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Abstract: Support vector machines (SVMs), with linear, polynomial and
radial kernels, were applied to classify subtypes of breast cancer by gene
expression profiles of tissues samples. Using the top 500 genes ranked by
between-group to within-group sum of squares, SVMs with linear kernel had
an average accuracy rate about 97% when applied to a balanced dataset; this
accuracy rate was significantly higher than that of the original data. After
imputation, the smallest subsample of the balanced dataset was comparable
to the other subsamples’ (containing more than 10 samples). In biomedical
sciences, it is of interest to identify genes that can be used to classify subtypes
of breast cancer well. Using SVMs, we identified 500 genes and looked up
the functions of 297 genes from databases. Furthermore, about 65% of these
297 genes were known to be related to breast cancer, and this confirms the
consistency of our results with existing biomedical knowledge. Those 203
genes may also be investigated further to see if they are involved in breast
cancer; any novel findings will be important.
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1. Introduction

Breast cancer is the most common malignancy among women. The clinical
symptoms of breast cancer patients are heterogeneous and they depend primarily
on whether the disease is metastasized or not. Traditionally, a thorough evalu-
ation of a breast cancer patient includes an evaluation of the extent of disease
and the assessment of the grade of histology type, tumor size, auxiliary lymph
nodes status, hormone receptor and ErbB2 receptor statuses. However, tumors
with identical traditional diagnosis or histopathology may progress differently,
respond to therapy differently, and may result in different disease outcomes.
Genome-wide analyses of gene expression profiles suggested that different sub-
classes of tumors, for instance Leukemia (B-cell versus T-cell) and breast cancer
(ER+ versus ER−), correspond to distinct gene expression patterns (Golub et
al. 1999 and Gruvberger et al., 2001, respectively). Early prediction on tumor
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subclasses can be incorporated by physicians to make therapeutical decision, and
to improve the prognosis of carcinoma patients (Van De Vijver et al., 2002). Thus
microarray data analysis may serve as a new and comprehensive tool to guide
therapeutic interventions in the near future.

Sorlie et al. (2001) clustered 85 gene expression profiles into six subclasses
according to the histologic and clinical outcomes. Recent researches suggested
that classification of tumors based on gene expression patterns could be used
as a prognostic maker (Golub et al., 1999; Alizadeh et al., 2000; Perou et al.,
2000 and Sorlie et al., 2001). Furthermore, Sorlie et al. (2001) found that pa-
tients belonging to different subclasses had significantly different outcomes from
a survival analysis. These suggested that expression levels of these genes can be
used to classify tumor subtypes well may provide information on cancer patients’
prognosis, and thus these genes are of interest. Furthermore, using microarray
expression levels of these genes solely (without other types of clinical data) can
help predict breast cancer subtypes and thus this may be a diagnosis tool in the
future.

In a pilot study, support vector machines (SVMs) with linear, polynomial
and radial kernels (Vapnik, 1998), Fisher’s discrimination analysis (both FLDA
and QLDA, Johnson and Wichern, 1992) and CRUISE (Kim and Loh, 2001)
were applied to classify the 85 profiles into six subclasses. Each profile contained
6,228 gene expression levels. The preliminary results can be downloaded on
the web site http://stat.sinica.edu.tw/∼gshieh/bcancer.ppt. Among the
three classifiers, SVMs performed the best in terms of accuracy rate. Thus, we
applied SVMs to classify gene expression profiles of the samples tissues in this
article.

We investigated how to classify these 85 gene expression profiles into six
subclass well with minimum number of genes. An introduction of the microarray
gene expression data and data pre-processing are in Section 2. The methodology
of SVMs, criterion of feature selection and two methods to balance the subsample
sizes are given in Section 3. Section 4 reports the classification experiments and
results of SVMs with three types of kernels, using top 10 to 1,000 ranked genes.
We close with some remarks in Section 5.

2. cDNA Microarray Gene Expression Data

In this section, we first provide an introduction of the microarray dataset used
in Section 2.1. Data pre-processing and imputation are in Section 2.2.

