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Abstract: In certain rivers that drain very flat terrains in coastal areas,
the streamflow series observed at a flow-gauging station may come under
the direct influence of the backwater effects of tides. The phenomena may
be negligible under conditions of high flows but can be critical under some
extreme low-flow conditions. The errors in low flow estimation are large if a
proper de-noising is not implemented to remove the effects of the tidal effects.
Scrutinizing the hydrologic time series using a standard time-frequency do-
main based Fourier transform methodology cannot resolve conclusively the
sources of the noise. However, a new perspective can be obtained by using a
wavelet transformation to analyze the time series in the time-scale domain.
By using this approach, a case study involving a streamflow series observed
at Kapit, Sarawak, Malaysia yielded conclusive evidence of the influence of
tides at the flow-gauging site during the low flow period. Upon confirma-
tion that the noise is indeed of tidal origin, the observed water level series
was subjected to an appropriate wavelet-based de-noising procedure to de-
rive a smoothed series. Then, together with an established rating curve, a
de-noised discharge series could also be approximated. Low-flow quantiles
were subsequently derived by fitting a suitable frequency distribution to the
annual minimum series abstracted from the de-noised discharge series. The
methodology presented illustrates the potential of using wavelet analysis
methods in solving other similar problems.

Key words: Fourier power spectrum, hydrology, low-flow, low flow quantiles,
river flow-gauging, streamflow series, tides, wavelets, wavelet de-noising,
wavelet power spectrum.

1. Introduction

Wavelet analysis is a major development in the methods of data analysis
in the last decade. It evolved from fields including signal processing, physics,
and mathematics. The application of wavelet analysis in analysing time based
data, particularly those with non-stationary characteristics, has been found to
be very successful (Nason and Sachs, 1999; Percival, 2000). The property of
being localized in time or space as well as scale or frequency provides a time-
scale map of a signal, enabling the extraction of features that vary in time. This
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makes wavelets an ideal tool for analyzing signals of a transient or non-stationary
nature.

The literature about the application of wavelets in the field of hydrology and
water resources engineering is still relatively scarce. Jay and Flinchem (1995,
1997, 1999) have demonstrated the interaction of fluctuating river flows with a
barotropic tide using wavelet analysis. Smith et al. (1998) were able to charac-
terize streamflows from different climatic regions in the United States using the
wavelet transform. Applications in the meteorological field are also useful as the
processes involved are closely linked to hydrology. An excellent example is the
paper presented by Torrence and Compo (1998). Gan (2001) showed the evidence
of the droughts in the Canadian Prairies being related to the current circulation
patterns in the Pacific Ocean using a wavelet analysis.

Many aspects of hydrology, in one way or another, involve an analysis of
the hydrologic time series. Hence, if there is any tangible improvement in the
technique of time series analysis, a significant impact on the understanding of
hydrological processes may be uncovered. Motivated by this potential benefit, a
common flow-measurement problem in a river is reassessed and analyzed using
the new tool of wavelets. A particular river flow series is suspected of being
influenced by tides when the river discharge has dropped well below the normal
flow range, or low-flows, in the terminology of hydrology. It is not possible to
ascertain the presence of the tides when the fluctuation of river levels can be
due to other dynamic processes, such as the local runoff effects due to localized
rainfall events. If the presence of the tide-effect is proven, the flow series at
low-flow periods can to be smoothed using a robust wavelet de-noising method.
An extreme-event frequency analysis can then be performed on the abstracted
annual low-flow series to determine the quantiles of low-flows associated with
certain non-exceedance probabilities which can be used for the design of water
resources projects.

