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Post-calibration of Weather Radar Rainfall Estimation
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Abstract: A statistical approach, based on artificial neural networks, is pro-
posed for the post-calibration of weather radar rainfall estimation. Tested
artificial neural networks include multilayer feedforward networks and radial
basis functions. The multilayer feedforward training algorithms consisted of
four variants of the gradient descent method, four variants of the conju-
gate gradient method, Quasi-Newton, One Step Secant, Resilient backprop-
agation, Levenberg-Marquardt method and Levenberg-Marquardt method
using Bayesian regularization. The radial basis networks were the radial
basis functions and the generalized regression networks. In general, results
showed that the Levenberg-Marquardt algorithm using Bayesian regulariza-
tion can be introduced as a robust and reliable algorithm for post-calibration
of weather radar rainfall estimation. This method benefits from the conver-
gence speed of the Levenberg-Marquardt algorithm and from the over fitting
control of Bayes’ theorem. All the other multilayer feedforward training al-
gorithms result in failure since they often lead to over fitting or converged to
a local minimum, which prevents them from generalizing the data. Radial
basis networks are also problematic since they are very sensitive when used
with sparse data.
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1. Introduction

Accurate measurements of rainfall over time and space are critical for many
hydrological and meteorological projects. The most usual tools to monitor rain-
fall events are raingauges and weather radar. Networks of raingauges provide
accurate point estimates of rainfall, when appropriately set, but their usual low
density restricts considerably the spatial resolution of the gathered information.
The quality of raingauge observations is also susceptible to some error sources
especially biological and mechanical fouling, and human and environmental inter-
ference (Steiner, Smith, Burges, Alonso and Darden, 1999). Weather radar are
much more efficient in providing the space-time evolution of a rainfall event, but
they can be contaminated by many factors including ground clutter, bright band,
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anomalous propagation, beam blockage, and attenuation (e.g. Zawadski, 1984;
Andrieu, Creutin, Delrieu, and Faure, 1997). The effectiveness of weather radar
operation is strongly linked to a rigorous calibration (Serafin and Wilson, 2000).
The performance of radar rainfall estimation mainly depends on a proper choice
of Z-R relationship (Anagnostou and Krajewski, 1998), which may vary from
event to event or even within a single storm - where Z is the radar reflectivity
factor (mm6 m−3) and R is the precipitation rate (mm h−1). A recent experi-
ence on a proper choice of the Z-R relationship returns to the work of Rongrui
and Chandrasekar (1997) who have proposed a neural network based approach
to determine a Z-R relationship.

Early on, Wilson (1970) has recognized the strengths and weaknesses of both
observation systems and proposed to integrate them in order to enhance the
space-time quality of the rainfall information. Since then, various methods have
been proposed to achieve such data driven post-calibration of the weather radar
rainfall estimation. They can be classified into two main categories: determin-
istic and statistical. The deterministic approach involves the post-calibration of
radar rainfall estimations against raingauge observations (Wilson, 1970; Andrieu,
Creutin, Delrieu, and Faure, 1997). The statistical approach includes multivari-
ate analysis (Eddy, 1979) and cokriging (Krajewski, 1987; Seo, Krajewski and
Bowles, 1990). Geostatistical approaches are known as the best methods for
radar-raingauges data integration but they are usually inefficient in real time,
especially when dealing with the sampling rates of one hour or less necessary
for urban and small watershed applications. Such methods also rely on a strong
human expertise, which can lead to user-dependent results (Bollivier, Dubois,
Maingnan and Kanevsky, 1997). Overall, these methods share a similar objec-
tive: to somehow perform a post-calibration of the radar estimation using rain-
gauges as ground truth - note that on occasions, raingauges also depart from
truth (Steiner, Smith, Burges, Alonso and Darden, 1999).

