . . . ,θ
′
c)

′ and p = (p1, . . . , pc)′ are the parameter vectors to be estimated.
Many methods have been proposed and used for estimating ∆. Two of the well-
known methods namely the method of moments and maximum likelihood will be
used in this work.

The problem of estimating the parameters in a mixture of two normal distri-
butions was first considered by Karl Pearson (1894) where the method of moments
was used. The evaluation of Pearson’s estimators involved the solution of a ninth
degree polynomial equation. Cohen (1967) presented a procedure with circum-
vents solution of the nonic equation which reduces the total computational effort
required. But it is not difficult to find the solution with the help of computer
today.

It is well known that the maximum likelihood estimator (MLE) has a number
of desirable statistical properties. In the case of mixture distributions, some
computational methods for finding the MLE is described briefly in the following
subsection.

2.1 Algorithms for computing the MLE

EM algorithm
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EM algorithm is a powerful and useful tool for finding the MLE, which was
proposed first by Dempster, Laird, and Rubin (1977). The M-steps and E-steps
are repeated iteratively until some convergence criterion is satisfied.

EM algorithm for grouped and truncated data

In practice, data collected on the phenomenon of interest are frequently avail-
able only in grouped form and may also be truncated. In our study here, as the
emergence number is recorded daily, the data obtained can be regarded as in
grouped form, also we find that the incidence of emergence 21 days before and 56
days after the initial emergence time is very rare, we therefore have truncated our
observations before 21 days and after 56 days of initial emergence. It seems to be
interesting for us to see what influence it would have to our estimates under this
kind of consideration. McLachlan and Jones (1988) proposed an EM algorithm
for grouped and truncated data. More details can be found in the above paper.

Newton-Raphson iterative scheme

Other than using EM algorithm to obtain the MLE, it is also quite common to
find the MLE by using a Newton iterative scheme (Hasselblad (1966)). Estimators
obtained by method of moments can be regard as the initial values of the EM
algorithm and the Newton’s iteration procedure.

2.2 Density estimation with binned data

Other than estimating the p.d.f. parametrically assuming a possible form
for the p.d.f., the approach of estimating the p.d.f. nonparametrically is also
considered here for comparison. One popular method for estimating a p.d.f. non-
parametrically is known as the kernel density estimation, where Minnotte (1998)
proposed a method for achieving higher-order convergence rates in nonparametric
density estimation. This will also be used for comparison here.

2.3 Pearson’s chi-squared goodness-of-fit test

As soon as we have obtained the estimation of parameters, we need to test
whether the particular estimated p.d.f. is consistent with those observed data.
The Pearson’s chi-squared goodness of fit test will be used.

3. Effects Testing

In a multi-factors experiment, once a model is fitted to the observed data



220 M. L. Huang, C.-S. Lin and K. Soong

in each combination of the treatments of all factors and is not rejected by the
goodness of fit test, we may proceed to consider the likelihood ratio test to test
the effect of each factor

3.1 Likelihood ratio test

To test θ ∈ Θ0 versus θ ∈ Θ1, the well known likelihood ratio test statistic
is defined through

λ =
sup{p(x,θ) : θ ∈ Θ0}
sup{p(x,θ) : θ ∈ Θ} , (3.1)

where Θ = Θ0∪Θ1. Under some additional regularity conditions, the asymptotic
distribution of the statistic −2logλ is χ2

r−m, where Θ is an r-dimensional subset
of Rr and Θ0 is an m-dimensional subset of Θ. One rejects θ ∈ Θ0 whenever
−2logλ > C, where C is determined by the desired level of the test.

For example, in our study here, for the observed data sets of female and
male at different temperatures as in Figure 1, let ∆i, i = 1, . . . , 6, denote the
parameter vectors of corresponding distribution, respectively. If we want to test
the effect of sex under temperature 20oC, the test statistic used here is through

λ12 =
L(∆̂12)

L(∆̂1)L(∆̂2)
, (3.2)

where L(∆̂i) =
∏n

j=1 f(xj; ∆̂i), i = 1, 2 are the maximized likelihood for female
and male at 20oC respectively, ∆12 is the parameter vector of the combined data
sets of female and male at temperatures 20oC, and L(∆̂12) is the maximized
likelihood of the combined data set of female and male at 20oC; the degrees of
freedom equals to the difference between the sum of the number of parameters
of ∆1 and ∆2 and the number of parameters of ∆12. To test the effect of
temperature under female, the test statistic λ135 is adopted in the same manner,
where

