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Abstract: This paper introduces a visualization technique, SEER, devel-
oped for policy makers and researchers to graphically analyze and explore
massive amounts of categorical data collected in longitudinal surveys. This
technique (a) produces panels of graphs for multiple group analysis, where
the groups do not have to be mutually exclusive, (b) profiles change pat-
terns observed in longitudinal data, and (c) clusters data into groups to
enable policy makers or researchers to observe the factors associated with
the changing patterns. This paper also includes the hash function, of the
SEER method, expressed in matrix notation for it to be implemented across
computer packages. The SEER technique is illustrated by using a national
survey, the Survey of Doctorate Recipients (SDR), administered by the Na-
tional Science Foundation (NSF). Occupational changes and career paths
for a panel sample of 14,901 doctorate recipients are profiled and discussed.
Results indicated that doctorate recipients in some science and engineering
fields are roughly two times more likely to work in an occupation when it is
the discipline in which they received their doctorates.

Key words: Categorical data, data augmentation, graphics, hashing, longi-
tudinal data, Survey of Doctorate Recipients (SDR), visualization.

1. Introduction

Data visualization is a type of graphical tools used for understanding abstract
relationships among variables. It is frequently used to help interpret the mean-
ing of data collected for scientific purposes in many disciplines such as biology,
data mining, digital imaging, educational testing, finance, healthcare and medi-
cal research, market research, software engineering, statistics, telephone network
analysis, cognitive psychology, and survey analysis. Graphical methods compen-
sate for the limits of traditional statistical techniques by displaying massive data
points in one or multiple graphs such that its global patterns can be compre-
hended while several levels of detail can be revealed (Tukey, 1993; Tufte, 1983;
Wilkinson, 1999). Data visualization techniques can also be very useful for so-
cial and behavior sciences, particularly when categorical data have been collected
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in longitudinal research (hereafter, multidimensional data). Recently, many re-
searchers have developed techniques and frameworks for general graphical dis-
plays (e.g., Carey, 2002; Chen, 1999; Friendly, 1992; Ligges, 2002; McCulloch
and Barnard, 2002; Narasimhan, 2002; Swayne and Lane, 2002; Unwin, 2002).
However, displaying categorical data remains a challenge, especially for data with
many categories. This is because, as is discussed in research by Blasius (1998),
Hofmann (2000), and Friendly (1992, 2000, and 2002), each category in categor-
ical data can be represented as a dimension and, frequently, high-dimensional
data can be hard to depict on paper or on computer screens. In this paper, we
first discuss the specific challenges faced by survey analysts in displaying multi-
dimensional data. We then propose a method followed by an illustrated example
using an occupational survey.

1.1 Longitudinal and categorical data

Longitudinal data refers to information collected over time. A special case of
longitudinal data is panel data, which are obtained by surveying the same group
of people over multiple occasions. The goal of panel data is to prevent historical
events from introducing rival explanations to the survey data, thus establishing
a stronger cause-effect relationship for phenomena of interest. The Survey of
Doctorate Recipients (SDR) is one example of a panel study.

The SDR, managed by the National Science Foundation (NSF), is designed to
“. . . provide demographic and career history information about individuals with
doctoral degrees. The results of this survey are vital for educational planners
within the Federal Government and in academia (NSF, 2003).” Also, employers
in a variety of sectors (education, industry, and the government) may use the
results to (a) understand and predict trends in employment opportunities and in
salaries for doctorate holders in science and engineering, and (b) evaluate the ef-
fectiveness of equal opportunity efforts. Every two years, over 30,000 respondents
are surveyed for the SDR. A considerable number of respondents are surveyed
repeatedly (Chiu and Fecso, 2003). This type of panel data can answer questions
of interest to policy makers in the federal government and academia such as: How
do the occupation(s) of doctorate recipients change over time? To what extent
are the fields of education (doctorate degrees) related to occupations? Such ques-
tions are difficult to answer using traditional numerical methods because of the
excessive number of possible career paths one can follow (e.g., there are 10 billion
possible career paths assuming a person is surveyed once a year for five years
(1005). Friendly (2002) provides a succinct summary of the milestones in the his-
tory of data visualization and points out that a milestone for this decade is the
development t of methodologies for displaying high-dimensional and categorical
data.
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For ease of display, some methods are designed to reduce the number of di-
mensions in data (e.g., Li, 2002; Yin and Cook, 2002). These methods are most
appropriate when a few major dimensions dominate the data. However, these
techniques become less appropriate in instances where all of the dimensions are
equally important or when every one of the dimensions has a substantive mean-
ing. Policy makers, researchers, and analysts of longitudinal data often encounter
nominal or categorical data (e.g. gender, occupational titles, discrete performance
levels), which cannot be displayed by traditional time-series plots with one axis
showing a time-dependent variable (e.g. month, quarter, and year) and a non-
categorical, continuous, or quantitative variable on the other axis (e.g. dollars,
weight, and height).