2.1. Dataset

Gene expression profiles form 78 breast carcinomas (71 ductal, 5 lobular, and



Breast Cancer and Gene Expression Profiles 167

2 ductal carcinomas in situ), 3 fibroadenomas and 4 normal breast samples were
used in this study. The detailed list of all 85 samples with at least 9,216 genes
and their clinical data have been published on the PNAS web site, www.pnas.org.
Eighty-five profiles, originally derived from Stanford Microarray Database, were
downloaded from the web site http://genome-www4.stanford.edu/MicroArray
/SMD/. All experiments and the production of microarrays were performed as de-
scribed in Perou et al. (2000). Sorlie et al. (2001) incorporated clinical outcomes
(survival, survival time, relapse, tumor category, node status, tumor grade and
metastasis) and microarray gene expression data of 85 samples. applied signifi-
cance analysis of microarray (SAM) method (Tusher et al., 2001) to cluster the
85 microarray gene expression profiles, using 427 genes, into six subclasses. These
subclasses are basal-like (14 samples), ERBB2+ (11 samples), normal basal-like
(13 samples), luminal subtype A (32 samples), subtype B (5 samples), and sub-
type C (10 samples), respectively.

In this article, we used the six subclasses as correct subtypes of the 85 profiles
and studied performances of SVMs with different types of kernels. Thus Sorlie
et al. (2001) tackled a unsupervised (clustering) problem while we studied a
supervised problem. Special emphasis was given to finding genes that were top-
ranked by the BSS/WSS criterion since they were potential markers for gene
expression profiles to identify breast cancer subtypes.

2.2. Data preprocessing and imputation

The downloaded data were filtered and normalized by ScanAlyze version 2.5
and Genepix Pro 5.0 (Axon Instruments, Foster City, CA). For a given gene i
with mRNA from sample j, denoted by xij , the ratio of RD to GDN was used
as its gene expression level, where RD is the difference between the gene’s red
channel intensity and its background intensity. Likewise, GDN is the normalized
difference between the gene’s green channel intensity and its background such
that log(RD/GDN) = 0 for any empty spot on an array. Although each array
consisted of at least 9,216 genes, we used only 6,228 genes which were common
in all 85 gene expression profiles. For a given gene which had replications in one
array, its average was used to represent its gene expression level. We imputed
those missing gene expression levels by the average of other genes’ expression
levels present in the same subclass.

3. Methodology

In this section, we concisely introduce SVMs in Section 3.1. Criterion of
variables (feature) selection and two methods to balance the subsample sizes are
in Sections 3.2 and 3.3, respectively.
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3.1 SVMs

SVMs were originated from the statistical learning theory of Vapnik and co-
workers in the 1970s (Vapnik, 1998). SVMs have been popular since the 1990s
due to the advancement of modern computing. When used in classification,
SVMs separate binary labeled training data by constructing a hyperplane, which
separates class members from non-members. A maximum margin hyperplane is
the hyperplane that has maximal distance from members to non-members. When
the data are not linear-separable, SVMs map the data into a higher dimensional
space (called a feature space), and define a separating hyperplane there. The
kernels of the SVMs automatically realize a non-linear mapping to a feature
space. The hyperplane found by an SVM in the feature space corresponds to a
decision boundary in the input space (Cristianini and Shawe-Taylor, 2000).

SVMs with three types of kernels, linear, polynomial and radial basis were
applied, and they are denoted by SVM(L), SVM(P) and SVM(R), respectively.
The kernel measures the similarity between sample profiles Xi and Xj, where
1 ≤ i, j ≤ 85 and each profile contains gene expression levels of the top-k genes
used and the sample’s subclass label. Specifically, Xi = (Xi1, · · · ,Xik) denote
the expression levels of top-k genes ranked by the feature selection criterion in
Section 3.2, so it is a vector of k components. The three types of kernels of
SVMs are measures of similarity between two profiles. These kernels assume the
following forms: k(Xi,Xj) = Xi ·Xj, k(Xi,Xj) = (Xi ·Xj + 1)2 and k(Xi,Xj) =
exp(−‖Xi−Xj‖)2/2σ2), where ‖Xi‖ =

∑k
l=1 X2

il
and σ is the standard deviation

of a Gaussian distribution. The parameter σ in the radial kernel is a scaling
parameter that penalizes the dissimilarity, namely a small value of σ gives a big
dissimilarity value and vice versa. For simplicity, all default values of parameters
in the SVM(P) and SVM(R) were used; p = 2, C = 1 and 2σ2 = the number of
subclasses.

Since there are 6 subclasses of breast cancer in the dataset, we applied a
multiclass SVM algorithm (Hsu and Lin, 2002). Basically, there are two methods
to extend a 2-class SVMs algorithm to a multiclass one, namely one-against-
one and one-against-all (Rifkin and Klautau, 2004). The algorithm we applied
incorporated the one-against-one method. In our case, for a given profile there
were 15 2-class subclass votings and the majority vote classified the profile into
the corresponding subclass.