2. Wavelet Theory and Methods

All wavelets are based on one mother wavelet, ψ0(u), a function with some
special properties. u is the dimensionless time parameter for time series analysis.
The function must oscillate and decay, preferably rapidly, giving

∫
Ψ0(u)du = 0 (2.1)

Typical examples of mother wavelets are Morlet, Mexican hat, and Daubechies.
In harmonic analysis, frequency is the single parameter used. By contrast,
wavelets are controlled by two parameters, dilations λ (or “scale”), and transla-
tions, t, of the mother wavelet.
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Ψλ,t =
1√
λ

Ψ0

(
u− t

λ

)
(2.2)

Physically, λ is used to stretch or shrink the wavelet and t is for translating the
wavelet along the time axis. For most applications a restricted set is used. A
unique power of 2 is specified for the scale λ = 2j and t = k where j and k are
integers. For a specially chosen mother wavelet, the collection of {Ψλ,t(u)} for all
integers j, k form an orthonormal basis for various function spaces. This is similar
to the Fourier series where the cosine and sine functions form an orthonormal
basis.

2.1 Continuous wavelet transform W

Let the observed time series xn with equal time spacing ∆t and n = 0, 1, . . . , N−
1. Continuous wavelet transform is the convolution of the discrete series with a
scaled and translated version of a wavelet ψ(u):

Wn(λ) =
N−1∑
m=0

xmψ
∗
(

(m− n)∆t
λ

)
(2.3)

where ∗ indicates complex conjugate. This is similar to the convolution found in
the classical Fourier transformation. By varying the scale λ and translating along
the localized time index n, a picture (scalogram) can be constructed showing both
the amplitude of any features versus the scale and how this amplitude varies with
time.

The continuous wavelet transform can be approximated by performing N
convolutions in the Fourier space using a discrete Fourier transform given by:

x̂f =
1
N

N−1∑
m=0

xme
−2πIfn/N (2.4)

where x̂f is the discrete Fourier transform of xn at frequency index f . The wavelet
transform can be obtained from the inverse Fourier transform of the product:

Wn(λ) =
N−1∑
f=0

x̂fψ
∗(λωf )eiωf n∆t, (2.5)

where ωf is the angular frequency.

2.2 Function approximation
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Any function g can be represented in terms of a superposition of wavelets of
different dilations and translations, as

g(u) =
∞∑

j=−∞

∞∑
k=−∞

dj,kψj,k(u) (2.6)

where dj,k coefficients of expansion which can be found by

dj,k =
∫ ∞

−∞
f(u)ψj,k(u)du (2.7)

Wavelets can represent some functions using far fewer coefficients than can
Fourier and this is the advantage used in image processing to achieve data com-
pression.

2.3 Wavelet power spectrum

The wavelet approach in deriving the spectrum is similar to the Fourier ap-
proach but a time/scale instead of a time/frequency decomposition. Because the
wavelet function ψ(·) is in general complex, the wavelet transform Wn(λ) is also
complex.

The wavelet power spectrum of the series with scale λ is defined as

PW (τ) = {|Wn(λ)|2 : λ ∈ τ} (2.8)

where τ is a set of scales. For plotting of the wavelet power spectrum, it is
convenient to express the scales as fractional powers of two (Torrence and Compo,
1998):

λh = λ02h∆h, h = 0, 1, . . . ,H (2.9)

H =
1

∆h
log2

(
N∆t
λ0

)
(2.10)

where λ0 is the smallest resolvable scale and H is the largest scale. An equivalent
Fourier period 1/f can be related to the wavelet scale for a particular wavelet
function. This is done by substituting a cosine wave of a known frequency into
equation (2.5) and computing the scale that matches the maximum wavelet power
spectrum. For wavelet such as Morlet wavelet,

ψ0(u) = π−1/4eiω0ue−u2/2 (2.11)

with the nondimensional frequency ω0 set to 6 to satisfy admissibility condition
(Farge, 1992), 1/f = 1.03λ. This allows the association of any specific periodic
pattern found in the wavelet power spectrum with the real time period.