1.2 Occupational data

Visualization tools that can capture complex relationships for longitudinal
and categorical data are particularly in demand, as described by Syverson (1996),
who called for research methodologists to develop ways of tracking, visualizing,
and interpreting panel data in particular, the job change patterns for doctorate
recipients. Syverson stated:

“If any of you have really clever ways to follow career paths, we would
love to look at your survey, so that we can benefit from your experience
. . . how do you efficiently collect information on all of the possible
things that people do in 10 years, we don’t have a solution to this yet.
If someone in this group has a clever way to do that, a matrix or a
way to code this, we would love to see it and to use it.”

In light of the development of a graphical method to facilitate data analysis
for policy and decision making, we have developed a graphical method, SEER
(SEE Repeated data), which:

1. is a process-oriented and interpretable tool for fitting and displaying cate-
gorical data with a time-dependent variable;

2. enables multiple-group comparisons but does not require the multiple
groups to be mutually exclusive;

3. provide an efficient means for policy makers, analysts, and researchers to
visualize the trends in longitudinal data measured at the nominal level or higher;

4. stresses unique combinations of category;
5. is designed to show the dynamics of changes that occur among categories

in large complex data sets without requiring a colored plot;
6. does not require extensive knowledge in graphical techniques to understand

the context, and;
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7. is accompanied by matrix notations to enable its implementation to be
software-independent.

Graphical representations have a number of advantages over categorical repre-
sentations (tables). First, they provide a bird’s eye view of occupational change
over time for all job categories. Every pattern of occupation status is asso-
ciated with a trend that can be viewed with little effort. Second, it allows
cross-classifications – data points can be classified simultaneously in multiple
categories. For example, data for survey respondents with multiple concurrent
occupations (e.g., several part-time jobs) could be easily incorporated. When
survey respondents report that they have more than one primary occupation,
they are cross-classified and are listed as an employee in multiple occupations;
occupational categories are not mutually exclusive. Third, the graphical represen-
tation can capture massive amounts of data all at once. Indeed, we experimented
plotting 40,000 cases from a read data set using this approach. The resulting
two-dimension plot displayed a clear pattern. In addition, using the zooming
features (e.g., zoom in and out) available in many statistical packages (e.g., SAS
and SPSS) and a dynamic look-up table (which associates each data point with
additional information such as age), we were also able to apply the SEER method
interactively.

In the following sections, we first discuss the conceptual framework of the
SEER technique with an emphasis on the principles. Second, we provide an exam-
ple of how the SEER technique can be used by applying it to a longitudinal data
set with over three million sparsely filled cells (14,901 cases and 217 variables).
Although this example is not extremely large in size, it illustrates the capacity
of the SEER technique to display a large number of cases and dimensions. Last,
we summarize the technique and discuss its applications in educational testing
as well as in market research.

2. The SEER Technique

2.1 Single-case scenario

Assume that a longitudinal data set is analyzed and each case in the data set
is measured or observed four times (e.g., four survey years). Further assume that
the variable of interest is a categorical variable that can take on five values (e.g.,
1: computer and mathematical sciences, 2: life sciences, 3: physical sciences,
4: social sciences, and 5: engineering). In a hypothetical case where a person is
employed as a computer scientist in the first and last survey years but is employed
as an engineer in the middle two years, the person would have a categorical vector
of data reflecting the occupations reported in the four survey cycles: [1 5 5 1]. We
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use a hash function (Maurer and Lewis, 1975; Knuth, 1968, 1969, 1974), Equation
(2.1) below, to convert this vector into a binary vector with only zeros and ones.
This binary vector is then plotted in a scatterplot using symbols that are easy
for visualization — Cleveland (1993) studied the cognitive aspects of graphical
displays and found that, when using scatterplots for categorical data, it is much
easier to visually process some symbols (e.g., +, ◦, >,w) than others (e.g., easily
confused letters such as H, F, T, E). To this end, we used ‘o’ to represent a data
point in the scatterplot.