Several authors have reported the usefulness of artificial neural networks for
spatial data analysis. Rizzo and Dougherty (1994) have introduced a method of
pattern completion for hydrogeological applications called neural kriging. The
possible use of neural networks for geostatistical simulation has been suggested
by Dowd and Sarac (1994). Bollivier, Dubois, Maingnan and Kanevsky (1997)
have discussed the application of artificial neural networks in the case of the
interpolation of a geo-referenced variable. More recently, Hessami, Anctil and
Viau (2002) have used a combination of fuzzy inference system and artificial
neural networks based on a Jack-Knife regularization for the post-calibration of
weather radar data.

In this paper, a statistical-like approach, based on artificial neural networks,
is investigated for merging radar rainfall estimations and raingauges observations.
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Figure 1: CAPPI of the 8 AM to 9 AM rainfall accumulation: June 17 1997.
Crosses indicate raingauge locations.

The object of this approach is to map the input space (radar) to the output space
(raingauges) through a proper artificial neural network model, in order to achieve
a post-calibration of the weather radar rainfall estimation.

The remainder of the paper is organized as follows. In section 2, a brief de-
scription of the selected data is presented. Section 3 introduces the artificial neu-
ral networks used for data integration, namely multilayer feedforward networks
and radial basis functions. Section 4 provides the results of the comparison of the
different neural network models tested. In section 5, the artificial neural networks
evaluation is discussed and conclusions are reported in section 6.

2. Data Selection

McGill Radar Weather Observatory has provided the radar rainfall estima-
tions for this study. The radar, located at the western tip of the Island of Mon-
treal, at Sainte-Anne-de-Bellevue, transmits in the S-band (10 cm). It scans the
atmosphere using a regular strategy. Data are collected at 24 elevation angles
from 0.5◦ to 34.4◦ every 5 minutes. The reflectivity CAPPI (Constant Altitude
Plan Position Indicator) is the radar image for displaying precipitation inten-
sity. The unit of CAPPI is in dBZ or 10 log10 Z where Z is the reflectivity
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in mm6/m3. The CAPPI used for this study is the one-hour rainfall accumu-
lation from 8 AM to 9 AM of 17 June 1997, with a resolution 1 km × 1 km,
obtained from an altitude of 2 km (Figure 1). This event has been selected be-
cause it is typical of large systems rainfall and because it is well centred on the
radar. The precipitation melting layer (bright band) has been avoided by choos-
ing the altitude of 2 km, but the image still suffers from some common problems
in particular ground clutter and anomalous propagation. Nevertheless, these im-
perfections do not affect the general data integration methodology presented here
——the complete radar image correction is outside the scope of this paper. The
corresponding hourly raingauge observations used for this study were collected
by Environment Canada’s network, supplemented by a private raingauge net-
work (Figure 1). These low density networks — 15 raingauges to post-calibrate a
weather radar image of 120 km radius — impose a constraint on the methodology
selection.

3. Artificial Neural Network

Artificial neural networks are mathematical models of human cognition (Govin-
daraju, 2000), which can be trained to perform a specific task based on available
experiential knowledge. They are typically composed of three parts: inputs, one
or many hidden layers, and an output layer. Hidden and output neuron layers
include the combination of weights, biases, and transfer functions. The weights
are connections between neurons while the transfer functions are linear or non-
linear algebraic functions. When a pattern is presented to the network, weights
and biases are adjusted so that a particular output is obtained. Artificial neural
networks provide a learning rule for modifying their weights and biases. Once a
neural network is trained to a satisfactory level, it can be used on novel data.

Training techniques can either be supervised or unsupervised. Supervised
training methods are well adapted for interpolation and extrapolation prob-
lems. In this paper, the artificial neural networks used for the post-calibration
of weather radar estimations include supervised back propagation (Rumelhart,
Hinton and Williams, 1986) and supervised radial basis functions (Powell, 1987).

