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Abstract: Frailty models have become popular in survival analysis for deal-
ing with situations where groups of observations are correlated. If the data
comprise only exact or right-censored failure times, inference can be done
by either integrating out the frailties directly or by using the EM algorithm.
If there is both left- and right-censoring this is no longer the case. How-
ever the MCMC method of Clayton (1991, Biometrics 47, 467-485) can be
easily extended by imputation of the left-censored times. Several schemes
for doing this are suggested and compared. Application of the methods is
illustrated using data on the joint failures of patients with fibrodysplasia
ossificans progressiva.
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1. Introduction

The usual aim of survival analysis is to examine the effect of covariate infor-
mation, such as the application of a medical treatment, on time-to-event data.
Sometimes the actual distribution of the event time, as characterized by the
baseline survival function or the hazard rate, is of interest too. It is common
for some observed times to be right-censored, for example when a patient drops
out of a medical trial, so that the true event time T is known only to be greater
than an observed time t. Occasionally left-censoring occurs, when we only know
that T < t. Data are said to be double-censored when both kinds of censoring
are present. An additional complication arises when the observations are not
independent, for example when repeated observations are made on a single sub-
ject or on subjects in the same family. A frailty model attempts a parametric
model of this within-group dependence by postulating a group-specific parame-
ter, a “frailty”, to account for each group’s particular susceptibility to new events
(Clayton, 1978; Vaupel, Manton and Stallard, 1979; Oakes, 1982; Clayton and
Cuzick, 1985; Aalen, 1988). The group here may be a set of repeated failure
times of a single subject, or single failure times of individuals who are related in
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some way. It is usual to assume a proportional hazards model, taking the hazard
rate for the jth failure in group i to be of the form

hij(t) = zih0j(t) = euih0j(t)

where h0j(t) is a baseline hazard whose dependence on j might be expressible in
terms of measured covariates (h0j(t) = h0(t)eβ′xj ), or may be non-parametric (as
in the case where each j repesents a different type of event), or a combination
of both. See the next section for an example. The role of the frailty zi, or
“log-frailty” ui = log zi, is thus to modify the hazard rate for the ith group, so
that groups with higher frailties have a proportionally higher risk of failure. The
frailty is regarded as a random effect. More complicated hierarchical structures
can be modelled, but these are not discussed here.

The frailties are usually assumed to come from a “frailty distribution” f(z)
belonging to some parametric family of distributions, for example the gamma or
lognormal. For identifiability the mean frailty is fixed at 1, or the log-frailty at
0, so that the baseline hazard represents the average subject. The variance of
this distribution represents how much frailty varies within the population, and
may be of practical interest. A common choice for the frailty distribution is the
gamma distribution with mean 1 (Clayton and Cuzick, 1985a) with density:

νν

Γ(ν)
zν−1
i e−νzi

where ν determines the frailty variance. This gamma family is convenient for
estimation when all failure times tij are either observed or right-censored, because
of the form of the likelihood conditional on the zi:

Lc =
∏

i

∏
j

[zih0j(tij)]δij e−ziH0j

where H0j is the cumulative hazard and δij the usual censoring indicator (0 for
right-censored and 1 for uncensored). Each of the frailties zi can be explicitly
integrated out of this expression with respect to the above gamma densities to
give the observable log-likelihod. If a parametric form is assumed for the base-
line survival function(s), inference concerning these parameters and the frailty
parameter ν can be based on direct maximization of this observed log-likelihood.
Alternatively the zi can be regarded as missing or unobserved data and we can
use the EM algorithm based on the “complete data” likelihood:

Lc =
∏

i

∏
j

[zih0j(tij)]δij e−ziH0j
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zν−1
i e−νzi



MCMC for Frailty Models with Double Censoring 35

The frailties zi enter linearly into that part of the log-likelihood which depends
on the regression and gamma parameters, and the conditional expectation of
each zi is also easy to calculate because its full conditional distribution is also
gamma. Thus the E-step is very straightforward. There are a number of alter-
native schemes for implementing the M-step (Clayton and Cuzick, 1985b; Klein,
1992; Nielsen, Gill, Andersen and Sorenson, 1992).