The variable s in Equation (2.1) is a spacing factor, which spaces out each
category so that the plot will not be too dense for visual interpretation and
examination. For example, assuming s = 3, we can apply Equation (2.1) to the
second data point (i.e., 5) of the vector [1 5 5 1]. Consequently, we can find that
it is in the 30th position of a 1 × 32 vector because f(5, 4, 3, 2) = 30.

d = f(c, n, s, t) = (c − 1) · (n + s) + t, (2.1)

where d is the index or cell position of a data point in the binary vector; c is the
value of a data point in the categorical vector; n is the number of observations
or the row size of the categorical matrix; t is the order of an observation, t =
1, 2, . . . , n; and s is a spacing constant, that is, the number of spaces separating
each group of nonempty cells in the binary vector.

2.2 Multiple-case scenario: Vector hash function

In practice, a data set frequently contains multiple cases as opposed to only
one case. It is useful to represent Equation (2.1) in matrix notation, which
can handle all observations simultaneously. To this end, we use a matrix X to
represent a data set for the n observations of the N cases. Each element in
matrix X can take on any discrete value between 1 and the maximum number of
categories in the data and, for this reason, X is a categorical matrix. We begin
with the following example. Let us assume we have a data matrix

X =




1 5 5 1
2 4 4 3
3 4 3 6




where we have N = 3 cases, each with n = 4 observations, and each observation
has at most 6 possible values:

X1 = (1,5, 5, 1)
X2 = (2, 4, 4, 3)
X3 = (3, 4, 3, 6)
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Now assume that we would insert three spaces to spread out the visual display,
s = 3, and we would need a 39-bit row vector of 0/1 to represent each Xi, i =
1, 2, . . . , N . The final 3 by 39 “binary matrix” is of the form

D1 = (1001 0000 0000 0000 0110 0000)
D2 = (0000 1000 0001 0110 0000 0000)
D3 = (0000 0000 1010 0100 0000 0001)

Note that the bold faced data point 5 in X1 corresponds to the bold-faced data
point 1 in D1. This is obvious because the value (c = 5) of the data point 5
suggests that the data point be stored in the fifth block of D1 and the position
of the data point (t = 2) suggests that a 1 be put in the second position of the
fifth block. We can see that the second position of the fifth block is equivalent to
the 30th position of D1 by using Equation (2.1) as shown in section 2.1. Indeed,
what we did in the conversion process is the correspondence

X = (X1,X2, . . . ,XN )T ⇐⇒ D = (D1,D2, . . . ,DN )T

or, in a simpler form,

Xi ⇐⇒ Di, i = 1, 2, . . . , N

treating Di as a 1 by 39 (= 6 categories ×4 observations +5 blocks ×3 spaces
each block) row vector.

Unlike the single case scenario, the multiple-case scenario has more than one
case and thus a hash function is also needed to determine the positions of data
points along the y-axis. Specifically, each row in X and in D represents a row in a
scatterplot and thus the vertical positions are determined by Yi = (1, 2, . . . , N)T .

Conceptually, the above paragraphs show a procedure to help determine the
position of a categorical data point in a two-dimensional space. With this pro-
cedure, we know that we can place X1 = (1, 5, 5, 1) and X2 = (2, 4, 4, 3) in a
scatterplot at the following locations, where the x- and y-coordinates for the
four observations in X1 and X1 are, respectively, [(1, 1), (1, 30), (1, 31), (1, 4)] and
[(2, 8), (2, 23), (2, 24), (2, 18)]. Essentially, what we have accomplished above is
to convert the categorical matrix into a binary sparse matrix (Gilbert, Moler,
and Schreiber, 1992). The Appendix shows the corresponding matrix notation
to implement the conversion process in one step, given a categorical data matrix
X.

3. Applications: Large-scale survey analysis

3.1 Overview and survey respondents
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A panel sample of 14,901 advanced degree holders was obtained from the
longitudinal survey, Survey of Doctorate Recipients (SDR). The survey was ad-
ministered biennially. All respondents in the selected sample (a) were under the
age 76 in 1999, (b) received at least one research doctorate in science or engineer-
ing from a U.S. institution in or prior to 1990, and (c) were residing in the United
States on April 15 in four survey years analyzed in the current study (1993, 1995,
1997, and 1999); and (d) were employed in at least one of the four survey years.
The panel of 14,901 respondents represented a population of over half a million
doctoral degree holders in the United States. For employment research purposes,
the occupational titles of the SDR respondents were recorded every two years us-
ing a standardized list of approximately 126 occupations. The occupational titles
were coded as a categorical variable (e.g., “052” represents Computer System An-
alysts). These occupations were grouped into six major categories, namely com-
puter and mathematical sciences, life and related sciences, physical and related
sciences, social and related sciences, engineering, and non science and engineer-
ing. Using the SEER technique, we addressed two substantive research questions.

