
Journal of Data Science 2(2004), 125-147

A State Duration Model for Brand Choice and
Inter-Purchase Time

Lynn Kuo1 and Zhen Chen2

1University of Connecticut and
2University of Pennsylvania

Abstract: A new approach for analyzing state duration data in brand-choice
studies is explored. This approach not only incorporates the correlation
among repeated purchases for a subject, it also models the purchase timing
and the brand decision jointly. The former is accomplished by applying
transition model approaches from longitudinal studies while the latter is
done by conditioning on the brand choice variable. Then mixed multinomial
logit models and Cox proportional hazards models are employed to model
the marginal densities of the brand choice and the conditional densities of
the interpurchase time given the brand choice. We illustrate the approach
using a Nielsen household scanner panel data set.
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1. Introduction

In brand-choice studies, factors influencing both the brand-switching patterns
and purchase-timing decisions are usually of interest. Often, data are collected
from n households on their purchase behavior over a period of time. The collected
panel data consist of the inter-purchase times and brands chosen, as well as a list
of covariates that may include characteristics of the consumers (chooser-specific)
and attributes of the brands (choice-specific) at each purchase occasion. For
example, the choice-specific explanatory variables may include the price of each
brand and an indicator of a special in-store display for each brand; the chooser-
specific variables may contain household income and size.

Most of the existing approaches to analyzing these multiple-spell and multiple-
destination data are restricted to marginal approaches where attention is given
either to the state-space part (brand choice) or to the inter-purchase time part.
The former includes the discrete brand-choice models of McFadden (1974) and
Jain, Vilcassim, and Chintagunta (1994); the latter includes the proportional haz-
ards model (Cox 1972) for the inter-purchase time studied by Jain and Vilcassim
(1991).
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The more advanced studies in this area include the conditional model (for
the inter-purchase time given the transition states) proposed by Vilcassim and
Jain (1991) and Gönül and Srinivasan (1993), and the joint model for the inter-
purchase time and the brand choice given by Chintagunta and Prasad (1998). Vil-
cassim and Jain derive a competing risk model where each latent inter-purchase
time between transitions is modeled by the Cox regression model with frailty.
They found that the probability distribution of inter-purchase times is not the
same for various switches between brands. Gönül and Srinivasan (1993) apply
a similar approach except that they restrict the slopes to be the same in the
Cox regression model for different transitions. Chintagunta and Prasad apply
the dynamic McFadden model (Heckman and Singer 1985), where the marginal
distribution of the inter-purchase time and the conditional distribution of the
brand choice given the inter-purchase time are modeled.

The bivariate model of Chintagunta and Prasad provides further advancement
in the area. However, improvement can be made upon their models. First, they
fit the same model for the inter-purchase time independent of the transitional
states. This is unsatisfactory according to the findings of Vilcassim and Jain,
because the probability distribution of inter-purchase times is usually not the
same for various switches between brands. Second, they assume the same model
and conditional independence for the multiple spells within each household and
between households. These assumptions are also too restrictive, because mul-
tiple spells within each household tend to be much more similar than between
households.

In this paper, we propose an alternative bivariate model (a composite transi-
tion model) for analyzing the multiple-spell and multiple-destination data. Our
new method not only treats both the inter-purchase times and the brand choice
as random outcomes but also incorporates the dependence between successive
spells for the same household. First we use the transition model approach (Dig-
gle, Liang, and Zeger 1994, pp. 192-193) in longitudinal studies to develop the
likelihood as a product of conditional bivariate densities of the response in each
spell given the previous spell. Then we rewrite each of the conditional bivari-
ate densities as a product of two densities by conditioning on the brand choice
variable as opposed to conditioning on the purchase timing variable as in the
dynamic McFadden model. We use a mixed multinomial logit model for the first
density (the discrete choice transition part) and the Cox regression model for the
second density (the conditional density of the inter-purchase time given the two
sandwiching brand choices).

Although our discussion in this paper is focused on brand-choice studies,
our methodology is general and can be applied to many state duration data.
Our method has several advantages over the existing approaches for analyzing
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multiple-spell and multiple-destination data. (1) We jointly model the bivariate
outcomes of the brand choice and inter-purchase time; thus the model is more
complete than the marginal model for either variable or the conditional model
discussed earlier. (2) Our model incorporates a dependence structure across
successive purchases, thus providing a more realistic framework in modeling the
multiple-spell data. (3) Our model links many existing methods, for example,
the marginal method for discrete choice and the conditional method by Vilcassim
and Jain. From the next section where detailed derivation for our likelihood is
given, we see the conditional model of Vilcassim and Jain is a component of
our composite model. Therefore, we are providing a theoretical justification for
the conditional transition model given by Vilcassim and Jain. Consequently,
our derivation helps to explain and clarify the roles that some of the existing
methods play in brand-choice studies. (4) Our model has an easy interpretation
where each component of the composite model (either discrete choice model or
duration model) is well understood. (5) The inter-purchase time part of our
composite model is modeled on the minimum of the latent transition times. In
this respect, it is simpler than that of Vilcassim and Jain. It also avoids the
pitfalls of the competing risk models (cf. Prentice, Kalbfleisch, Peterson, Flounoy,
Farewell, and Breslow, 1978). Finally, (6) Our model is easy to fit, requiring a
straightforward manipulation of the data set and applying existing software (i.e.,
SAS or Splus). We can fit the data for the discrete choice model separately
from the Cox regression model. The former requires that we divide the data
into L (the number of brands) groups; each group consists of pairs of consecutive
brand choices with the same past brand. Then we fit a mixed multinomial logit
model to the present brand choices for each group. The latter requires that we
fit separate Cox regression models for each of the subgroups of the inter-purchase
times with the same sandwiching transition states. This can be done easily by
many software. For example, we can use the procedure PHREG in SAS with a
BY statement.