When some observations are left-censored, this intoduces into the likelihood
terms of the form (1− e−ziH0j(tij)), so that the conjugacy with the gamma frailty
model is lost, and so is the linearity in the complete-data log-likelihood. Thus
the usual approaches to inference outlined above cannot be applied.

One alternative approach is penalized likelihood (McGilchrist and Aisbett,
1991; McGilchrist, 1993; Therneau, Grambsch and, Pankratz, 2000), treating the
frailty densities in the complete-data log-likelihood above as penalty terms, and
maximisng over the frailties rather than integrating them out. If a parametric
model is assumed for the survival functions this method can be applied even with
doubly-censored data (Jones and Rocke, 2002), although the properties of the
estimates are uncertain. The semi-parameric Cox form of the model cannot be
applied because there is no partial likelihood function for doubly-censored data.

Another alternative is to use Markov chain Monte Carlo (MCMC) methods,
in which each of the parameters in the model is iteratively resampled using its
conditional density given the current values of other parameters. It is helpful
to visualize the parameters as nodes in a network. We visit each node in turn
and resample its value by making a random drawing from its conditional distri-
bution given the data and the values of all the other nodes. For an elementary
introduction see Gilks, Richardson and Spiegelhalter (1996). This produces a
Markov Chain which, when converged, gives us a sample from the full poste-
rior distribution of any parameters of interest. From a theoretical perspective,
this implies a Bayesain approach to inference. However in practice it has much
in common with the marginal likelihood approach of integrating out nuisance
parameters, particularly if non-informative priors are used. Again several alter-
native schemes are possible. Clayton (1991) uses Gibbs sampling to fit frailty
models to clustered failure data with exact or right-censored observations, sam-
pling iteratively from the full conditional distributions of H0j, β, z and ν with
H0j as an independent-increments gamma process (Kalbfleisch, 1978). Sargent
(1998) avoids the difficulty of modelling and sampling from H0j by using the Cox
partial likelihood. He recommends using Metropolis-Hastings steps except when
exact conjugacy is available.

To extend either of these approaches to more complicated censoring schemes,
it is natural to consider the imputation of censored data as an additional step
in the MCMC sampling scheme, since the censored values can be regarded as
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additional nodes in the network and resampled from their full conditionals in the
same way as the model parameters. Since right-censored data can already be
handled it is sufficient to apply this only to left- or interval-censored values. Two
imputation schemes have been proposed, by Satten (1996) and Satten, Datta and
Williamson (1998), for frailty-less models with grouped or interval-censored data.
In the first a Gibbs sampling scheme is used to generate rankings consistent with
the data and covariate values, by choosing a convenient parametric model from
the proportional hazards family. Because only the ranks are considered the distri-
bution will not depend on the baseline hazard function. The generated rankings
are then used in a stochastic approximation scheme to maximize the marginal
likelihood based on the ranks. Satten, Datta and Williamson (1998) propose an
alternative imputation scheme in which actual failure times are generated from
an assumed parametric model, after which the imputed times are ranked and a
rank-based procedure is used to estimate covariate effects. They suggest that this
method is robust to mis-specification of the baseline distribution and has several
advantages over the rank-imputation method. We adopt their second approach
below.

In this paper we investigate and compare a number of different methods for
imputing left- and interval-censored failure times, within an MCMC procedure
for fitting a frailty model. For illustration purposes we use data on the use of
accutane for treatment of fibrodysplasia ossificans progressiva (Zasloff, Rocke,
Crofford, Gregory and Kaplan, 1998). The first method, following Satten, Datta
and Williamson (1998), uses a parametric model to impute the failure times
conditional upon the frailties and other parameters, then a rank-based procedure
to generate new frailty and parameter values. The second is based on Clayton’s
(1991) scheme and imputes failure times from a Nelson-Aalen type estimate of the
current H0j. This method places all imputed times as equal to one of the observed
times, so requires some uncensored observations. The third uses a smoothed
estimate of the current H0j . These are compared with a fully-parametric model,
which also requires MCMC estimation.