(1) What is the relationship between educational fields and occupations, or to
what extent do Ph.D.s work in disciplines in which they received their doctorates?

(2) What are the job switching patterns for Ph.D.s who were employed in the
computer and mathematical sciences?

Having applied the SEER display technique, we created 56 displays to address
the above questions. Figure 1 provides a top-down view of the organization of
the 56 displays, which are organized into four sets. The first and second sets or
examples (a and b) show the unsorted and the sorted SEER displays respectively
(the order of sorting is annotated in the figure). Both examples depict all 14,901
respondents employed in the six occupations. The unsorted display (example
a) offers a global view of the data whereas the sorted display (example b) pro-
vides a more in-depth understanding of the data — it organizes the respondents
of the same education field into a group. Also, it further investigates reasons
that the respondents did not report their occupations. This is accomplished by
breaking down the “logical skip” category into three groups, those who (a) did
not respond to the survey, (b) were promoted to become managers, and (c) were
retired. Within each of the nine categories, we assigned a mark in an occupation
if a respondent was employed in that occupation. The position of the mark cor-
responds to the year in which the employment occurred. The mark for the most
recent employment (1999) is placed in the far left position and the least recent
(1993) in the far right position. Also, to enhance the display, we inserted 20
spaces in between two categories. As a result, we obtain a sparsely-filled binary
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Years (1999, 97, 95, 93)
Occupations (9 categories)

1 Comp & Math Sci
2 Life & Related Sci
3 Phy. & Related Sci
4 Social & Related Sci
5 Engineering

Years (1999, 97, 95, 93)
Occupations (9 categories)

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4

5 5 5 5 5 5 5 5 5

Annotations:

a. Unsorted Example 1 graph

ca
se

s

    (no grouping variable)

    (methods used: transform)
    (categorical variable: occupations)

Unsorted
Data

Row Order:

    (methods used: transform, concatenate, sort, and select)

c. Multiple Group Example 9 graphs

b. Sorted Example 1 graph

ed
uc

at
io

na
l f

ie
ld

s

ca
se

s

    (categorical variable: occupations)
    (one grouping variable: occupations, 9 groups)

    (methods used: transform, concatenate, sort, and select)

    (one grouping variable: educational fields, 5 groups)

d. Multiple Group Example 45 graphs
    (two grouping variables)

    (methods used: transform, concatenate, and sort)
    (categorical variable: occupations)

    (occupations, 9 groups; educational fields, 5 groups)
    (categorical variable: occupations)

     Assume that the categorical data set is collected and stored in a flat file, a table, or a matrix. Our goal is to create a graphical display so that massive data can 
be interpreted easily. The above examples (a through d) show the symbolic representation of the four sets of SEER graphical display. The displays are results of 
applying different combinations of the four methods to the categorical data set. The four methods are transform, concatenate, sort, and select. To transform is to 
convert categorical data into binary data using equations (1) through (3). To concatenate is to attach a vector or a variable, side by side, to a matrix. To sort a 
data matrix is to arrange the rows of a matrix according to the values of a sorting variable. To select is to extract a subset of data for specific analysis. Since the 
concatenate, sort, and select methods are standard procedures in many data analysis packages, they are not discussed in detail here.

     For example, transform creates a single display shown in example a. The transform, concatenate, and sort methods together create another display shown in 
example b. For various purposes (e.g., ease of display and printing), the select method divides up the large display shown in example b into multiple smaller 
displays (example c). There are as many smaller displays as the numbr of categories in the grouping variable (nc = 9). Indeed, the select method can be applied 
multiple times to further divide up a set of displays into smaller subsets (example d). There are nc1 x nc2 displays when we use two grouping variables with each 
having nc1 and nc2 number of categories, respectively. A concrete example epitomizes the conceptual framework of the SEER technique, in the context of a 
longitudinal survey (see the rest of this section).