λ135 =
L(∆̂135)

L(∆̂1)L(∆̂3)L(∆̂5)
. (3.3)

Regardless of different temperatures, the entire effect of sex can be tested by

λs =
L(∆̂12)L(∆̂34)L(∆̂56)∏6

i=1 L(∆̂i)
. (3.4)

The degrees of freedom equal to the difference in dimension between the sum of
the number of parameters of ∆12, ∆34 and ∆56 and the sum of the number of
parameters of ∆i, i = 1, . . . , 6. Similarly, the entire effect of temperature can be
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tested by

λt =
L(∆̂135)L(∆̂246)∏6

i=1 L(∆̂i)
. (3.5)

3.2 F-test

To test the interaction effect between temperature and sex, we use the F -
statistics comparing effect of factor A at low level of factor B with respect to
effect of factor A at high level of factor B as follows.

F factor =
−2 log λlow/d.f.low

−2 log λhigh/d.f.high

∼ Fd.f.low,d.f.high

that is,

F temp =
log λij/df ij

log λhk/df hk

(3.6)

for ij, hk∈ {12, 34, 56} and

F sex =
log λ135/df 135

log λ246/df 246

, (3.7)

the critical region would be the tails of the F distribution with corresponding
degrees of freedom. The reason for using F temp, ij = 12, hk = 34 to test the
interaction between sex and temperatures at 20oC and 25oC is that we are testing
whether the effect of sex under 20oC would be significantly different from the
effect of sex under 25oC, and so on. Then if the value of F temp or F sex is too small
or too large, it means that the differences of variation of sex between different
temperatures are significant or the differences of variation of temperature between
female and male are significant, then it indicates the effect of interaction does
exist.

4. Case Study

We now examine the effects of sex and temperature on the day of emergence of
P. oceana. In a laboratory trial, the ova fertilized at the same day were collected
and kept in constant temperature 20oC, 25oC and 30oC separately. The observed
counts of emergence of female and male P. oceana at 20oC, 25oC and 30oC from
the 21th day to 56th day were recorded every day as are presented in Table 1.
The total observed counts of each combination n is listed at the last row of Table
1. The 21th and 56th day were the lower and upper truncated values, and 36
grouped intervals with 1 day equal width.
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Table 2: Results of fitting a three(two)-component mixture of logistic
distributions to day of emergency (Standard errors are in parentheses)

20oC F

∆̂1

20oC M

∆̂2

25oC F

∆̂3

25oC M

∆̂4

30oC F

∆̂5

30oC M

∆̂6

µ̂1

NL
EM
GT
NR
BD

28.85(.06)
29.12(.06)
29.11(.06)
29.12(.06)
29.16(.06)

27.57(.12)
27.87(.13)
27.86(.13)
27.87(.13)
27.66(.12)

26.06(.03)
26.13(.03)
26.13(.03)
26.13(.03)
26.19(.04)

26.04(.05)
26.25(.04)
26.22(.05)
26.22(.05)
26.23(.06)

25.79(.06)
25.78(.06)
25.81(.07)
25.80(.07)
25.88(.08)

25.57(.07)
25.46(.06)
25.50(.06)
25.49(.07)
25.55(.09)

σ̂1 NL 2.06(.19) 2.23(.38) 1.45(.07) 1.66(.12) 1.21(.12) 1.11(.12)

β̂1

EM
GT
NR
BD

1.11(.03)
1.11(.03)
1.11(.03)
1.12(.03)

1.45(.07)
1.44(.07)
1.45(.07)
1.34(.06)

.83(.02)

.81(.02)

.83(.02)

.94(.02)

.85(.02)

.95(.02)

.95(.03)
1.08(.03)

.70(.03)

.73(.03)

.76(.04)

.88(.04)

.50(.03)

.57(.03)

.58(.03)

.76(.05)

µ̂2

NL
EM
GT
NR
BD

44.59(.15)
44.08(.11)
44.08(.11)
44.08(.11)
44.31(.14)

43.35(.19)
43.05(.11)
43.05(.11)
43.05(.11)
42.89(.11)

39.50(.05)
39.43(.05)
39.43(.05)
39.43(.05)
39.47(.07)