We apply our new method to the Nielsen household scanner panel data set
that was previously analyzed by Chintagunta and Prasad (1998). In the analy-
sis, we use essentially the same predictors (price, feature, household size, previous
volume, and non-detergent expenditure) that they used except we add the house-
hold size (chooser-specific) in the discrete choice model. We found that not only
price and feature advertisement are significant among all the choice-specific vari-
ables, but also household size is significant among all chooser-specific variables.
The effects of these predictors are generally in agreement with that in Chinta-
gunta and Prasad. For example, from the brand choice study, reduced price and
feature advertisement enhance purchasing.

We organize the rest of the paper as follows. Section 2 outlines the model
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formulation and discusses the discrete choice model and the duration model that
are integral parts of the composite model. Section 3 discusses the estimation
method. Section 4 presents the data and some numerical results, and Section 5
summarizes our study and remarks on future research directions.

2. Model Formulation

2.1 Transition model

Suppose that we have n households in the brand choice study, and that the
ith household makes a total of ni repeated purchases in a fixed time period.
We record the purchase timing and the brand choice at each purchase. It is
assumed that each household is allowed to choose only one of the L brands for
each purchase. Let wij denote the observed calendar time of the jth purchase of
the ith household and let yij denote the brand chosen by the household at this
epoch. We set yij to be a discrete index variable with integer values ranging from
1 to L. Then we can summarize our data for the ith household by a series of
bivariate observations {(tij , yij)}, with j = 1, . . . , ni, where tij = wij −wi,j−1, the
jth inter-purchase time for the ith household. We define wi0 = 0. Along with
these bivariate outcomes, we also observe a vector of chooser-specific variables
xij and a vector of choice-specific variables zij, for the jth purchase of the ith
household, where zij = (z′

ij1, . . . ,z
′
ijL)′, with zijl itself a column vector of choice-

specific variables for the lth brand. Choice-specific variables usually change over
time. Some of the chooser-specific variables take the same value across the spells
for each consumer; nevertheless, we do allow them to be time-variant covariates.

Generally, the ni bivariate outcomes, (ti1, yi1), . . . , (tini , yini), from the ith
household exhibit correlations, because the past values {(ti1, yi1), . . . , (ti,j−1, yi,j−1)}
influence the present observation (tij , yij). For brevity, we define the history for
the ith household at the jth purchase to be Hij = {(tik, yik), k = 1, . . . , j − 1}.
Therefore the joint density of the ni outcomes for the ith household is given by

fi((ti1, yi1), . . . , (tini , yini)) = f(ti1, yi1)
ni∏

j=2

f(tij, yij|Hij).

All the densities here are also functions of the covariates x and z. We suppress
them in all the equations in this subsection for simpler notation.

Suppose we are willing to accept a first-order Markov property. Then the
above formula (the ith subject’s contribution to the likelihood) can be simplified
to:

fi((ti1, yi1), . . . , (tini , yini)) = f(ti1, yi1)
ni∏

j=2

f(tij, yij |ti,j−1, yi,j−1). (2.1)
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For the joint model f(tij, yij|ti,j−1, yi,j−1), we decompose it further into a
composite model by conditioning on the yij variable; that is we write the joint
density as a product of the marginal density of yij and a conditional density for
tij given yij, both conditioning on (ti,j−1, yi,j−1). Therefore, we have

f(tij, yij|ti,j−1, yi,j−1) = f(yij|ti,j−1, yi,j−1)f(tij|yij , ti,j−1, yi,j−1). (2.2)

Then we will make the following two assumptions in modeling the composite
model. First,

f(yij|ti,j−1, yi,j−1) = f(yij|yi,j−1). (2.3)

This assumes that yij is independent of ti,j−1 conditioning on yi,j−1. It assumes
that once we know the previous brand choice, the previous inter-purchase time
carries no information about the current brand choice. This makes intuitive sense.

Second, we assume

f(tij|yij, ti,j−1, yi,j−1) = f(tij|yi,j−1, yij). (2.4)

This assumes that the two transition states sandwiching the inter-purchase time
are sufficient to determine the inter-purchase time. That is, the inter-purchase
time is independent of the previous inter-purchase time given the two sandwiching
states.

We note that the first-order Markov property and the above two assump-
tions are equivalent to a semi-Markov assumption on the sequence {(tij , yij), j =
1, 2, . . .)} (see, for example, Lawless and Fong 1999).

Substituting the above two assumptions (2.3) and (2.4) into the composite
model (2.2), we derive the likelihood function for all the households from (2.1):

n∏
i=1

fi((ti1, yi1), . . . , (tini , yini)) =
n∏

i=1

ni∏
j=1

f(yij|yi,j−1)f(tij |yi,j−1, yij), (2.5)

where f(yi1|yi0) = f(yi1) and f(ti1|yi0, yi1) = f(ti1|yi1). This suggests that we
need to model the first-order discrete choice transitions and to model the duration
given the transition states. Both can be done based on the existing literature.