Wavelet Analysis of Streamflows Series 153

2.4 Normalization and expectation

A common normalization for the wavelet spectrums is used to make it easier
to compare among them. The wavelet function at each scale λ is normalized to
have unit energy. The expectation for the wavelet power spectrum |Wn(λ)|2 is

E|Wn(λ)|2 = N × E|x̂f |2 (2.12)

The expectation of |x̂f |2 is σ2/N where σ2 is the variance. For a white-noise
process, the expectation value for the wavelet power spectrum at all λ and n is

E|Wn(λ)|2 = σ2. (2.13)

Since the square of a normally distributed variable is chi-square distributed
with one degree of freedom, the normalized Fourier spectrum |x̂f |2 is chi-square
distributed (χ2

2) with two degree of freedoms. If the Fourier components are
normally distributed, then the wavelet coefficients are also normally distributed.
It follows that the wavelet power spectrum are also chi-square distributed and
the 95% confidence level can be estimated (Torrence and Compo, 1998).

2.5 Wavelet de-noising

In general, a smoothed signal s(t) can be recovered from a signal y(t) by

s(t) = y(t) − σx(t) (2.14)

where x(t) represents noise and σ is the noise level. The wavelet de-noising
method is a nonparametric estimation of the function s using orthogonal basis.
There are several issues to be addressed in wavelet de-noising; among them are
the choices of wavelet, decomposition levels, and thresholding methods. The
descriptions of these choices are found in recent papers by Donoho and Johnstone
(1994, 1995) among others. However, some heuristic judgments are still required
in selecting the optimal combination.

3. Problem of Tides at Stream Gauging Stations

Typically at a river or stream discharge station, only a limited number of
discharge measurements are carried out at some randomly chosen water levels. A
relationship between discharge Q and water level H is subsequently established
by fitting a suitable curve through the set of Q-H data, known as the discharge
rating curve for the station. An automatic recorder operated on a permanent
basis then yields a continuous water level series at the site. A continuous long-
term discharge series at the site can be derived based on the established rating
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curve. Some parameters for engineering designs are derived by performing various
time series analyses using the discharge series. One major task is to perform a
frequency analysis on the extreme event abstracted from the series such that the
probability of occurrence associated with the magnitude of floods or droughts
(low-flows) can be rationalized. The design benchmarks of many civil engineering
projects are dependent on the derivation of the frequency analysis. Owing to the
critical outcomes of the analysis, the accuracy of the observed water level series
used cannot be compromised. The key lies in observing and quantifying the
extreme discharges well.

An established river gauging station is located at Kapit, a riverside town on
the mid course of Batang Rejang, the largest river system in Malaysia. The
watershed area consists of about 18,100 km2 of rainforest on Borneo Island. Al-
though the station is located at about 190 km upstream of the river mouth, the
technicians who frequently measured the discharge at the site reported that the
water level recorded at the station might be affected by tidal intrusion from the
sea during certain low-flow periods. It is indeed difficult to confirm the validity of
the claim based on a casual inspection of the fluctuating water levels. This kind
of problem is quite common in places where tidal influence reaches far inland.
To investigate the problem using a traditional approach would involve a spectral
analysis of the Fourier transforms, which may provide some insights about the
occurrence of tides. However, as shown in the later sections, wavelet analysis
method presents a compelling different perspective and offers a much more solid
conclusion.

4. Confirming the Presence of Tides

Figure 1 shows the plot of a segment of the recorded hourly water level series
and the corresponding discharge series at Kapit discharge measurement station,
which started on 23rd September 1986 and lasted 193 days. Some high frequency
fluctuations of water levels can be spotted at certain low-flow periods.

Figure 2 shows the Fourier power spectrum for the hourly levels. The spec-
trum shows two distinct peaks, at periods of about 12.5 and 6 hours (or frequency
of 0.08 and 0.16). Tidal phenomenon is mainly caused by lunar excitation, which
has a major periodic cycle of about 12.5 hours. Other periodic intervals are also
observed which account for the other lunar-solar effects. Despite the coincidence
of one of the period at 12.5 hours, the actual presence of tidal effects on the
water level series still remains a suspicion. Since no further information can be
obtained from the spectrum, no conclusive remark can be made.