39.67(.16)
39.21(.16)
39.11(.15)
40.10(.21)
39.80(.17)

37.62(.06)
36.91(.14)
37.03(.13)
37.05(.13)
37.00(.14)

32.44(.03)
34.44(.24)
35.16(.23)
35.11(.23)
35.31(.21)

σ̂2 NL 3.19(.72) 2.82(.82) 1.46(.12) 3.42(.88) 1.78(.19) 1.14(.06)

β̂2

EM
GT
NR
BD

1.56(.06)
1.55(.06)
1.56(.06)
1.83(.08)

1.15(.06)
1.13(.06)
1.15(.06)
1.16(.06)

.93(.03)

.90(.03)

.93(.03)
1.16(.04)

1.89(.09)
1.81(.08)
2.56(.11)
2.10(.09)

2.22(.08)
2.13(.07)
2.13(.07)
2.18(.07)

2.88(.12)
2.83(.12)
2.86(.12)
2.66(.11)

µ̂3

NL
EM
GT
NR
BD

50.42(.08)
50.34(.08)
50.34(.08)
50.34(.08)
50.42(.09)

49.94(.13)
49.74(.14)
49.74(.13)
49.74(.14)
49.67(.17)

41.88(.15)
42.05(.15)
42.00(.15)
42.06(.14)
42.70(.15)

49.23(.01)
43.46(.14)
42.04(.18)

−
49.35(.01)

34.90(.22)
−
−
−
−

38.28(.11)
−
−
−
−

σ̂3 NL 1.34(.16) 1.70(.33) 5.48(1.30) .71(.01) 6.17(1.88) 3.18(.52)

β̂3

EM
GT
NT
BD

.82(.04)

.80(.04)

.82(.04)

.90(.05)

1.05(.07)
1.03(.07)
1.05(.07)
1.25(.09)

3.10(.08)
3.09(.08)
3.10(.07)
3.11(.08)

2.35(.07)
2.54(.09)

−
.56(.01)

−
−
−
−

−
−
−
−

p̂1

NL
EM
GT
NR
BD

.19(.03)

.20(.03)

.20(.03)

.19(.03)

.19(.03)

.26(.04)

.27(.04)

.27(.04)

.26(.04)

.25(.04)

.29(.02)

.29(.02)

.29(.02)

.32(.02)

.29(.02)

.26(.01)

.25(.02)

.25(.02)

.32(.03)

.27(.01)

.66(.03)
.69(.003)
.70(.002)
.70(.002)
.70(.002)

.74(.03)
.69(.003)
.70(.004)
.70(.004)
.71(.003)

p̂2

NL
EM
GT
NR
BD

.29(.04)

.26(.03)

.26(.03)

.25(.03)

.28(.04)

.29(.05)

.24(.04)

.24(.04)

.24(.04)

.21(.04)

.35(.03)

.37(.03)

.37(.03)

.41(.03)

.42(.03)

.71(.01)

.59(.04)

.49(.06)
−

.70(.01)

.15(.03)
−
−
−
−

.11(.02)
−
−
−
−

logL

NL
EM
GT
NR
BD

-586
-584
-584
-584
-585

-302
-301
-301
-301
-302

-1817
-1816
-1816
-1819
-1819

-1048
-1057
-1056
-1064
-1052

-676
-681
-681
-680
-683

-429
-429
-428
-428
-433

4.1 Mixture of normal distributions

The sets of observed frequency counts in histogram form given in Figure 1
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suggests that the time distributions are mixture models, which also seems to be
able to explain the real situation reasonably. Since the experimenter collected
data in grouped and truncated form, we first fit mixture of three normal distri-
butions to these data via formulas deduced by McLachlan and Jones(1988). The
estimate of parameter vectors ∆i, including parameters µ1i, σ1i, µ2i, σ2i, µ3i, σ3i

and proportions p1i and p2i, i = 1, . . . , 6, are listed at the first row of Table 2 and
denoted by NL. But the fits are rejected since the modes of the histograms have
higher frequencies and smaller variations than normal distributions do. Hence a
mixture of logistic distributions is considered to fit to each data set.

4.2 Mixture of logistic distributions

Since mixture of normal distributions does not work well, we have tried some
other distributions. It seems that mixture of logistic distributions is more suit-
able. In order to obtain the MLE of mixture of logistic distributions, the formulas
for performing EM algorithm and EM algorithm for grouped and truncated data
are derived and used in our estimates, the derivation can be obtained following
the steps illustrated in the corresponding papers and is omitted.