It can be argued that the assumption 2 in (2.4) is too strong, because the pre-
vious inter-purchase times are expected to carry information about the present
inter-purchase times. We will consider an additional analysis without the sec-
ond assumption. In this respect, to model f(tij|yij , ti,j−1, yi,j−1), we still keep
the same structure of modeling the duration given the two sandwiching transi-
tion states except we add the previous inter-purchase time as a covariate in the
duration model.
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2.2 Discrete choice model

Let us first discuss the discrete choice part. Given that the previous choice
only takes on one of the L values, we consider a class of models conditional on
the previous choice.

Suppose xij = (1, xij1, . . . , xijk)′ is a set of chooser specific covariates for the
jth purchase of the ith household. Let us assume the previous choice to be l.
Let α

(l)
m denote a k + 1 dimension column vector. We use the notation πij(m|l)

to denote f(yij = m|yi,j−1 = l). Then the generalized logit model (Agresti 1990,
Hosmer and Lemeshow 1989, and McCullagh and Nelder 1989) suggests

πij(m|l) =
exp(α(l)

m

′
xij)∑L

m=1 exp(α(l)
m

′
xij)

.

We may set α
(l)
m = (0, . . . , 0)′ for m = l in the above model for identifiability

purpose. The log odds ratio for choosing m over n is

log
(

πij(m|l)
πij(n|l)

)
= (α(l)

m − α(l)
n )′xij.

Let zijm be a column vector of choice-specific variables associated with the
brand choice m for the jth purchase of the ith household. Let β(l) denote a
column vector with the same dimension as zijm. To model the transition discrete
choice probabilities, we can consider the multinomial logit model (McFadden
1974). That is,

πij(m|l) =
exp(β(l)′zijm)∑L

m=1 exp(β(l)′zijm)
.

Then

log
(

πij(m|l)
πij(n|l)

)
= β(l)′(zijm − zijn).

This model implies the log odds of choosing m over n depend on the distance
between the values of the variables of the two brands in the comparison. If the
values of a particular variable for both brands are the same, the model asserts
that this variable has no influence on the choice between the alternatives m and
n.

We can also formulate a mixed multinomial logit model containing both
chooser-specific and choice-specific covariates (cf. Agresti 1990). For example,
we define

x∗
ijm = (z′

ijm, δm1x
′
ij, . . . , δmLx′

ij)
′
, m = 1, . . . , L,
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where δmt equals 1 when t = m and 0 otherwise, and zijm and xij are defined

as before. Let β∗(l) = (β(l)′,α(l)
1

′
, . . . ,α

(l)
L

′
)′. Then β∗(l)′x∗

ijm = β(l)′zijm +

α
(l)′
m xij. Thus the mixed multinomial logit model containing both choice-specific

and chooser-specific variables is

πij(m|l) =
exp(β(l)′zijm + α

(l)′
m xij)∑L

m=1 exp(β(l)′zijm + α
(l)′
m xij)

=
exp(β∗(l)′x∗

ijm)∑L
m=1 exp(β∗(l)′x∗

ijm)
, (2.6)

since, for identifiability, we can take α
(l)
m = (0, . . . , 0)′ for m = l. Then the log

odds of choosing m over n becomes

log
(

πij(m|l)
πij(n|l)

)
= β∗(l)′(x∗

ijm − x∗
ijn)

= β(l)′(zijm − zijn) + (α(l)′
m − α(l)′

n )xij .

The mixed multinomial logit model in (2.6) enables us to incorporate consumer
characteristics, intercept, and other choice-specific variables in the McFadden
model. It shares the same desirable interpretations as the generalized logit model
and the McFadden model discussed earlier.

2.3 Duration model

For the conditional model of the inter-purchase time given the sandwiching
brand choices, we apply standard models in duration analysis (Kalbfleisch and
Prentice 1980). In particular, let h(ti,j |yi,j−1 = l, yij = m) denote the hazard
function of tij conditional on the two sandwiching brand choices. Then, we
consider the proportional hazards model

h(tij |yi,j−1 = l, yij = m) = h
(lm)
0 (t) exp(λ(lm)′xij + ξ(lm)′zij) (2.7)

where l,m = 1, . . . , L, λ(lm) is a column vector of the same length as xij (the
chooser-specific variable for the jth purchase of the ith household), ξ(lm) is a
column vector of the same length as zij (the choice-specific variable for the same
purchase), and h

(lm)
0 (t) is the baseline hazard function for the state l to state m

transition. Additional, we consider the model with the previous inter-purchase
time added as part of the covariates to relax the assumption 2 in (2.4) we made
earlier.
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Therefore, the conditional density f(tij |yi,j−1 = l, yij = m) is modeled by

f(tij|yi,j−1 = l, yij = m)

= h(tij |yi,j−1 = l, yij = m) exp
{
−

∫ tij

0
h(u|yi,j−1 = l, yij = m)du

}
.

Flinn and Heckman (1982, 1983) suggest using the Box-Cox formulation to
specify the baseline hazard h

(lm)
0 (t). That is,

h0(t) = exp
(

γ0 +
∑K

k=1
γk

(
tλk − 1

λk

))
, (2.8)

where γ0, λk and γk, k = 1, . . . ,K are parameters to be estimated. These param-
eters depend on the inter-purchase times between l to m transitions. We omit the
superscripts (lm) for simplicity. One advantage of this representation of the base-
line hazard is that many frequently used probability distributions for durations
are nested within it. For example, if γk = 0 for all k ≥ 1, then h0(t) = exp(γ0),
hence the baseline hazard corresponds to an exponential distribution. Weibull
and extreme value distributions are also nested within (2.8). Thus this formula
enables researchers to test the adequacy of a particular distribution for the du-
ration.