2. Example

Fibrodysplasia ossificans progressiva (FOP) is an extremely rare and disabling
genetic disorder characterized by progressive heterotopic ossification of soft tis-
sues. Fibrous nodules appear in soft connective tissues and herald impending
ossification at an anatomic site. Nodules mature to form permanent foci of het-
erotopic bone that bridge and immobilize adjacent joints. In a clinical study
reported by Zasloff, Rocke, Crofford, Gregory and Kaplan (1998), twenty-one
FOP patients underwent treatment with the drug accutane for varying periods.
The status of each of eleven joints per patient before, during and after treatment
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was to be compared with data from an external control group of 40 patients, pre-
viously analyzed by Rocke, Zasloff, Peeper, Cohen and Kaplan (1994), to assess
the efficacy of accutane treatment. There is both right- and left-censoring in each
group, and the treatment covariate is time-dependent. For more detail see Jones
and Rocke (2002).

To allow for within-patient correlation, we can model the hazard rate for the
jth joint of the ith patient at age t as

hij(t) = τi(t)zih0j(t)

where

τi(t) =
{

τ if receiving accutane (t > ti)
1 otherwise

Here ti is the age of patient i when treatment commenced and τ is the proportional
reduction in hazard from using accutane. For patients in the control group τ ≡ 1.
The cumulative hazard is then

Hij(t) =
{

ziH0j(t) if t ≤ ti
τziH0j(t) + (1 − τ)ziH0j(ti) otherwise

(2.1)

The contribution to the log-likelihood of an observed age tij for the jth joint of
the ith patient will be

�ij =




−Hij(tij) if right-censored
log hij(tij) − Hij(tij) if uncensored
log(1 − e−Hij(tij )) if left-censored

(2.2)

Where joints are in right-left pairs, it seems reasonable to assume that the hazard
function is the same for each side; we can thus pool the data for right and left
sides, allowing two observations per patient per joint, and these are assumed to be
conditionaly independent given the frailties. This reduces the number of hazard
functions to j = 7. Table 1 summarizes the amount of data available for each
joint.

Rocke, Zasloff, Peeper, Cohen and Kaplan (1994) examined the marginal
distributions for the control group using both Weibull models and Turnbull’s
non-parametric estimator (Turnbull, 1974), and found that the Weibull model
gives results similar to the Turnbull estimates. One approach then is to take:

H0j(t) = e−(ρj t)κj

For the reasons given in the Introduction this model cannot be fitted directly
or using the EM algorithm, but inference using MCMC methods is reasonably
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Table 1: Numbers of censored and uncensored observations for each joint type.

Joint Uncensored Left-censored Right-censored
Neck 36 22 3
Spine 34 22 5
Jaw 25 7 29
Shoulder 67 43 12
Elbow 50 19 53
Hip 54 34 34
Knee 47 18 57

straightforward. The convenience of the gamma frailty distribution is lost, so we
consider instead a lognormal frailty distribution, ui = log zi ∼ N(0, σ2).

To perform an MCMC algorithm we can conveniently partition the model
parameters into the Weibull hazard parameters {(ρj , κj) : j = 1, . . . , 7}, the
log-frailties {ui : i = 1, . . . , 61}, the treatment effect τ and the frailty variance
σ2. The form of our model implies that the subject-specific parameters ui are
conditionally independent given all other parameters, as are the joint-specific
parameters (ρj , κj). This makes the implementation of the MCMC resampling
scheme easier, and ensures reasonably fast convergence. We now consider the
form of the full conditional distributions for each parameter set. To do this we
can just focus on those terms in the likelihood which contain the parameters of
interest, combining them with our chosen prior distributions. Here we have used
non-informative, or vague, priors for all parameters.