The p.d.f. of logistic distribution is

f(x;µ, β) =
e−

x−µ
β

β(1 + e
−x−µ

β )2
. (4.1)

To estimate the MLE of parameter vector ∆ = (µ1, β1, µ2, β2, µ3, β3, p1, p2) of a
mixture of three logistic distributions four methods were used.

The first is the EM algorithm where the effect of truncation is not considered
since the part of the tails seems to be ignorable. Moreover, since the experimental
data were collected in grouped form, we regard the individual observations x
in each interval as the central point of the interval. For example, at 20oC we
observed that there were 3 female P. oceana emerged at the 26th day, then x3 =
x4 = x5 = 25.5. According to this rule and EM algorithm for mixture of logistic
distributions, we obtained the estimates of parameter vectors ∆i, i = 1, . . . , 6,
listed at row 2 of Table 2 and denoted by EM.

Secondly, we estimate the parameter vectors with consideration of data are
initially grouped and truncated or by the Newton-Raphson. The results are listed
at row 3 and 4 of Table 2 and denoted by GT and NR respectively.

The last method we used is fitting a nonparametric density, to each set of ex-
perimentally observed data in order to smooth the original rugged curve. Then
estimate the probable counts at each day by multipling total number to this non-
parametric density, and re-estimate the parameter vectors of mixture of logistic
distributions. The results are listed at row 5 of Table 2 and denoted by BD.
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Compare the results of these four methods presented in Table 2, there is
no significant difference between the estimates obtained by EM algorithm, EM
algorithm for grouped and truncated data and Newton scheme except for ∆̂4.
The purpose of estimating a probability function nonparametrically is to smooth
down the rough data style initially so as to obtain a better parametric form. But
the estimates obtained by BD do not make significant differences here. On the
other hand, it seems that the estimates obtained by GT has comparatively larger
log-likelihood value listed at the bottom of Table 2 than the others and the curve
of the density function with GT estimate also has a better peak estimate at the
mode than the others. Hence in the following the discussion will be restricted
to the estimates obtained by GT only, and the plots of the estimated density
function for each data set are also presented in Figure 2.
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Figure 2: Plots of mixture of logistic distributions
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4.3 Distribution fits

To test whether the mixture of logistic distributions is consistent with the
observed data, the Pearson’s chi-square goodness-of-fit statistic is considered.
Before we calculate the test statistics value, we make two adjustments on some
intervals. First we have combined several intervals with extremely small proba-
bilities Pj(∆̂), since even only one observation occurred in this kind of intervals
will cause the test statistics value increased rapidly. Next, we have combined two
neighboring intervals when in one interval the observed counts decrease rapidly
and in the next interval the response increases to the seemly normal counts. The
reason for this adjustment is because no matter what type of distribution was
fitted, the unsmoothed rapid increase or decrease would almost always cause the
null hypothesis of fit by a distribution with smooth p.d.f. being rejected. Hence
combining intervals to alleviate the concussion seems to be a reasonable thing to
do. Then the degrees of freedom are reduced accordingly. The results are given
in Table 3 for each data set along with the associated p-value. It shows that those
fittings are acceptable.

Table 3: Goodness-of-fit test for mixture of logistic distributions by GT
(Standard errors are in parentheses)

20oC F 20oC M 25oC F 25oC M 30oC F 30oC M

∆̂1 ∆̂2 ∆̂3 ∆̂4 ∆̂5 ∆̂6

µ̂1 29.11(.06) 27.86(.13) 26.13(.03) 26.22(.05) 25.81(.07) 25.50(.06)
β̂1 1.11(.03) 1.44(.07) .81(.02) .95(.02) .73(.03) .57(.03)
µ̂2 44.08(.11) 43.05(.11) 39.43(.05) 39.11(.15) 37.03(.13) 35.16(.23)
β̂2 1.55(.06) 1.13(.06) .90(.03) 1.81(.08) 2.13(.07) 2.83(.12)
µ̂3 50.34(.08) 49.74(.13) 42.00(.15) 42.04(.18) − −
β̂3 .80(.04) 1.03(.07) 3.09(.08) 2.54(.09) − −
p̂1 .20(.03) .27(.04) .29(.02) .25(.02) .70(.002) .70(.004)
p̂2 .26(.03) .24(.04) .37(.03) .49(.06) − −
χ2 21.657 22.744 19.360 24.004 14.476 20.731