On the other hand, studies (for example, Jain and Vilcassim 1991) have shown
that in marketing the duration time may not be able to be characterized by those
common distributions nested within the Box-Cox formulation. Moreover, some
common distributions are not nested in the formula. For example, lognormal
and logistic distributions are not in this family. Thus the use of the Box-Cox
representation is quite limited. Therefore we leave the baseline hazard totally
arbitrary. The resulted model is a semiparametric Cox regression model. This
model assumes that the hazard ratio (relative risk) for two inter-purchase times
with the same sandwiching states is a constant (with respect to t).

3. Estimation

Let us recall that the likelihood in (2.5) can be written as a product of two
parts

L =




n∏
i=1

ni∏
j=1

f(yij|yi,j−1)







n∏
i=1

ni∏
j=1

f(tij|yi,j−1, yij)


 , (3.1)

where we use the mixed multinomial logit models (2.6) for the first part (the
discrete choice transition model) and the Cox proportional hazards models (2.7)
for the second part (the conditional densities for the inter-purchase times given
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the two sandwiching states). To maximize this likelihood, it suffices to maximize
each part separately.

Define H(l) = {(i, j)|yi,j−1 = l}. It is the subset of double indices on i and j
for the ith household with the jth purchase such that yi,j−1 = l. Then we can
rewrite the first part of the likelihood in (3.1) as

Lp =
n∏

i=1

ni∏
j=1

f(yij|yi,j−1) =
L∏

l=1




∏
(i,j)∈H(l)

f(yij|yi,j−1 = l)


 . (3.2)

Recall our mixed multinomial logit model is defined by

f(yij = m|yi,j−1 = l) = πij(m|l) =
exp(β∗(l)′x∗

ijm)∑L
m=1 exp(β∗(l)′x∗

ijm)
.

Therefore, the partial likelihood Lp can be rewritten as

Lp =
L∏

l=1




∏
(i,j)∈H(l)

L∏
m=1

f(yij = m|yi,j−1 = l)I(yij=m)




=
L∏

l=1




∏
(i,j)∈H(l)

exp(β∗(l)′ ∑L
m=1 δijmx∗

ijm)∑L
m=1 exp(β∗(l)′x∗

ijm)




=
L∏

l=1

Ll(β∗(l)),

where δijm = I(yij = m).
Therefore, to maximize the likelihood of the discrete choice transition part,

it suffices to fit each of the L mixed multinomial logit models separately, each
with only transition pairs with the same brand choice of last purchase. Then we
fit the mixed multinomial logit model to the present brand choice. The Newton-
Raphson method can be used to maximize the likelihood Ll(β∗(l)). Nevertheless,
we can find the MLE easily by fitting a stratified proportional hazards model
(cf. Klein and Moeschberger 1997, p. 282). For example, it can be done with
the procedure PHREG with the strata option in SAS. Observe for each subject
in H(l), we can create L dummy survival times with the mth subject’s survival
time 0, if yij = m and the remaining L − 1 subjects censored at a later time
(say 1). Moreover, the covariates for the mth subject are x∗

ijm. Then the partial
likelihood employed in the Cox regression model is exactly

exp(β∗(l)′ ∑L
m=1 δijmx∗

ijm)∑L
m=1 exp(β∗(l)′x∗

ijm)
,
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because the risk set for the mth subjects includes all the L subjects. Then we
add a strata option by ID for all subjects in H(l). Essentially, the strata option
treats each set of the L dummy survival times just created as a stratum. This
will allow us to maximize Ll(β∗(l)). See SAS (1995 pp. 131-144) for more details.

We apply a similar idea to fit the duration model except we need to divide
our likelihood into a product of L × L terms. Recall that we use the same
Cox regression model for the inter-purchase times with the same sandwiching
states, for example, for all the consecutive states with yi,j−1 = l and yij = m.
Therefore, to maximize the likelihood for the inter-purchase time part, it suffices
to fit L2 models separately, where each model (say the (lm)th model) only picks
up the inter-purchase times with the l to m transition. It is relatively easy to
use existing software to fit separate Cox regression models for each transition
to obtain the estimates of the regression coefficients and the baseline hazard
function for each transition. The regression coefficients estimates are actually
the maximum likelihood estimates for the partial likelihood usually employed
in the Cox model that ignores the baseline hazard function. Then the baseline
hazard function is estimated nonparametrically by the Breslow (1974) method.

4. Data and Results

We reanalyze the Nielsen household scanner panel data set on purchases of
liquid laundry detergents in Sioux Falls, South Dakota, that was recently eval-
uated by Chintagunta and Prasad (1998). The observation period for this data
lasted from the first week of July, 1986 to July 16, 1988, a two year span. The
sample consists of 400 households who purchased only from among six national
brands, Tide, EraPlus, Solo, Wisk, Surf, and All. From these households, we
collected a total of 3,055 spells. For scanner data, the first and the last spells are
usually incomplete. The inter-purchase time of the first spell is left-truncated,
and thus we also don’t know the starting brand for the first spell. The last spell
is usually censored at the end of the study; therefore we only know that the inter-
purchase time should be larger than the time observed. As a consequence, we
don’t know what brand the household will choose at the end of the last spell. For
our data, all 400 households have incomplete first spells, and 398 households have
incomplete last spells. Many of the incomplete spells have missing covariates.