The log-likelihood for the Weibull parameters (ρj , κj) can be taken as

�(ρj , κj) =
∑

i

�ij

and with prior p(ρj, κj) the full conditional posterior density is proportional to
e�(ρj ,κj)p(ρj , κj). Even without left-censored data this does not have a convenient
form, but for a moderate number of observations per joint and with a vague prior
this can be reasonably accurately approximated by a normal distribution based
on the maximum likelihood estimates (ρ̂j , κ̂j). Thus to resample each (ρj , κj)
pair we can fit a Weibull distribution separately for each joint, then simulate
from a bivariate normal centred at the MLEs with covariance matrix taken from
the observed information matrix. An alternative would be to use Metropolis-
Hastings sampling or an adaptive rejection method (see Gilks, Richardson and
Spiegelhalter, 1996).
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For each frailty zi the (penalized) log-likelihood, conditional on the other pa-
rameters, is �(zi) =

∑
j �ij +log f(zi), where f(z) is the frailty distribution. From

equations (2.1) and (2.2) we can see that when there is no left-censoring, appro-
priate choice of f(zi) makes this the log of a gamma density, but the left-censoring
contributes terms of the form log(1 − e−ziH0j(tij )). Thus the posterior will not
have a simple form. Moreover the number of terms in the log-likelihood is small
(11 joints per patient) so the use of an asymptotic normal approximation is not
sufficiently accurate. Examination of the shape of the full conditional likelihood
functions, at typical values of the other parameters, reveals however that the log-
frailties ui do give an approximate normal shape, and that this approximation is
improved by using a lognormal frailty distribution, say ui ∼ N(0, σ2). To sample
ui from its full conditional posterior, we can use the rejection sampling approach
of Zeger and Karim (1991) with the majorizing function a rescaled normal den-
sity based on the MLE. Again adaptive rejection or Metropolis-Hastings could
be used instead.

Next consider the multiplicative treatment effect parameter τ . For these data
there were no left-censored times during treatment because patients were being
closely monitored, so the log-likelihood for τ has the form:

�(τ) = nft log(τ) − τ
∑

zi[H0j(tij) − H0j(ti)]

where nft is the total number of joints which failed during treatment (only two
in this case), ti is the age at which treatment commenced, and the summation is
over all joints which had not failed before the start of treatment. This has the
form of a gamma log-density. If we use the non-informative prior p(τ) ∝ 1/τ then
the full conditional distribution from which we resample τ will be Gamma(nft,∑

zi[H0j(tij) − H0j(ti)]).
Finally, to resample the frailty variance σ2, we note that the full conditional

likelihood is based on the current zi values of the 61 patients, so is proportional
to (σ2)−61/2e−

∑
z2
i /σ2

. If we take the usual vague prior p(σ2) ∝ 1/σ2 we find
that

∑
z2
i /σ2 ∼ χ2

61. This is well approximated by a normal distribution, so we
simulate from this normal distribution and then solve for σ2.

To summarize the algorithm:

1. Assign initial values to all parameters {(ρj , κj) : j = 1, . . . , 7}, {ui : i =
1, . . . , 61}, τ , σ2.

2. Fit Weibull distributions separately for each joint j, holding other param-
eter values fixed. Use the fitted values and their estimated covariances to
resample each (ρj , κj).

3. Fit the log-frailty ui separately for each subject i, holding other parameter
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values fixed. Use the fitted value and its estimated covariance in a proposal
distribution for resampling each zi by rejection sampling.

4. Resample τ from the Gamma(nft,
∑

zi[H0j(tij) − H0j(ti)], evaluated at
the current values of the other parameters.

5. Resample σ2 by dividing
∑

z2
i by a random drawing from a χ2

61 or N(61, 122)
distribution.

6. Output all parameter values of interest.

7. Repeat 2-6.

8. After establishing convergence of the chain, summarize the resulting poste-
rior distributions.

The above MCMC scheme was implemented in Fortran, with the results shown
in Table 2 (Weib column) in the next section. Convergence was assessed using the
CODA suite of programs (Best, Cowles and Vines, 1995). To facilitate compar-
ison between lognormal and gamma frailty distributions the lognormal variance
σ2 was converted to a coefficient of variation parameter.

We now consider relaxation of the assumption of Weibull survival functions.
This can be done by adding to the MCMC scheme an extra step in which the
left-censored data is imputed from the current values of the model parameters.