3.1 Backpropagation algorithm

Backpropagation is the generalization of the least mean square (LMS) algo-
rithm to multiple-layer networks and nonlinear differentiable transfer functions.
The multilayer feedforward network is the most used architecture of backpropa-
gation. Feedforward networks typically consist of one or more hidden layers of
sigmoid neurons followed by a layer of linear neurons. Such network can approx-
imate any function with a finite number of discontinuities. The general equation,
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which describes it, is (Hagan, 1996)

a(i+1) = f (i+1)(W (i+1)a(i) + b(i+1)), i = 0, 1, . . . ,m − 1

where m is the number of layers in the network , f (i+1) are the transfer functions,
W (i+1) are neuron weights and b(i+1) are neuron biases. For this study, feedfor-
ward networks consist of one hidden log-sigmoid layer and one linear output
layer:

f (1)(s) =
1

1 + e−s

f (2)(s) = s

Neurons in the log-sigmoid layer receive radar estimations (xi, yi, ri) as external
inputs where xi and yi are coordinates and ri is the radar rainfall:

a(0) = p =




x1 x2 . . . xn

y1 y2 . . . yn

r1 r2 . . . rn




Outputs of the second layer are the network outputs (a = a(2)), where the
corresponding targets are the raingauge observations (ti)

t = [t1, t2, . . . , tn]

where n is the number of raingauge observations. The feedforward algorithm is
provided with the following training set {p1, t1}, {p2, t2}, . . . , {pn, tn}. In other
words, networks are trained with data from all 15 raingauges and the correspond-
ing 15 radar rainfall estimations (pixels). The algorithm adjusts the network
weights and biases in order to minimize the performance function:

F (x) = E[(t − a)2]

where x is the vector of weights and biases. There are several algorithms to
update feedforward weights and biases. In this paper, we have used four dif-
ferent variations of gradient descent algorithms [basic gradient descent (GD),
the gradient descent with adaptive learning rate (GDA) algorithm (Fine, 1999),
the gradient descent with momentum (GDM), and the gradient descent with
momentum and adaptive learning rate (GDX)], four different variations of con-
jugate gradient algorithms [Powell-Beele (CGB) algorithm (Powell, 1977), the
Fletcher-Reeves (CGF ) algorithm (Fletcher and Reeves 1964), the Polak-Ribiere
(CGP ) algorithm (Fletcher, 1987) and the scaled conjugate gradient (SCG) al-
gorithm (Moller 93)], the quasi-Newton (BFG), One Step Secant (OSS) algo-
rithm (Battiti, 1992), Resilient backpropagation (RB) algorithm (Riedmiller and
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Braun, 1993), Levenberg-Marquardt (LM) algorithm (Hagan and Menhaj, 1994)
and Levenberg-Marquardt algorithm using Bayesian regularization (LMBR) al-
gorithm.

The performance function, which is commonly used for training a feedforward
neural network, is the mean square errors

Fe =
1
n

n∑
i=1

(ti − ai)2

During training, Fe is minimized. The nonlinear properties of neural network
allow fitting the training set to very small errors. However, we call over fitting
the process of minimizing Fe to extremes while failing to generalize to novel data.
One technique to improve network generalization is called regularization. This
method modifies the performance function F by adding an additional term, which
consists of the mean sum of squares of the network weights Fw

F = βFe + αFw (3.1)

where α and β are objective function parameters (Foresee and Hagan, 1997).
Usage of this performance function results in smaller weights, which produce a
smoother network response. The problem with regularization is that it is difficult
to set the optimum values for the objective function parameters. The Bayesian
regularization (BR) proposed by Mackay (1992) automatically set optimum val-
ues for objective function parameters. The Levenberg-Marquart algorithm based
on Bayesian regularization produces a smooth network at the expense of the sum
squared error of network.

3.2 Radial basis networks

Radial basis functions (RBF ) are designed to find a surface in a multidimen-
sional space that provides a best fit to the training data (Haykin, 1999). The
principle of radial basis functions originates from the theory of functional ap-
proximation. Radial basis networks perform non-linear mapping from the input
space to the hidden layer (radial basis layer) and linear mapping from the hidden
layer to the output space (linear layer). The general equations which describe
this network are

a(1) = f (1)(||W (1) − p||b(1))
a(2) = f (2)(W (2)a(1) + b(2))

where f (1)(n) = e−n2
and f (2)(n) = n. The bias b1 determines the width of the

area in the input space to which each neuron responds by using a constant called
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spread

b1 =
(− log(0.5))0.5

spread
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Figure 2: Scatter plot of the raingauge observations and of the weather radar
estimations: June 17, 1997 from 8 AM to 9 AM.