Special methods are needed for handling these two special situations. In this
paper, however, we will simply drop these incomplete spells. The resulted com-
plete sample consists of 320 households and 2,257 spells. Of the 320 households,
most of them (72%) have less than ten spells, about 50% have six or less spells,
90% have eighteen of less spells, eight (2.5%) have more than 30 spells, two have
more than 40 spells, and one has 87 spells.

Table 1 tabulates the frequency counts of the l to m transitions for each of



State Duration Model 135

Table 1: Transition matrix

To Row
TIDE WISK ERAPLUS SURF SOLO ALL Total

TIDE 415 (18.4) 59 (2.6) 40 (1.8) 52 (2.3) 12 (0.5) 10 (0.4) 588 (26.1)
70.6/70.3 10.0/10.0 6.8/6.8 8.8/8.8 2.0/2.0 1.7/1.7

WISK 67 (3.0) 461 (20.4) 37 (1.6) 28 (1.2) 8 (0.4) 3 (0.1) 604 (26.8)
11.1/11.1 76.3/76.2 6.8/6.1 4.6/4.6 1.3/1.3 0.5/0.5

ERAPLUS 37 (1.6) 32 (1.4) 320 (14.2) 33 (1.5) 12 (0.5) 0 (0.0) 434 (19.2)
8.5/8.4 7.4/7.3 73.7/72.9 7.6/7.5 2.8/2.7 0.0/0.0

SURF 56 (2.5) 43 (1.9) 26 (1.2) 196 (8.7) 14 (0.6) 4 (0.2) 339 (15.0)
16.5/16.9 12.7/13.0 7.7/7.8 57.8/59.0 4.1/4/2 1.2/1.2

SOLO 11 (0.5) 5 (0.2) 12 (0.5) 21 (0.9) 171 (7.6) 1 (0.0) 221 (9.8)
5.0/5.0 2.3/2.3 5.4/5.5 9.5/9.6 77.4/78.1 0.5/0.5

ALL 4 (0.2) 5 (0.2) 4 (0.2) 2 (0.1) 2 (0.1) 54 (2.4) 71 (3.1)
6.6/5.6 7.0/6.9 5.6/5.6 2.8/2.8 2.8/2.8 76.1/75.0

Col Total 590 (26.1) 605 (26.8) 439 (19.5) 332 (14.7) 219 (9.7) 72 (3.2) 2257

The four entries in each cell are frequency [in bold face], total frequencey [in ( ) ], and row
point/column point.

the 6 × 6 transitions among the 2,257 spells. This table suggests the degree of
competition among the brands, without controlling for the covariates. The large
magnitude of the diagonal elements relative to the off diagonal ones suggests
the tendency of the consumers to keep buying the same brand. In fact, almost
three quarters (71%) of the transitions are repeated purchases of the same brand.
Table 2 summarizes the mean inter-purchase time for each transition. The mean
inter-purchase time for the whole sample is about 55 days.

Table 2: Average interpurchase time (in days) by transitions

To Row
From TIDE WISK ERAPLUS SURF SOLO ALL Average

TIDE 49 61 67 65 117 74 54
WISK 75 52 71 70 70 146 57

ERAPLUS 54 55 53 44 46 - 53
SURF 68 81 59 45 82 55 56
SOLO 64 56 48 71 46 123 50
ALL 92 66 198 51 48 62 71

Column Average 54 55 58 52 53 67 55
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Figure 1: Side by side box plots of interpurchase times for the 6×6 transitions.

One of the objectives of our study is to investigate the relationship between
the pattern of brand switching and inter-purchase times. A comparison of the
empirical distributions for the inter-purchase times between transitions should
provide some insights. Figure 1 exhibits multiple box plots arranged in order
from left to right, where each plot summarizes the inter-purchase times for the
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Figure 2: Average interpurchase time vs transition frequencies

1 → 1, 1 → 2, . . . , 6 → 6 transitions except that the 3 → 6 transition is missing
(because of no data). An interesting finding is that the larger the frequency
is, the shorter the inter-purchase time is. This is further confirmed by Figure
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2, where the average inter-purchase times are plotted against the magnitude
of the frequencies for each transition. A very strong curvilinear relationship
is exhibited in Figure 2. This figure strongly supports the need to model the
bivariate outcomes jointly. Any marginal analysis will not be able to uncover
this interesting feature.

The choice-specific variables collected in the sample include the prices (PRICE),
features advertisement (FEATURE), and special displays (DISPLAY) of the six
bands. The later two are both binary variables, with 1 indicating the presence
of feature advertisement or special store display at the time of purchase for each
brand. The unit of the price variables is cents per ounce. Since different pack
sizes of different brands exist, only the prices of the purchased size are recorded
for the competing brands. The chooser-specific variables include household size
(HHSIZE), volume of detergent bought last time (STOCK), and non-detergent
expenditure this trip (EXPEND). The last variable acts as proxy for “regular”
and “fill-in” trips. We calculated the correlations among these variables and
found that feature advertisement and special store display for some brands are
highly correlated. Particularly, the values of feature advertisement are exactly
the same as the values of store display for the brand ALL. Therefore, to avoid
collinearity, we drop one of them in the analysis.