Figure 1: A road map of the SEER displays for career paths of doctorate
recipients in science and engineering

matrix depicted in example b. It has a size 14, 901 × 196, because there were
14,901 cases and 196 binary variables (i.e., 4 years ×9 categories +20 spaces ×8
blocks of spaces).

3.2 Occupations and education: An overview

In Figure 1 (example a), the order of the rows in the binary matrix is intrinsic
to the order by which the respondents were surveyed. Thus, it does not show
any distinctive patterns. This limitation is improved in example b, where the
rows are grouped by educational fields in ascending order, from top to bottom.
Figure 2 below shows the SEER display with operational data corresponding to
example b in Figure 1. As shown, doctorate recipients with a degree in computer
and mathematical sciences are the first group (positioned in the top portion) of
the binary matrix; those graduated from life and related sciences come second;
physical and related sciences graduates are next, followed by graduates of social
and related sciences. Engineering graduates are positioned at the bottom of the
graph.
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Figure 2: Relationship between occupations and educational fields

Three obvious patterns emerge in the Figure 2. First, a diagonally dominant
pattern suggests that many graduates from each of the five S&E disciplines have
been employed in occupations related to their doctoral field for multiple years,
while the off-diagonal points indicate the cases where respondents report switch-
ing to other occupational disciplines. Second, the dense column labeled “non
S&E” on the right side of the figure suggests that a noticeable number respon-
dents with of S&E doctorates have worked in what NSF classifies as non-science
and engineering disciplines for a good portion of their career — assuming that
one biennial report reflects a stable occupation until the next report. Third, the
dense column labeled “logical skips” indicates that every one of the five educa-
tional fields includes doctorate recipients whose occupations were not recorded
due to the noticeable logical skips (see section 3.1 for definitions). Since the
number of logical skips was noticeable, we further investigated why respondents
did not report their occupations. This was accomplished by separating those
who skipped with known reasons (NSF did not require retirees and managers to
report their occupations and hence they skipped the occupational question) from
those who skipped for unknown reasons. As a result of this separation, we added
two categories “retirees” and ”managers” to the subsequent plots.
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3.3 Computer and mathematical scientists: Occupations

To further our understanding of occupational change patterns, we used a
sorting scheme to aid the interpretation of data. Below, we first describe the
sorting scheme and discuss the visual display of occupational change patterns for
doctorate recipients in computer and mathematical sciences.

A set of binary data with n observations has 2n −1 unique switching patterns
(e.g., four measurements yields 15 patterns, because 24 − 1 equals 15). We as-
signed each one of the patterns a numerical value from 1 through 15 to create a
sorting scheme, which was subsequently used to sort the rows of the data matrix
in ascending order. Since each profession was surveyed four times in an eight-year
interval, we used a sorting mechanism to identify those who switch, enter, exit,
or return to an occupation. To accomplish this goal, we classified the switching
pattern to correspond with the four types of occupational change as follows:

1. Switch: respondents who were in-and-out of an occupation and were em-
ployed elsewhere in the last survey, 1999;

2. Exit: respondents who left an occupation and never returned;

3. Enter: respondents who stayed in an occupation once they were employed
in the occupation;

4. Return: respondents who were ever employed in an occupation, left, re-
turned, and stayed in the occupation till the end of the longitudinal survey
years.

We assigned the 15 unique switching patterns (see table below) to one of the
four groups described above. These corresponding data are displayed in Figure
3.

While Figure 2 provides an overview of the relationship between educational
fields and occupation, it does not show the dynamics (influx and outflow) of
occupational changes, which are frequently of interest to policy makers. To do
this, we created nine graphs to capture career paths. Specifically, we plotted
a graph for each category of the occupations (i.e., six for the S&E and non
S&E occupations, one for logical skips, one for managers, and one for retirees).
Because of space limitations, we show only the career patterns of computer and
mathematical scientists (the first discipline). In the grand scheme of plots, Figure
3 corresponds to the first plot of example c in Figure 1.
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Switching Patterns
Acronyms 1999 1997 1995 1993 Sorting key (v)

Switch 1 1
S Switch 1 2

Switch 1 1 3
Switch 1 1 4

Exit 1 5
E Exit 1 1 6

Exit 1 1 1 7

Enter 1 8
E Enter 1 1 9

Enter 1 1 1 10
Enter 1 1 1 1 11

Return 1 1 12
R Return 1 1 13

Return 1 1 1 14
Return 1 1 1 15

Note: Each row can be considered as a row vector with four cells. To contrast
the visual effect, we did not place zeros in the table. However, one can fill in
the empty cells by zeros.