3.2 Criterion for feature selection

We used the feature (gene) selection criterion in Dutoit et al. (2002), namely
the ratio of genes’ between-group to within-group sum of squares (BSS/WSS ).
This ratio compares ‘the distance of the center of each class to the over-all center’
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to ‘the distance of each gene to its class center’. The formula of BSS/WSS for a
given gene j has the form:

BSS(j)
WSS(j)

=
∑

i

∑
k I(yi = k)(x̄kj − x̄.j)2∑

i

∑
k I(yi = k)(xij − x̄kj)2

,

where yi denotes the subclass label of gene i, x̄.j denotes the average expression
level of gene j across all samples and x̄kj denotes the average expression level of
gene j belonging to subclass k and k = 1, · · · , 6. Performances of SVMs with
these three types of kernels using top-p genes ranked by BSS/WSS, where p
ranges from 10, 20, · · · , to 100 and from 100, 200, · · · to to 1, 000 are compared
in Table 1 in Section 4.

3.3 Balancing sample sizes of subclasses

Using the preprocessed data, even with the top-1000 genes ranked by the ratio
of BSS to WSS, the prediction accuracy rate of SVM(L) was limited to 86%.
This is due to a very small sample size of subclass 5 (luminal subtype B) whose
accuracy rate was about 63%. The sample size of subclass 5 was small compared
to the others (having at least 10 profiles). This unbalanced subsample problem
seemed to confine performance of SVMs since the accuracy rates of SVMs with all
types of kernels applied to the unbalanced dataset was all limited to 86%. Thus
we utilized two methods to balance the very small subsample size of subclass 5.

Method one duplicated all items in subclass 5 (luminal subtype C) three
times so that its balanced sample size (15) was compatible to the others’. Method
two assumed that the logarithm gene expression levels in each subclass followed
a normal distribution N(µi, σ

2
i ), where µi and σ2

i would be estimated from all
data in subclass i. Then we randomly and independently sampled 10 items from
N(µ̂5, σ̂

2
5) and added them to subclass 5. Finally, Method one was adopted due

to high accuracy rate. SVMs was then applied to the balanced data.

4. Experiments and Results

Details of the cross-validation classification experiments are described in Sec-
tion 4.1. Results of SVMs with three types of kernels, using top 10 to 1,000
ranked genes are in Section 4.2; cellular roles of 297 (from the top-500) genes
have been identified therein.

4.1 Experiments

Supervised learning and testing were performed on the data set by randomly
sampling data from each subclass with the ratio of 2:1. Let nk denote the number
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of genes in subclass k, lk = [(2nk)/3] the number of genes in the learning set of
subclass k, where [a] is the Gauss integer of a, Then the number of genes in the
test set of subclass k tk, is equal to nk − lk. Finally, let T be the total number of
genes in all test sets. The prediction accuracy rate is computed by the ratio of
the number of genes been predicted correctly to T in each experiment.

This experiment was repeated 150 times randomly chosen from a complete
3-fold cross-validation experiment, and an average prediction accuracy rate was
computed. Similar to the prediction accuracy rate, the subclass prediction accu-
racy rates were also calculated by the ratio of ‘the number of genes been predicted
correctly in subclass k’ to tk. Accuracy rates were computed by a C++ program.

4.2 Results

Let BSS/WSS denote the ratio of sum of squares of between-class to within-
class. Table 1 shows the accuracy of SVMs applied to classify these 85 profiles
using expression levels of the top 10 genes to those of the top 1,000 genes ranked
by BSS/WSS.

Table 1: Accuracy rates of SVMs with three types of kernels, applying to data balanced
by Method One, using top-10 to top-1000 genes ranked by BSS/WSS

# genes used SVM
Linear Order 2 Polynomial Radial

10 82.4 81.9 85.6
20 89.1 89.2 93.6
30 93.3 92.6 95.3
40 94.6 94.5 96.2
50 92.5 92.7 93.8
60 94.3 94.8 95.6
100 97.0 96.7 95.1
200 96.7 94.8 94.1
300 96.3 94.2 94.2
400 95.8 93.5 94.2
500 96.7 93.7 93.6
600 96.8 93.9 94.3
700 95.5 92.4 93.3
800 96.6 93.7 93.2
900 96.1 93.0 92.5

1,000 95.6 92.5 91.6
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Table 2: Accuracy rates of SVMs with three types of kernels, applying to data balanced
by Method Two, using top-100 to top-1000 genes ranked by BSS/WSS