According to the proposed model in Section 2, we estimated 6 discrete choice
models, each one with a different previous brand, and 36 Cox regression models,
each one for a unique transition. The results are reported in Tables 3, 4 and 5
under the name of choice models and duration models, respectively. We report
the results without the special display (DISPLAY) variable in both cases. In
choice models, only household size from the chooser-specific variables was found
to be significant. So, in the final analysis, we dropped the stock and expendi-
ture variables. In duration models, preliminary analysis incorporating the price
and feature variables of the competing brands showed them to be statistically
insignificant for most of the cases. Therefore they were not included in the final
estimation. Only price and feature of the brand purchased are included. Be-
cause of limited sample sizes, some of the duration models return no results or
unreliable results. In these cases, we use dashes to represent the estimates.

In the following, we discuss the results from Tables 3, 4 and 5 in more detail.

4.1 Choice models

Examining the effect of choice-specific variables (PRICE and FEATURE)
on the probability of purchasing a particular brand, we see that all estimated
coefficients are of the expected signs and all of them are significant at the 0.05
level. The estimated coefficients can be interpreted as in the usual McFadden
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Table 3: Parameter estimates for choice models

Previous Brand
Variables TIDE WISK ERAPLUS SURF SOLO ALL
INT (T) 0.195 -2.643a 1.384a -2.566a -0.891

(0.387) (0.521) (0.486) (0.859) (2.572)
INT (W) -3.687a -3.075a 0.052 -4.483a -3.176c

(0.450) (0.522) (0.513) (1.254) (1.781)
INT (E) -3.052a -0.485 -0.067 -3.906a -3.642

(0.539) (0.495) (0.609) (0.917) (2.808)
INT (Su) -2.918a -1.116b -3.886a -5.787a 1.299

(0.498) (0.536) (0.584) (0.957) (1.745)
INT (So) -2.517a -1.158 -2.625a -2.796a 0.744

(0.771) (0.884) (0.730) (0.916) (2.268)
INT (A) -4.394a -4.000a na -0.870 na

(0.866) (1.327) na (1.256) na
HHSIZE (T) -0.189 0.048 -0.555a -0.091 0.161

(0.116) (0.131) (0.140) (0.297) (0.896)
HHSIZE (W) -0.125 -0.312a -0.867a -0.179 0.466

(0.124) (0.145) (0.176) (0.439) (0.592)
HHSIZE (E) -0.197 -0.099 -0.213 0.457c 1.525b

(0.149) (0.151) (0.155) (0.253) (0.744)
HHSIZE (Su) -0.162 -0.481b 0.076 0.829a -1.124

(0.148) (0.198) (0.140) (0.235) (0.984)
HHSIZE (So) -0.441 -0.432 -0.254 0.278 -0.780

(0.269) (0.302) (0.216) (0.202) (1.116)
HHSIZE (A) -0.860b -0.826 na -2.011a na

(0.349) (0.589) na (0.741) na
PRICE -1.424a -1.348a -1.168a -1.418a -0.970a -1.929a

(0.117) (0.116) (0.127) (0.134) (0.187) (0.507)
FEATURE 1.739a 1.164a 1.348a 1.775a 1.046b 2.586a

(0.259) (0.224) (0.278) (0.318) (0.487) (0.894)

The standard errors are in parentheses; T=TIDE, W=WISK, E=ERAPLUS,
Su=SURF, So = SOLO, A = all; a significant at 0.01 level, b significant at 0.05
level, c significant at 0.10 level.

model. For example, reading from column 2 of Table 3 for the brand Tide, we
see that an 1-cent increase in the difference between the price of any particular
brand and another brand decreases the odds of buying this brand by 24% (exp(-
1.424)); and a brand being on feature advertisement (versus a brand without the
advertisement) increases the odds of the buying this brand by a factor of 5.7
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Table 4: Parameter estimates for duration models (1)

T→T (415) T→W (59) T→E (40) T→Su (52) T→So (12) T→A (10)
HHSIZE 0.093a -0.064 0.390b 0.062 6.597b -1.183

(0.04) (0.093) (0.162) (0.117) (2.939) (1.132)
STOCK -0.007a -0.003 0.003 -0.008 0.051 0.077b

(0.002) (0.005) (0.006) (0.006) (0.038) (0.034)
EXPEND 0.001 0.008 -0.009 -0.006 -0.030b 0.189b

(0.001) (0.005) (0.005) (0.006) (0.014) (0.089)
PRICE 0.002a -0.000 0.002 -0.001 -0.012 0.867

(0.001) (0.002) (0.002) (0.002) (0.008) (0.909)
FEATURE 0.171 0.440 -0.088 -0.253 -8.564b -

(0.131) (0.353) (0.564) (0.367) (3.991) -

W→T (67) W→W (461) W→E (37) W→Su (28) W→So (8) W→A (3)
HHSIZE -0.120 0.258a 0.216 0.652b 3.161c -

(0.104) (0.038) (0.163) (0.300) (1.772) -
STOCK -0.003 -0.001 -0.007 -0.014c 0.053 -

(0.004) (0.001) (0.008) (0.008) (0.052) -
EXPEND 0.001 -0.001 -0.002 -0.006 -0.098 -

(0.004) (0.001) (0.004) (0.008) (0.078) -
PRICE -0.000 0.001 -0.001 0.008a 0.034c -