It is important to make sure that the spread is large enough such that the
network can generalize well. The lager the spread is, the smoother the network
will be. In the radial basis functions (RBF ), the number of neurons is determined
according to the value of the sum squared error of the training set. In this paper,
a variant of radial basis networks called Generalized Regression (GR) Networks
is also used. This network has a radial basis layer in the first layer and a special
linear layer in the second layer. See Demuth and Beale (1997) and Govindaraju
and Ramachandra Rao (2000) for more detailed explanation of the radial basis
algorithms.

4. Results
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For the selected event, 17 June 1997 from 8 AM to 9 AM, the radar over-
estimates the raingauges in most locations (Figure 2), leading to a correlation
coefficient of 0.88 between the weather radar estimations and the raingauge ob-
servations. Stationary objects nearby raingauge 2 may be the reason for the
presence of a null observation versus 3.6 mm estimation. The corresponding
mean square error is 1.30 mm2:

Fp =
1
n

n∑
i=1

(ti − ri)2

Before training the networks, inputs and targets were normalized to fall within
a specified range. All networks were trained with the following 15 training sets

{pi, ti}, i = 1, 2, . . . , 15

For multilayer feedforward networks, 1 to 10 neurons were used in the hidden layer
and one neuron in the output layer. The selected performance functions was the
sum squared error (SSE). The gradient descent algorithms GD,GDA,GDM
and GDX (especially GD) were the slowest training algorithms. The advantage
of these algorithms is that they only required the computation of gradients. The
Levenberg-Marquardt algorithm produced the fastest convergence, but relied on
the calculation of second-order derivatives. The quasi-Newton algorithm and
Levenberg-Marquardt algorithm often converged too quickly, thus overshooting
the point at which the error on the training set is optimum. The conjugate algo-
rithms (CGB,CGF,CGP and SCG), OSS algorithm, RB algorithm, RBF and
GR were faster than the gradient descent algorithms but slower than BFGS.
Table 1 gives the number of hidden neurons (n1), mean square error (Fe), cor-
relation coefficient between the raingauges and network outputs (Rn), number
of epochs and the total training and simulation time for the various algorithms.
The feedforward networks have been trained until the mean square error of 0.1
mm2 was obtained or the number of epochs has reached 1000 or the sum squared
error was relatively constant over several iterations. The computations have been
performed on a Pentium III 500 MHz.

The common problem with all of these algorithms was that they often led to
over fitting or converged to local minimum, which prevented them to generalize
the data. These algorithms also required several individual runs before determin-
ing the best results. They may be useful if a technique such as early stopping
(Coulibaly, Anctil and Bobée, 2000) is used for improving their generalization
capability. However, such technique asks for the division of the available data
into three subsets: training, validation and test. When the overall data base is
small —— for example, in this study, there is 15 raingauges to post-calibrate a
240 km × 240 km weather radar image —— other ways to achieve generalization
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Table 1: Post-calibration results for various training algorithms

Algorithm n1 Fe Rn Epochs Time
(mm2) (s)

GD 5 0.65 0.93 1000 14.6
GDA 5 0.30 0.97 1000 14.5
GDM 5 0.64 0.94 1000 14.3
GDX 5 0.16 0.98 1000 14.0
CGB 5 0.10 0.99 30 4.7
CGF 5 0.10 0.99 97 5.0
CGP 5 0.10 0.99 118 6.3
SCG 5 0.10 0.99 96 4.6
BFG 5 0.10 0.99 13 2.5
OSS 5 0.10 0.99 172 7.0
RB 5 0.10 0.99 190 3.9
LM 5 0.10 0.99 6 1.4
LMBR 5 0.50 0.95 105 3.7
RBF 10 0.10 0.99 11 2.9
GR 15 0.10 0.99 1 4.2

of the model must be sought. In general, post-calibration using these algorithms
resulted in failure.