d.f. 20 20 20 20 13 13
p-value .359 .302 .499 .242 .341 .078

4.4 Effects significance of temperature and sex

From Table 3, it can be seen that three-component logistic distribution fits
the data sets of 20oC and 25oC and two-component model fits the data sets of
30oC quite well. The estimates of the parameter vectors at the same temperature
are close for female and male. It seems that the effect of temperature is more
significant than sex.
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Table 4: Results of fitting a three-component mixture of logistic distributions to
combined data (Standard errors are in parentheses)

20oC 25oC 30oC Female Male
∆̂12 ∆̂34 ∆̂56 ∆̂135 ∆̂246

µ̂1 28.66(.06) 26.17(.03) 25.64(.05) 26.17(.03) 25.88(.04)
β̂1 1.31(.03) .88(.01) .67(.02) .93(.02) .86(.02)
µ̂2 43.67(.08) 39.33(.05) 36.21(.13) 39.84(.08) 39.55(.14)
β̂2 1.40(.05) 1.10(.03) 2.54(.07) 1.92(.04) 2.52(.08)
µ̂3 50.17(.07) 41.56(.13) − 50.24(.02) 49.73(.02)
β̂3 .90(.04) 3.05(.07) − 1.08(.01) .83(.01)
p̂1 .22(.02) .26(.01) .69(.01) .38(.01) .39(.01)
p̂2 .25(.03) .34(.03) − .48(.01) .53(.01)

log L −892 −2885 −1114 −3427 −1966

Table 5: Analysis of interaction between temperature and sex — H0: no
interaction between temperature and sex

−2 log λ d.f. F temp p-value
20oC −2 log λ12 = 13.496 8 13.496/8

25.968/8 = 0.52 0.813

25oC −2 log λ34 = 25.968 8 25.968/8
11.794/5 = 1.38 0.377

30oC −2 log λ56 = 11.794 5 11.794/5
13.496/8 = 1.40 0.320

−2 log λ d.f. F sex p-value
Female −2 log λ135 = 691.930 13 691.930/13

361.722/13 = 1.91 0.128
Male −2 log λ246 = 361.722 13

In order to test the effect of sex and temperature, we combine the data sets for
different combinations and fit mixture of logistic distributions to each combined
data set. The MLE for combined data set of sets i and j or sets i , j and k
are denoted by ∆̂ij and ∆̂ijk respectively, which are displayed in Table 4. The
maximized likelihood L(∆̂) of each data set are listed in Table 3 and Table
4 separately. Consider the likelihood ratio test statistics λ in (3.2) and (3.3),
the effect of sex at 20oC, 25oC and 30oC are indicated by λ12, λ34 and λ56

respectively; the effect of temperature for female and male are indicated by λ135

and λ246 respectively. All these value are listed in Table 5.
Now, we test the effect of interaction between temperature and sex, i.e., the

null hypothesis is H0: there is no interaction between temperature and sex. We
check each of the statistics F temp and F sex as in (3.6) and (3.7) at different
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levels of temperature and sex. The test results are shown in Table 5 and we
conclude that there is no indication that there is significant interaction between
temperature and sex. This seems reasonable since in Figure 2 it shows that the
patterns of female and male at the same temperature are similar and in Table 3
the scales and locations of the distributions at the same temperature seem to be
quite close.

Next, we are going to test the effect of sex under the consideration of no
significant interaction between temperature and sex, i.e., the null hypothesis is
H0: there is no sex effect. The results listed in Table 6 show that at level α = .05
the entire effect of sex tested by λs as in (3.4) is significant, since p-value of
−2logλs is .0002. The effect of sex at different temperatures are tested by the
likelihood ratio test statistic as in (3.2). As shown in Table 6, the effect of sex at
20oC is less significant and is significant when the temperature is 25oC or 30oC.
The most significant one is at 25oC where the p-value is .001.