(0.002) (0.001) (0.003) (0.003) (0.020) -
FEATURE -0.113 0.135 0.171 0.265 4.259 -

(0.288) (0.110) (0.465) (0.571) (3.967) -

E→T(37) E→W (32) E→E (320) E →Su (33) E→So (12) E→A (0)
HHSIZE -0.104 -0.224 0.072c 0.189 0.793c -

(0.165) (0.159) (0.038) (0.147) (0.412) -
STOCK -0.011b 0.004 -0.006a -0.010 0.041 -

(0.006) (0.006) (0.002) (0.007) (0.025) -
EXPEND 0.005 0.005 0.003 -0.003 -0.033c -

(0.005) (0.008) (0.002) (0.011) (0.019) -
PRICE -0.000 -0.002 0.002a -0.000 0.011b -

(0.003) (0.003) (0.001) (0.001) (0.005) -
FEATURE 0.191 0.258 -0.061 0.130 1.709 -

(0.489) (0.414) (0.191) (0.570) (1.381) -

(exp(1.739)). The intercepts represent the intrinsic preference for the correspond-
ing brands relative to the base brand. In each of the six models, we make the
previous brand the base brand. From Table 3, we see that most of the estimated
intercepts are negative, and among those intercepts that are significantly differ-
ent from zero, all but one are negative. This reflects the feature of the transition
pattern: consumers are less likely to change from one brand to another. Based
on the intercept estimates, for each previous brand, we can order the brands from
the most favored to the least favored. For example, we see that for consumers
with a previous purchase of Tide, the first choice is TIDE, the second choice is
SOLO, and then SURF, ERAPLUS, WISK, and the last ALL.

Also from Table 3, we see that the chooser-specific variable, household size,
plays an non-negligible role in brand choice decision. The effects of household size
on the choice of different brands are mixed. For example, for those who bought
brand SURF last time, one more household member decreases the odds of
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Table 5: Parameter Estimates for Duration Models (2)

Su→T(56) Su→W (43) Su→E (26) Su→Su (196) Su→So (14) Su→A (4)
HHSIZE 0.218c 0.145 0.301b 0.133a 5.811 -

(0.119) (0.151) (0.140) (0.043) (549.8) -
STOCK -0.011c 0.002 -0.006 -0.006b 0.019c -

(0.006) (0.006) (0.012) (0.003) (0.011) -
EXPEND -0.014c 0.006 -0.000 0.004 0.029a -

(0.008) (0.006) (0.002) (0.003) (0.015) -
PRICE 0.006a -0.001 -0.001 0.001 -0.004 -

(0.002) (0.002) (0.002) (0.001) (0.006) -
FEATURE -0.809b -0.555 -0.239 -0.049 - -

(0.350) (0.382) (0.579) (0.241) - -

So→T (11) So→W (5) So→E (12) So→Su (21) So→So (171) So→A (1)
HHSIZE -0.243 - 0.305 0.211 -0.010 -

(0.429) - (0.401) (0.187) (0.076) -
STOCK -0.008 - 0.012 0.001 -0.001 -

(0.030) - (0.015) (0.008) (0.002) -
EXPEND -0.001 - -0.029 0.007c 0.003c -

(0.003) - (0.024) (0.004) (0.001) -
PRICE 0.010 - -0.013 -0.001 0.003b -

(0.009) - (0.009) (0.002) (0.001) -
FEATURE 1.659 - - -0.406 0.281 -

(1.138) - - (0.655) (0.377) -

A→T (4) A→W (5) A→E (4) A→Su (2) A→So (2) A→A (54)
HHSIZE - - - - - 0.352b

- - - - - (0.162)
STOCK - - - - - -0.005

- - - - - (0.006)
EXPEN - - - - - 0.001

- - - - - (0.005)
PRICE - - - - - -0.180

- - - - - (0.296)
FEATURE - - - - - -

- - - - - -

purchasing Tide by 57%, while for those who bought SOLO last time, one more
family member increases the odds of purchasing ERAPLUS by about 1.6 times.

Our findings here from the choice models agree with previous findings about
brand choice (Jain et al. 1994) in the sense of the choice-specific variables and
the consumer intrinsic preference. The real implication of the effect of household
size needs more investigation.

4.2 Duration models

Tables 4 and 5 report the estimated coefficients of chooser-specific variables
and choice-specific variables from the 36 Cox regression models. The number
inside the parentheses after the name of transitions are the sample size for that
transition. In some models, there is not enough data to estimate the coefficients
reliably. In some other models, one or more variables might take the same value,
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Figure 3: Estimated baseline hazard function for transition TIDE→TIDE

thus making the coefficients of these variables unidentifiable. In these cases, we
use dashes to represent the estimates.

From Tables 4 and 5, we see that most of the estimated coefficients for the
chooser-specific variables are of the expected signs, especially for the ones that
are significant. Household size (HHSIZE) generally has positive estimated coeffi-
cients, suggesting that an increase of household size will likely increase the rate
(hazard) of making a purchase. On the other hand, volume purchased at pre-
vious occasion (STOCK) generally has negative signs which says that the more
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you bought last time (the more you have as stock) the less the rate of making
the next purchase. The effect of non-detergent expenditure (EXPEND) on the
rate of making the next purchase is not that significant in general, and for those
cases where it is significant, the effects are mixed.