Wavelet analysis is a relatively new, powerful, analytical tool that is increas-
ingly used as an alternative to Fourier analysis. It follows naturally that an
alternative analysis of the data series using the wavelet analysis may provide a
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Figure 1: Kapit hourly water level and discharge series
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Figure 2: Fourier power spectrum of Kapit hourly flows series
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better perspective.
A major portion of Figure 3 is the plot of wavelet power spectrum PW (τ) as

defined in equation (2.8) and is commonly referred as a scalogram. The x axis is
the real time space in hour and the y axis is the equivalent Fourier period 1/f
in hour. The Morlet wavelet as defined in equation (2.11) is used in deriving
the wavelet power spectrum. From a casual inspection of the spectrum, it is
confirmed that the spectral power is relatively weak at the short periods or at
high frequencies. However, it is not difficult to locate some distinct dual-patches
of relatively higher contours at around scale factor (or equivalent Fourier period)
of around 12 and 24 hours (e.g. at about 3750th hours from the beginning of
the time series). A dual-pointing arrow is shown in Figure 3 to indicate that
the timing actually corresponds to a low-flow period, typified by a trough on
the time series plot. Hence it can be seen that wavelet power spectrum has an
added dimension of information on the time-scale domain, not available in the
traditional Fourier spectra. Now it becomes transparent that the sinusoids or
noises that occur at the time of low-flow, e.g., at 3750th hour, have a periodicity
of around 12.5 and 25 hours. These specific periodicities certainly match the
traceable signatures of the semi-diurnal tides which dominates the coastal waters
of the study area.

Figure 3: Local and global wavelet spectra of hourly flows at Kapit
(193 days).

By taking an averaged wavelet spectrum over all the local wavelet spectra,
a global wavelet power spectrum can be derived. This plot is shown at the
lower-right portion of Figure 3. There is no significant spike at the shorter pe-
riods indicating that the higher frequency component attributed by tides is not
dominant throughout the run of the series. Since the tides were present in the
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predominantly fluvial discharge series, it could only be felt at a certain segment
of the series. For this investigation, the local wavelet power spectrum provides
much more insights.

5. Wavelet De-noising of Data Series

The Kapit data series was then subjected to a wavelet de-noising process.
There are two possible ways of using the observed data, i.e., either using the
water level or the discharge series. Since it is reasonable to assume that there is
a physical maximum tidal level Hmax unique to the site, the use of water level
series has an advantage in relating the de-noised series to the Hmax. If deriving
an overall streamflow series is the prime objective, the following algorithm is
proposed:

1. Adapt a satisfactory combination of wavelet de-noising option and estimate
Hmax.

2. Perform wavelet de-noising on the water level y(t) and obtain a de-noised
series s(t).

3. For s(t) < Hmax, s(t) is assigned to the final series z(t), and for s(t) >
Hmax, the segment of original y(t) series is assigned to z(t).

4. Check for continuity and smoothness in the transition around Hmax.
5. Adjust Hmax and repeat step 2 to 4 until the continuity and smoothness

criterion are satisfied.
6. Convert the de-noised water level series z(t) to discharge series using the

stage-discharge rating equation developed after many field discharge measure-
ments.

7. Perform low-flow frequency analysis based on the de-noised discharge series.

Several combinations involving various options of wavelet type, decomposition
level, and thresholding methods are considered. A few combinations are adopted
to further the de-noising process after an initial elimination process by visual
inspection of the de-noised series. Figure 4 shows the detailed results of applying
various de-noising options to a short water level series influenced by tides at
Kapit. A brief review of the observed river level series at a station called Entawa
located 35km upstream of the Kapit station, shows that the average rate of change
in water level is about 0.05 metre/hour, while the maximum rate ever recorded
is 0.9 metre/hour. These physical values can be used to eliminate some poor
combinations of wavelet type and decomposition level. However, it is a heuristic
decision in deciding the best among the better combinations. The Daubechies-4
wavelet at decomposition level 4 is assumed to be the best in terms of smoothness
and continuity. Table 1 shows the result of performing de-noising on the data
series based on the best choice of Daubechies-4 wavelet, at decomposition level 4
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Table 1: Results of wavelet de-noising on low-flows at Kapit.
Minimum Water Discharge Change in Discharge