3. Imputation of Censored Data

We consider here three schemes, the first (PL) using partial likelihood for the
parameters and data imputation from a surrogate parametric model (based on
the approach of Satten, Datta and Williamson, 1998). The second approach (H1)
uses Clayton’s (1991) MCMC method, with the addition of a data imputation
step using the non-parametric hazard estimate. The third (H2) is similar but
smoothes the hazard estimate by linear interpolation. Using imputed data t∗ij for
the left-censored times allows us to use the non-parametric methods developed
for data which are either exact or right-censored.

In the PL approach, MCMC sampling for the frailties zi and treatment effect τ
is done using the Cox partial likelihood as the likelihood component (see Sargent,
1998). Again there is no computational advantage in using a gamma frailty
distribution, so a lognormal was used. The current parameter values are then
used to fit baseline Weibull distributions to the data for each joint, given the
frailties and treatment effects. This parametric fitting can be done either using
the actual right-censored information or, when they become available, the current
imputed times t∗ij. To impute a new time t∗ij which was left-censored at t we
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Figure 1: Imputation of event times t∗ for an observation left-censored at t, based on
the current estimated survival curve (adjusted for covariates). Here u is drawn randomly
from a Uniform(Si, 1) where Si is the estimated survival at the largest observed event
times less than or equal to t.

adjust the corresponding Weibull distribution for the frailty and simulate from
the truncated distribution as follows

t∗ij =
1
ρ

{
− log

[
e−(ρt)κ

+ u(1 − e−(ρt)κ
)
]}1/κ

where ρ = ρjz
1/κj

i , κ = κj and u is a random drawing from a Uniform(0,1)
distribution. Note that, although a distributional assumption is used for the
missing data imputation step, the parameters of interest are generated non-
parametrically. This should provide some robustness to mis-specification of the
parametric survival curves.

To eliminate entirely the dependence on a parametric assumption for the
survival curve, it is natural to ask whether the data imputation can be based
on a non-parametric hazard estimate. If we use Clayton’s MCMC approach we
have at our disposal an estimated hazard function, based on the Nelson-Aalen
estimator (Aalen, 1978), which is a step function with jumps at the observed event
times, each jump drawn from a Gamma(α, λ) distribution where α is the number
of “deaths” at that time and λ the total risk score, ie the total cumulative hazard
for all joints of that type which were still at risk at that time. To impute a new
time t∗ij which was left-censored at t we adjust this hazard estimate for the frailty
and simulate from the truncated distribution as shown in Figure 1. Denoting the
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observed event times by t1, t2, . . . tn and the corresponding estimated values of the
survival function by S1, S2, . . . Sn, we find the largest ti < t, draw u randomly
from Uniform(Si,1), and take t∗ = tk where Sk is the largest value less than
u. Note that this method does not add new event times: computationally we
just increase by one the number of observed events at time tk. The fact that
this hazard estimate is undefined beyond the largest observed event time is not
a problem for this method: if an event is left-censored beyond this time it is
assigned to one of the observed event times, with probabilities proportional to
the jumps in current estimate of the survival function at those times. If on the
other hand an event is left-censored at a time smaller than the earliest observed
event time, it can be assigned t∗ = 0. Computationally this means that we
should always include zero as a possible event time, possibly with S0 = 1 initially.
With the left-censored data imputed, the conjugacy of the gamma frailty model
returns, so in implementing this method we can assume a Gamma(ν, ν) frailty
distribution, ie with mean 1 and coefficient of variation ν−0.5. The Gibbs step for
each frailty then involves sampling from a gamma distribution. Sampling from
the full posterior of ν is described by Clayton (1991).