Turning to the choice-specific variables, we note that feature advertisement
(FEATURE) is generally not significant. Price is significant for some of the
models and has positive coefficients. This implies that as the price of the brand
goes up, the rate of making the purchase increases. For example, when the
transition is from WISK to SURF, one cent increase of the SURF’s price increases
the odds of purchasing SURF by 1.008. The magnitude of the changes in odds is
small. Nevertheless, this finding of the price effect on the timing decision is an
interesting departure from some previous findings (see Vilcassim and Jain 1991
and Chintagunta and Prasad 1998). In those studies, the price variable usually
has the opposite effect. However, our finding does make some intuitive sense: as
the price of the brand goes up, consumers might be anticipating further price
increases which encourages consumers to make the purchase sooner rather than
later.

In Figure 3, we plot the estimated baseline hazard function for transition
times from TIDE to TIDE. We see that the baseline hazard is nonmonotonic.
Particularly, it fluctuates frequently with many peak and valleys, and with piece-
wise local trends. This feature of the baseline hazard precludes the use of the
Box-Cox formulation for the baseline hazard.

We also conducted the analysis without the second assumption in (2.4) where
we include the previous inter-purchase time (PREDUR) in the covariates for
each duration model in a transition. The analysis revealed that the predictor
(PREDUR) is significant at the 0.05 level only in a few models. The price when
significant still has the same positive sign as in Tables 4 and 5. The results
revealed very similar qualitative interpretation as in Tables 4 and 5. Therefore,
the analysis is omitted here.

5. Summary and Discussions

In this paper, we developed a new method to model jointly the inter-purchase
time and brand choice. Our model accounts for the dependence structure across
successive purchases from the same household via a first-order Markov property.
For the decomposition of the joint model, we found that conditioning on the
brand choice variable has more advantages than the dynamic McFadden model
where the conditioning is done on the inter-purchase time. It allows us to fit the
discrete choice model and duration model separately. In addition, it also allows
us to fit different distributions for the duration times between different transitions
and different multinomial logit models for different previous brand choices. Best
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of all, all these fittings can be easily done with commonly used software that
includes SAS or S-Plus.

We applied our model to scanner data of detergent purchase. We found that
among choice-specific variables, price and feature advertisement are significant
factors for consumer’s choice decisions. Household size, as a chooser-specific
variable, is also important in the choice decision process. We also found that
price is a significant factor in the timing decision.

Data set similar to the one used in this paper also appear in other fields.
For example, in labor economics, data are collected on when a person changes
labor status among the employed, unemployed, and out of labor force status (cf.
Lancaster 1990, and Heckman and Singer 1985). In sociology, event history data
on marriage, separation, and divorce may be collected (cf. Yamaguchi 1991). In
medicine, life history data are collected to study relapse-remitting processes (cf.
Anderson, Borgan, Gill, and Keiding 1993). In these situations, our proposed
method can be utilized with slight modifications. For instance, we may want to
modify our multinomial logit model to accommodate the no-repetition transition.
Our model can be made more parsimonious by assuming some of the transitions
share the same model. For example, we might assume β∗(l) = β∗(m) if we believe
the switching patterns are quite similar between the last purchase choices l or m.
Similarly, we can make equal coefficients assumptions for some of the parameters
in the Cox model.

Our method cannot yield stable results for small sample size. The above
discussion on collapsing models would help the sample size problem. Further-
more, we can employ the techniques used in small domain estimation to borrow
strength from neighboring categories to treat small sample-size problems. We
have ignored the incomplete observations at the two end points of the panel data
for each household. The study can be improved by adding the incomplete ob-
servations. For the beginning of the monitoring period, we can impute the state
space variable at time 0. That is, we impute the brand choice for the last pur-
chase before the monitoring period. Various imputation schemes can be explored.
It would be interesting to study the effects of the imputation schemes. For the
end of the study, we can include right-censored data for the time between the
last purchase and the ending monitoring period and imputed ending states. The
censored data part can be easily done in each of the 36 Cox regression models.

We have adopted a first-order Markov assumption in our derivation of the
likelihood. This assumption can be relaxed to incorporate higher order (cf. Dig-
gle, Liang, and Zeger 1994, p. 195). Although it increases the complexity of the
analysis, it may be needed when the AR(1) assumption is known to be inade-
quate.

We have made two assumptions in the conditioning decomposition of our
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likelihood. First, we assume f(yij|tij, yi,j−1) = f(yij|yi,j−1), then we use the
discrete choice model with the explanatory variables from the jth purchase of
consumer i to model this transition state space model. With time varying co-
variates, it would be worthwhile to consider models with explanatory variable
from the (j − 1)th purchase of consumer i. Given that this transition model
should depend on the inter-purchase time, we can relax our first assumption by
allowing the inter-purchase time tij as part of the explanatory variable. On the
second assumption, we assume f(tij|yij , ti,j−1, yi,j−1) = f(tij|yij, yi,j−1). This
assumption can be relaxed by adding ti,j−1 as a covariate in the Cox regression
model. Our analysis (omitted here) reveals that the dependence on the previous
inter-purchase time for the scanner data is not very significant.

On the duration modeling, in addition to the Cox regression model, we can
also consider the log linear model, the additive hazards regression model, or
the generalized additive hazards models (Hastie and Tibshirani, 1990). Unob-
served hetorogeniety among households would often affect the analysis (cf. Jain,
Vilcassim, and Chintagunta 1994, Chintagunta and Prasad 1998). It would be
worthwhile to incorporate a random-effects specification (frailty) into our model
and compare the two results.

We have assumed the state space remained unchanged during study. Often, a
new product is introduced into the market, or a product is phased out. It would,
therefore, be worthwhile to consider dynamic models and change-point models
for this kind of situation.
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