Table 6: Likelihood ratio test under the hypothesis —
H0: the effect of sex is not significant

20oC 25oC 30oC Total Effect
−2logλ 13.496 25.968 11.794 51.250

d.f. 8 8 5 21
p-value .096 .002 .038 .0002

Finally, we test the effect of temperature, i.e., the null hypothesis is H0: there
is no temperature effect. Through the same argument as testing the effect of sex,
the likelihood ratio test statistics λt as in (3.5) is used, and it is not surprising
that the effect is significant as shown in Table 7. The effects of temperature on
female and male are tested by λ135 and λ246 separately, both show that the effect
is significant, since the p-values are almost zero as shown in Table 7.

Table 7: Likelihood ratio test under the hypothesis —
H0: the effect of temperature is not significant

Female Male Total Effect
−2 log λ 691.930 361.722 1053.652

d.f. 13 13 26
p-value 0 10−7 10−7

Compare the results given in Tables 6 and 7, it is clear that the effect of
temperature is more significant than sex. The p-values of goodness-of-fit test for
the MLE of combined data sets listed in Table 8 which show that the fitting
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of ∆̂34 and ∆̂135 are not suitable and this is reasonable since we have already
shown that the effect of sex at 25oC and the effect of temperature for female
are more significant than others, it indicates that there is an interaction between
temperature and sex but it is not as significant enough so as to make the total
interaction become significant.

Table 8: Goodness-of-fit test for mixture of
logistic distributions of combined data

20oC 25oC 30oC Female Male
∆̂12 ∆̂34 ∆̂56 ∆̂135 ∆̂246

χ2 20.901 33.462 30.190 31.700 18.072
d.f. 20 20 20 20 20

p-value .403 .030 .067 .047 .583

4.5 Other related results

In Figure 2 it seems that the curve has only two peaks, but in Table 3, a three-
component logistic distribution has been fitted to the data sets of 25oC. Note
that the third peak is estimated to occur at the 42th day close to the second one
at the 39th day, so that the third peak in the curve is not easy to be distinguished
just by a rough observation. The suggestion of a third peak is unexpected from
our point of view. As the laboratory conditions excluded the possible effects
related to semilunar tidal fluctuations that may have a dominating influence
in nature. Thus the lab results helps to identify all the possible factors that
have minor effects. The result of this analysis does not support the existence
of an endogenous semilunar rhythm in controlling the emergence dates of this
marine midge. Moreover, the difference between males and females from the
analysis, nevertheless, suggests that sex hormone may be involved in affecting
the emergence dates. The third peak implies that there are factors we never
suspected.

Furthermore, from the analysis it shows that amounts of emergence of P.
oceana are the highest at 25oC. Also, it can be seen from the fitted models that
the higher the temperature is, the higher proportion of emergence at the first
high peak is. Finally, the models show that the day of emergence of P. oceana
has a high peak first at 30oC, next at 25oC and 20oC the last. That is, high
temperature advances the day of emergence. In nature there are cues to con-
strain which days are allowed to emerge ( new moons and full moons). Advanced
emergence may be observed within those allowed dates. The temperature effect
may determine the proportion to emerge in the first available window allowable
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(emergence dates). Moreover from the experimental data and the estimates of
parameters p1, p2, µ1, µ2, β1, β2 etc., we are able to estimate the number of popu-
lations and the corresponding peak date of the emergence for experiments in the
laboratory, which is helpful to study the synchronous emergence pattern of P.
oceana. For the pattern in nature there are still a lot of unanswered questions to
be investigated.

5. Discussion

In the process of finding suitable models for the data, some problems have
arised. It can be seen that for the male data sets, the fits are not as good for the
mode heights using the mixture of normal distributions. Some other distributions
have also been used to fit these data sets, but it seems that the mixture of logistic
distributions approaches the high peak of the observed data more closely. This is
an interesting phenomenon as the logistics seems to be able to provide a steeper
pattern for the density estimate than other types of continuous distributions, such
as the normal. The major differences in the ability to fit data with steep mode
between these two families of distributions are of interest for further investigation.
In the case of our study the observed mixture density pattern is not quite smooth
due to the nature of the midge, but a mixture of logistic fit does seem to be able
to present a reasonable approximation of the practical situation quite well. It is
worth noting that through rigorous statistical analysis presented here, it helps
to provide an objective estimation on the distribution of the emergence dates
as well as the corresponding proportions and the peak synchronous emergence
dates in each period under different factor effects. We only start to speculate its
possible adaptive meaning after the differences have been established as a true
phenomenon. From this study, it reveals some additional biological phenomena
worthy of more investigations.
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