The Levenberg-Marquardt algorithm using Bayesian regularization was tested
with 1 to 10 neurons in the hidden layer. The 5-neuron network was selected since
no improvement was made to the network when using more hidden neurons and
they lead to similar mean sum of squared errors (Fe = 0.50 mm2). The network
response never over fitted the data when the network was over trained or when
more neurons were added in the hidden layer. This feature was not true for
the other tested training algorithms. In fact, this is the only algorithm which
training was not stopped either because convergence was reached (Fe = 0.10
mm2) or because a 1000 epochs had elapsed (see Table 1). Training was stopped
after about 100 epochs since Fe was relatively constant over several epochs and
the actual training had ceased.

Figure 3 presents the post-calibrated CAPPI using LMBR algorithm with
5 hidden neurons. This figure shows the good generalization capability of the
Levenberg-Marquardt algorithm using Bayesian regularization. Figure 4 shows
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Figure 3: Post-calibrated CAPPI derived from a 5-neuron LMBR network:
June 17, 1997 from 8 AM to 9 AM.
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Figure 4: Scatter plot of the raingauge observations and of the post-calibrated
weather radar estimations derived from a 5-neuron LMBR network: June 17,
1997 from 8 AM to 9 AM.
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Figure 5: Post-calibrated CAPPI derived from a RB network: June 17, 1997
from 8 AM to 9 AM.

0
0.5

2

5

10

P
re

ci
pi

ta
tio

n 
(m

m
)

 100  50 0 50 100

 100

 50

0

50

100

Distance (km)

D
is

ta
nc

e 
(k

m
)

 1

 2
 3

 4

 5

 6

 7

 8

 9
10

11

12
13

14

15

 

Figure 6: Post-calibrated CAPPI derived from a GR network: June 17, 1997
from 8 AM to 9 AM.
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the scatter plot of the raingauge observations and the post-calibrated radar es-
timations. The correlation coefficient between the outputs of the network and
raingauges data was 0.95 compared to 0.88 for the correlation coefficient be-
tween the radar and raingauges data (Figure 2). Training results show that the
Levenberg-Marquardt algorithm using Bayesian regularization lead to a compro-
mise between both data set —— remember that the raingauge observations are
also prone to errors. Note that the post-calibrated value corresponding to rain-
gauge 2 has been significantly adjusted.

In comparison, Figures 5 and 6 show the post-calibration results using two
variants of radial basis functions RBF and GR respectively. The RBF network
was constructed with a spread constant of 0.9 and a mean square error of 0.1,
while a spread of 0.55 was used for the GR network. Radial basis functions
networks are very sensitive to spread. The optimum value of spread must be
obtained by trial and error. This can cause problems in the automation process
of data integration. Another problem with radial basis functions networks was
that they have local support. If we compare Figures 5 and 6 with the original
radar image (Figure 1), we can see the networks responses are not reasonable
for points far from the raingauges stations. This happens essentially because
the value of radial basis function decreases with distance away from its centre.
So, radial basis functions are very susceptible to errors when used with sparse
data, which is usually the case for the post-calibration of weather radar rainfall
estimation.

All trained networks were fed with only 15 raingauges and 15 radar rainfall
estimations. Simulations using all radar pixels are ascertain by visual comparison
of the post-calibrated radar image with the original calibrated radar images. Any
over fitting of the networks is easily detected. In general, results show that the
Levenberg-Marquardt algorithm using Bayesian regularization can be introduced
as a robust and reliable algorithm for radar-raingauge data integration. This
method benefits from the convergence speed of Levenberg-Marquardt algorithm
and from the over fitting control of Bayes’ theorem. Similar satisfactory results
were obtained for the post-calibration of other radar images using the Levenberg-
Marquardt algorithm with Bayesian regularization. For example, Figures 7 and
8 are for 6 AM to 7 AM of 17 June 1997 (Fp = 1.80 mm2 and Fe = 0.68 mm2).
Table 2 has summarized the results of post-calibration of radar images for the
complete event from 5 AM to 1 PM of 17 June 1997.