The above SEER plot indicates that the Survey of Doctorate Recipients
(SDR) sample has approximately 1,500 doctorate recipients who were ever em-
ployed in the computer and mathematical sciences discipline between the 1993
and 1999 survey years. These Ph.D.s were classified into four groups (switch, exit,
enter, and return) based on changes in their job titles, major responsibilities, and
employers. The SEER display also depicts the extent to which any particular
occupational grouping attracts or supplies professionals to computer and mathe-
matical sciences occupations. For example, looking across the SEER plot for the
group classified as “enter,” the relatively dense clusters tend to associate with
engineering, non S&E disciplines (physical and related sciences), and manage-
rial positions. Conversely, relatively few respondents entered the computer and
mathematical sciences profession from life and related sciences, nor from social
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Figure 3: Occupational change patterns for computer and mathematical scientists

and related sciences. In addition, as expected, it is rare for a nonworking retiree to
reenter (denoted “enter” in the plot) the workforce in computer and mathematical
sciences (see the last column block in Figure 3). Also, looking across the group
“exit,” a noticeable number of respondents either retired or became managers,
which, according to the SDR classification, include individuals managing in a
computer and mathematics setting.

3.4 Computer and mathematical scientists: Education and occupation

What is the relationship between education and occupations for computer and
mathematical scientists? Using a second grouping variable, “educational fields”
(the first is “occupation”), we further divided up the cases displayed in Figure
3 into five smaller graphs. Each of the resulting five figures contains data for
respondents holding doctorates in a specific field (see Figure 4). For example,
Figure 4 shows the career paths for computer and mathematical scientists who
held doctorates in computer and mathematical sciences; whereas Figure 5 shows
the career paths for computer and mathematical scientists with doctorates in
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Figure 4: Same occupation and education (approximately 800 respondents)

engineering and related sciences. As indicated by the callout labels in Figure
4 and Figure 5, those with a doctorate in computer and mathematical sciences
are much more likely to stay in computer and mathematical sciences for all four
survey years. For example, over 60% of doctorates in computer and mathematical
sciences stayed in that field, whereas only about 25% of engineering doctorate
stayed. This finding indicates a positive relationship between education and the
workforce. From a methodological viewpoint, the findings in the two figures (4
and 5) illustrate how a large SEER plot (Figure 2) in conjunction with smaller
plots (Figure 4 and Figure 5) to view relationships in categorical data with many
dimensions.

As discussed earlier, it is impossible to see these relationships by examining
only the overall SEER plot (Figure 2) or the occupational display (Figure 3).
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Figure 5: Occupation different from education (approximately 250 respondents)

4. Conclusion and Discussion

Frequently, researchers in social, behavioral, economical, psychometrical, and
marketing sciences need a tool for exploring the patterns in longitudinal survey
data with nominal scales. To this end, we developed the SEER technique, which
can display massive amounts of categorical data all at once. The technique is
equipped with a feature to create a panel of visual displays suitable for presenting
data with a large number of categories (over 100 categories). This feature is
especially useful when one graph is not capable of displaying all variables. In
addition, the SEER technique can summarize cross-classified longitudinal data
(i.e., a data point has multiple group memberships such as occupations).
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Having applied the SEER method in a national sample, we visually found that
(a) a considerable number of doctorate recipients in science and engineering tend
to work in their degree field (see Figure 2), and (b) in some disciplines, such as
computer and mathematical sciences, doctorate recipients are much more likely
(approximately two times as likely) to work in their discipline when their degree
field matches their occupation (see Figure 4).

Designed as a companion for numerical methods, the SEER technique empow-
ers researchers to visually explore the data that can be clustered in a meaningful
way to address specific research interests. Indeed, it is flexible enough that one
can implement the method as a Multidimensional Online Analytical Processing
tool (MOLAP) for data explorations. In this paper, we have described the tech-
nique with matrix notations and illustrated the features of the SEER technique
through a concrete example. This example used data collected for a longitudi-
nal survey — the Survey of Doctorate Recipients (SDR)— administered by the
National Science Foundation (NSF). In order to limit the size of our chapter,
we presented only the four most important displays of the 56 SEER plots to ex-
amine doctorate recipients’ career paths and their transitions between education
and the workforce.