Level (m) (m3/s)
Year Original De-noised Original De-nosied Absolute Percent

1986 3.42 4.05 352 547 195 55.2
1987 3.72 3.83 441 475 34 7.8
1988 2.89 3.63 214 413 200 93.6
1989 2.83 3.49 200 372 173 86.5
1990 4.04 4.55 543 722 178 32.8
1991 2.85 3.12 204 271 66 32.5
1992 3.16 3.77 281 456 175 62.4
1993 3.32 4.03 324 540 216 66.6

Note: Option used in wavelet de-noising: Daubechies-4 wavelet, level 4, soft
and universal threshold, Hmax of 7.75m.
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Figure 4: Comparing de-noising options of using various wavelet types and
decomposition levels. The vertical axes are the water level elevations (metres)
and the horizontal axes are the days in April 1992.



Wavelet Analysis of Streamflows Series 159

Figure 5: A segment of wavelet de-noised hourly water levels at Kapit

Figure 6: Detailes of de-noised low-flow levels at Kapit
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Figure 7: Wavelet Power Spectra of De-noised Kapit Hourly
Discharge Series

Figure 8: Comparison of low-flow quantiles of original and de-noised series (
low-flow frequency curve fitted with log-normal distribution)

using soft and universal thresholding.
A segment of the de-noised water level series is shown in Figure 5 with a

detailed view shown in Figure 6. The smoothing of the series is quite satisfactory
considering the varying patterns of tidal noise. For checking purposes, the de-
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noised discharge series was subjected to the same wavelet decomposition as before,
and the corresponding wavelet spectra are shown in Figure 7. In comparison with
Figure 3, the tidal noises at low-flow periods are obviously removed as shown
in the time series plot. These changes are clearly reflected in the local wavelet
spectrum; the isolated patches of relatively high local spectral energies associated
with tides at the low-flow periods are removed.

6. Frequency Analysis of Low-flow Series

Once the issue of tidal influence was confirmed, the water level series was
appropriately de-noised. A de-noised discharge series is subsequently derived
from the de-noised water level series using the discharge rating curve established
for the station. An extrapolation of the curve is often required for the upper and
lower tails of the rating curve. It is clear that the river fluvial discharges released
from a large watershed should not fluctuate rapidly as exhibited by the recorded
water levels. The use of the de-noised series is a logical approximation solution.

A low-flow frequency analysis is often performed on an abstracted annual
minimum flow series such that the low-flow quantiles, the magnitude associated
with a probability of occurrence can be estimated. The method is illustrated
using the de-noised series, albeit the length of data is far from ideal. By fitting the
extreme series to a few distributions, it is found that the log-normal distribution
fit best. The distribution can be used to derive the low-flow quantiles. In general
the de-noising exercise results in higher low-flow quantiles as shown in Figure 8.
The neap tide has a drawdown effect on the water level. Using various options
available to de-noising exercise can lead to a few possible outcomes. Since there
is no absolute way in confirming the characteristic values of the de-noised series,
one method of exploring the error limits is by sensitivity analysis. The options
available in wavelet de-noising are systematically adjusted and the de-noised series
are subjected to frequency analysis.

7. Conclusion

Wavelet de-noising has been shown capable of locating the periodic features of
tides and confirms that they occur during the low-flow time series. The traditional
Fourier analysis does not provide any information on the time of occurrence of
tides at low-flow periods. On the contrary, for the wavelet method, it is explicitly
shown on the local wavelet spectrum.

The low-flow series has been de-noised and conventional low-flow frequency
analyses are performed. The derived low-flow quantiles are much higher using
the de-noised series indicating that the errors are large without de-noising by the
wavelet approach.
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Comparison of the various de-noised series shows that Daubechies-4 at de-
composition level 4 is the best option in performing de-noising related to tides.
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