# genes used SVM
Linear order 2 Polynomial Radial

100 96.5 95.2 95.7
200 96.5 94.1 94.7
300 96.9 93.1 93.9
400 96.2 92.3 93.7
500 95.8 92.4 94.2
600 95.7 91.9 94.0
700 95.3 92.0 93.9
800 95.4 92.4 93.5
900 94.5 91.7 92.8
1000 94.7 91.7 91.1

The results of SVMs applied to data imputed by Methods One and two in
Section 3.3 are in Tables 1 and 2, respectively. The average accuracy rate in-
creased as the number of genes (features) increased, and the accuracy rate did
not increase essentially after the top 500 genes used. From the cross-validation
experiments, we obtained that SVMs with linear, polynomial (of order 2) and
radial kernels were about 96.7, 93.7 and 93.6, respectively. Using these top-500
genes ranked by BSS/WSS, SVM(L) performed the best among the three types
of kernels compared.

SVMs applied to each subclass of these 85 profiles from the original data
(without any balancing procedures), resulted in quite different accuracy rates.
Among them, the accuracy rate of SVMs applying to subclass luminal C was
the worst. Apparently this was due to its subsample size being too small (5)
compared to the rest (at least 10). Furthermore, the accuracy rate of SVMs
applying to subclass ERBB2+ was the second to the worst, and again this poor
rate was likely due to its small sample size (10) compared to the others (about
15). However, even we increased the subsample sizes of subclasses ERBB2+
after balancing subclass luminal C, the average accuracy rate did not increase
much (still about 97%). Thus for simplicity, we only increased the sample size of
subclass luminal C by Method one in Section 3.3. Using the original (unbalanced)
dataset, the average accuracy rate of SVMs was limited to 86% even with the top
1,000 ranked genes used. With the balanced dataset, the accuracy rate of SVMs
was 97% using the top 500 ranked genes. This showed that balanced subsample
size was a key for SVMs to work well for a multiclass classification problem.
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After those subclass sample sizes balanced, the average classification accuracy
rate increased from 89% (unbalanced subsample sizes) to 97% using the top-500
genes ranked by the BSS/WSS ratios. The details were shown in Table 3.

Table 3: Subclass accuracy rates of SVMs using the top-500 genes ranked by BSS/WSS

SVM(L)a SVM(P)b SVM(R)c

Overall average accuracy rate 96.7 93.7 93.6
Subclasses accuracy rates
Basal-like 100.0 97.8 100.0
ERBB2+ 90.0 84.9 84.7
Normal basal-like 97.2 89.3 90.8
Luminal subtype A 97.9 95.2 99.9
Luminal subtype B 98.0 97.2 97.2
Luminal subtype C 92.0 92.0 70.7

adenotes SVMs with linear kernel, bdenotes SVMs with polynomial ker-
nel (of order 2), cdenotes SVMs with radial kernel.

As suggested in Sorlie et al. (2001) that those genes that could classify sub-
types of breast cancer well might serve as prognosis markers and thus their func-
tions are of interest. Functions of these top-500 ranked genes were checked by
the Humam Genome Index (H.G.I.) at TIGR web site. The cellular functions of
297 genes were identified, while the other 203 genes could not be identified.

Table 4: Cellular roles of the 297 genes and their percentages

% among the 297 genes

Cell division 6.1
Cell signaling/cell communication 23.2
Cell structure/motility 11.4
Cell/organism defense 5.7
Gene/protein expression/RNA synthesis 19.2
Metabolism 22.6
Unclassified 11.8

Table 4 shows the percentages of cellular role categories of the 297 genes based
on the categorization of H.G.I. Certain functions, cell signaling/communication,
metabolism and gene/protein expression, are known to be related to breast car-
cinoma. Genes involved with these functions are about 23.2%, 22.6% and 19.2%,
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respectively among the 297 genes. Overall, the results are consistent with existing
knowledge in medical sciences. These 500 genes may be designed into a diagno-
sis array for breast carcinoma subtypes that may help predict distinct prognosis
statuses.

5. Conclusion

SVMs with three types of kernels were applied to 85 gene expression profiles
from Sorlie et al. (2001) for classification of breast cancer subtypes. Using the
top 500 ranked genes, the average accuracy rate of SVMs applied to the balanced
dataset was about 97%, compared to 86% using the original unbalanced dataset.
Thus balanced subsample size seemed to be a key for SVMs to work well in
this multiclass classification problem. Further study on this issue is of interest.
Among the top 500 ranked genes, functions of 297 were identified, and about 65%
of these functions were known to be important to breast cancer. These 500 genes
may be investigated further by biomedical experiments; any novel findings will
be important in medical sciences.
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