Despite the fact our example used survey data to demonstrate the SEER
technique, one can apply the technique to virtually any categorical data with
repeat measures. For instance, it can be used (a) in market research to deter-
mine customers’ buying preferences, over time, among different products, and
(b) in national testing programs such as the National Educational Assessment
of Progress (NAEP or the national report cards) to understand students’ per-
formance and to provide diagnostic information for elementary and high school
students, and last but not least (c) in high-stake examinations such as the Law
School Admission Test (LSAT) to detect irregular test scores for repeat test tak-
ers (Chiu and Fecso, 2002). We can provide only a succinct outline in this paper;
we cannot describe each and every one of the applications due to space limits.
In addition to categorical data, the SEER method can also be applied to display
continuous data such as test scores. This is feasible because one can consider
continuous data as a special case of categorical data when continuous data are
divided into fine intervals.

The question arises regarding overplotting or screen resolution as a possible
barrier to the SEER method, because one may question how the SEER method
shows, for example, 14,901 rows on a screen with less than 1,000 rows of pixels.
We view this as more of a computer hardware challenge, which can be overcome
by subdividing a large plot into smaller ones. Indeed, we have shown in the
current study how one can use smaller SEER plots as supplements to a large
SEER plot when finding and verifying associations among categorical data (see
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Section 3).
In this study, we discussed issues related to displaying categorical data in

longitudinal surveys. Frequently, it is a challenge to present high-dimensional
categorical data in a systematic way while keeping all the desired properties
discussed in section 1.2. Just like one might perceive that Trellis plots (Becker,
et al., 1996) to be a special case of Mosaic plots for categorical data (Friendly,
1999; Hofmann, 2000), we can probably view the SEER method as a special case
of other graphical methods and vice versa. The major contribution of the current
study is that we developed a one-step function to convert a large number of data
points from a multidimensional space to a two-dimensional space. The conversion
process is independent of the size of the data set and thus is efficient.

Graphical displays or visualization techniques are companions for numeri-
cal and statistical methods. Future research should focus on the connections
between the SEER technique and other numerical methods such as survival func-
tions (Ureta, 1992), stability analysis and generalizability theory (Brennan, 2001;
Chiu, 2001), and logistic regression (Hosmer and Lemeshow, 2000), to name but
a few. Indeed, when combined with the generalizability theory (Brennan, 2001;
Cronbach et al., 1972), the SEER technique provides a powerful methodology for
quickly grasping complex interrelationships, while capturing the exact informa-
tion that is more precisely presented in numerical methods. One example of such
a combination is the detection of errors when human judgments are involved in
survey analysis or educational testing (e.g., computer aided telephone interviews
and human scoring essays in large-scale testing programs).
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Appendix: Matrix Implementation of the Hash Function for Multiple
Cases

Equation (2.1) in section 2.1 shows the mathematical form of the hash func-
tion, for a single case, used in the SEER method. Frequently, researchers have
data from multiple cases and they may wish to have a computational form for im-
plementing the method in one step, given the categorical data matrix X. For this
purpose, we present the matrix notation in equation (A.1), which determines the
horizontal location (x-coordinates) of all data points in X. In general, the equa-
tion has a linear form ox = kx + b where x and b are vectors for intermediate
computations and k is a scaling constant (i.e., x is a vectorized form of the data
matrix X and b is a shifting vector). More generally, kx represents a between-
category shifting factor and b a within-category shifting factor for the location
of the categorical data.

ox = fx(X, N, n, s) = (n + s) · ([x′
1,x

′
2, . . . ,x

′
n, ] − 1) + [1

′
N ,2

′
N , . . . ,n

′
N , ] (A.1)

where ox is an nN×1 vector of indicies, repressenting the hroizontal locations; X
is a N ×n matrix, representing all observations for all data points in a categorical
matrix; xj is a N × 1 vector, representing the data point for the j-th observation
(j = 1, 2, . . . , N); and kN is an N × 1 vector with k in each cell (k = 1, 2, . . . , n).

Equation (A.2) shows the vectorized hash function for the y-coordinates.

oy = fy(X, N, n) = 1n ⊗ [1N ] (A.2)

where oy is a nN×1 dummy vector, representing the y-coordinate of aqll measure-
ments for all data points; 1n is an n× 1 vector with 1 in each cell; and [1]N is an
N ×1 vector with a set of consecutive numbers: 1, 2, . . . , N , e.g., [1]3 = (1, 2, 3)T ;
and ⊗ is the Kronecker product.
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