5. Discussion

The usual approach for evaluating the generalization performance of an arti-
ficial neural network is to divide the available data into three subsets: training,
validating and testing. The main problem with this approach for the post-
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Figure 7: CAPPI of the 6 AM to 7 AM rainfall accumulation: June 17 1997.
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Figure 8: Post-calibrated CAPPI derived from a 5-neuron LMBR network:
June 17, 1997 from 6 AM to 7 AM.
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Table 2: Post-calibration results for the LMBR algorithm: June 17,1997, from 5
AM to 1 PM.

Event Radar vs raingauges LMBR vs raingauges
Correlation RMSE Correlation RMSE
coefficient (mm) coefficient (mm)

5:00 to 6:00 0.63 1.24 0.84 0.75
6:00 to 7:00 0.85 1.34 0.94 0.82
7:00 to 8:00 0.92 1.48 1.00 0.29
8:00 to 9:00 0.88 1.14 0.95 0.71
9:00 to 10:00 0.87 0.87 0.93 0.63
10:00 to 11:00 0.87 0.65 0.97 0.20
11:00 to 12:00 0.64 1.33 0.82 0.81
12:00 to 13:00 0.67 0.96 0.70 0.79

calibration of weather radar rainfall estimation is that there exists usually a very
limited number of raingauge observations to train the network. For example,
in this study, there are only 15 raingauge observations available for training. It
is thus a waste of valuable information to train the network with a part of the
database. Bayesian optimization in the artificial neural network offers an inter-
esting alternative to the standard approach. Since it does not need a testing set
nor a validating set, all available raingauge observations can be used for training
(MacKay, 1995). The objective function parameters in equation (3.1) control
the complexity of the model. These parameters have been already optimized by
applying the Bayes’ theorem, which gives a probabilistic interpretation to the
model.

The Levenberg-Marquardt algorithm using Bayesian regularization offers im-
portant advantages over the other interpolation schemes for the post-calibration
of weather radar rainfall estimation:
•: This algorithm does not necessarily force the radar image to fit the raingauge
observations. The algorithm optimizes the network parameters according to the
statistical approach and searches a network response, which is a compromise
between the radar estimations and the raingauge observations. This means that
the algorithm does not necessarily consider raingauges ground truth.
•: Bayesian regularization provides a probabilistic model to improve the general-
ization performance of neural networks. Under assumption of normal distribution
for network’s weights, Bayesian regularization optimises weight decay rates and
the neural network produces smooth predicted values for weights.
•: Training and interpolation results can be obtained within just a few seconds
using an ordinary personal computer, which is incomparably faster than most in-
terpolation methods, cokriging in particular. Therefore, the algorithm is suitable
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for real-time post-calibration.
It is proposed that the proposed artificial neural network may be used as

a general data integration and data calibration tool. Tests with other type of
database are envisaged.

6. Conclusion

We have tested various artificial neural networks, namely multilayer feedfor-
ward networks and radial basis functions networks, for the post-calibration of
weather radar rainfall estimation. The process of combining raingauge observa-
tions and radar estimations has been performed for hourly accumulation. Ex-
cept for Levenberg-Marquardt using Bayesian regularization training algorithm,
all the other feedforward neural network algorithms presented in this paper re-
quired reinitializing and retraining several times to determine the best results.
The radial basis functions networks gave poor results because of data sparse-
ness. Results showed that the Levenberg-Marquardt algorithm using Bayesian
regularization is robust and reliable for radar-raingauges data integration. This
algorithm prevented over fitting the training data set by applying Bayes’ theo-
rem, so no testing set or validating set is necessary and all available data can be
used for training. Additional tests on several radar images have demonstrated the
Levenberg-Marquardt algorithm using Bayesian regularization capability to gen-
eralize new situations. It is believed that the proposed artificial neural network
may be used as a general data integration and data calibration.
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