Table 2: Point estimates and confidence intervals for the treatment effect, the
frailty cv and two individual frailties, for each MCMC method

Weib PL H1 H2
τ 0.048 0.054 0.056 0.047

(.006,.141) (.006, .159) (.008, .167) (.006, .139)
CV 0.845 0.842 0.713 0.802

(.74, 1.05) (.73, 1.05) (.59, .88) (.61, 1.05)
Z24 0.535 0.468 0.488 0.319

(.31, .93) (.23, .82) (.27, .86) (.14, .59)
Z52 4.75 4.69 2.56 2.74

(1.7, 10.8) (1.6, 10.2) (1.0, 4.1) (1.1, 5.2)

This second method (H1) has the clear disadvantage that it requires a con-
siderable proportion of the data to be uncensored: otherwise we would have few
event times each with many tied events. It would not work at all for interval-
censored data. An obvious extension is to smooth the hazard estimate so that
t∗ is drawn from a continuous distribution. In the third method (H2) we use
linear interpolation of the estimated cumulative hazard function. Events left-
censored before the earliest observed event time are now assigned times between
zero and the censoring time. Unfortunately there is now a difficulty with events
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Figure 2: Posterior distribution of treatment effect τ using four different MCMC meth-
ods.

left-censored after the last observed event time. Such a situation might be sup-
posed to be rare, but there were such in the data considered here: five joints for
one individual which were right-censored at age 36. A number of ad hoc solutions
are possible. One could take S(36) = 0. One solution is to choose a time T larger
than all censored or uncensored times in the data and to take S(T ) = 0. We can
then investigate the sensitivity of the solution to the choice of T . In our exam-
ple two values, T = 40 and T = 100, produced no discernible differences in the
posterior distributions. If the choice of T is material one might want to specify
a prior distribution and include it in the MCMC algorithm, thus averaging over
a range of values.

The posterior distributions resulting from the four MCMC procedures are
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Figire 3: Estimated survival function with 95% confidence limits, based on quantiles of
the posterior distribution, by a parametric (Weibull) and non-parametric (Nelson-Aalen)
method.

summarized in Table 2, giving the mean and the 2.5th and 97.5th percentiles
for the treatment effect (τ), the coefficient of variation of the frailty distribution
(CV), and two of the individual frailties for subjects #24 and #52. The posterior
distribution of the treatment effect (Figure 2) is similar for all four methods and
it is clear that it is significantly less than one, indicating a significant reduction in
hazard from the use of accutane. The distribution of the coefficient of variation
of the frailty distribution is almost identical for the Weibull and partial likelihood
methods, which both assumed lognormal frailties, but is somewhat different for
the two methods which use the Nelson-Aalen hazard estimator and assume a
gamma frailty distribution. This in turn affects the posterior distributions for
the individual frailties. We focus here on two individuals, #24 for whom all data
are uncensored and #52 for whom all data are either left-censored at 2.75 or
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right-censored at 7.75. In the former case only the smoothed Nelson-Aalen result
is substantially different from the others; the latter case seems to be affected much
more by the choice of frailty distribution, perhaps not surprisingly since there is
less information in the data for this case. Finally we compare in Figure 3 the
estimated survival curves for the elbow joint using the parametric Weibull model
and the non-parametric Nelson-Aalen estimate. There is perhaps a suggestion in
this that the Weibull model is underestimating the hazard in the early years.

The main parameter of interest however is the treatment effect. From the
confidence intervals we can conclude that the use of accutane leads to a significant
reduction in the incidence of joint failures of between 85 and 99%, a result similar
to that found by Jones and Rocke (2002) using penalized profile likelihood.

4. Discussion

This paper examines the use of Markov chain Monte Carlo techniques for the
estimation of frailty models in multivariate survival analysis, in the presence of
both left- and right-censoring. Since right-censored observations are easily dealt
with using existing methods, all that is required is for the left- and interval-
censored times to be imputed within an MCMC scheme. Three ways of doing
this have been considered, and these have been compared with a fully-parametric
Weibull model for a particular dataset. The results suggest that the estimation
of fixed effects (here a treatment effect) is not greatly affected by the choice of
method. Estimation of the frailty parameter, and the prediction of individual
frailties, can vary considerably, but this appears to be due at least as much to
the choice of frailty distribution as to the method of imputation used. These
conclusions may well depend on the amount of censoring present. The method of
imputation using an unsmoothed Nelson-Aalen estimator requires a reasonable
number of exact death times, so would not be possible if, for example, all times
were interval-censored. The convergence proprties of the smoothed estimator are
unknown. A reasonable compromise solution might be the use of discrete time
with a suitably sub-divided scale.
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