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Abstract: We explore the possibility of modeling clustered count data using
the Poisson Inverse Gaussian distribution. We develop a regression model,
which relates the number of mastitis cases in a sample of dairy farms in
Ontario, Canada, to various farm level covariates, to illustrate the method-
ology. Residual plots are constructed to explore the quality of the fit. We
compare the results with a negative binomial regression model using max-
imum likelihood estimation, and to the generalized linear mixed regression
model fitted in SAS.
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1. Introduction

Mastitis may be defined as inflammation of the mammary gland of dairy cows,
and may be categorized into subclinical and clinical mastitis. Clinical mastitis
(CM) shows alterations of the milk in the form of flakes or pus, and is associated
with a considerable increase in somatic cell counts (SCC). On the other hand,
sub-clinical mastitis is characterized by a slight increase in the SCC and cannot
be seen by eye. Identification of udders infected with sub-clinical mastitis may
be performed with bacteriology and California Mastitis Test (CMT). The CMT
is a simple rapid means for detecting mammary gland infection and has had wide
acceptance and use by veterinarians and dairymen in routine mastitis prevention
and control programs.

Two main groups of mastitis causing pathogens can be distinguished, environ-
mental and contagious pathogens. Environmental pathogens are always present
in the surroundings of the cow. Infection of the udder by these environmental
pathogens is accompanied with a sudden increase in SCC. Contagious pathogens
are transmitted during the milking process, and are usually spread from infected
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to non-infected susceptible animals during that process. The most common or-
ganism involved in dairy mammary disease is Staphylococcus aureus, commonly
found on the skin of human hands and the udder skin of cows. Cows with con-
tagious mastitis are usually culled to prevent the spread of the disease to other
healthy cows in the herd. Due to these losses, the disease is of considerable
economic importance.

Farm management practices play an important role in controlling and reduc-
ing the incidence of the disease. Hygiene is identified as an important factor. The
use of organic (straw and sawdust) versus inorganic (sand) is associated with an
increase in intra-mammary infections. Tail docking is practiced to prevent the
tail from hitting the udder and spread of the disease causing pathogen. Milking
technique is also identified as a route to spread mastitis from cow to cow. Some
farmers milk the teats by hand (post milking) after the machine milking to reduce
residual milk in the quarters, and such practice might serve as an ideal growth
flora for bacteria.

We intend to identify the extent of the relationship between the above risk
factors and the incidence of sub-clinical mastitis. The data are available from 57
Ontario dairy farms. These herds were willing to participate in the sentinel dairy
herd project, which was instigated to identify the reasons behind the increase in
SCC over time. From July 1997 to February 1999, each farm was visited three
to six times. At each visit, composite samples were taken from each milking cow
in the herd, and bacteriology was performed at the Animal Health Laboratory,
Ontario Veterinary College, at the University of Guelph, to identify the pathogen
causing sub-clinical mastitis. The primary response variable was the number of
cows tested positive for the disease. Table 1 shows a summary of the data by
visit. Herd level covariates were: type of bedding, tail docking, and post milking.
These factors were coded as 0 when the producer adopted the factor, otherwise
the factor was coded as 1. The fundamental feature of the data is its hierarchical
or multilevel (clustered) structure, which frequently arises in many areas of in-
vestigations such as veterinary epidemiology, agriculture, and community trials.
The highest hierarchy was the herd, and the lowest hierarchy was the visit. At
each visit, the number of cows cultured, and the number of cows tested positive
(the response variable) were recorded.

There are two general classes of models for analyzing clustered data: cluster-
specific (CS) and marginal or population averaged (PA). The PA approach spec-
ifies the marginal of the response of the jth unit in the ith cluster yij, and the
Generalized Estimating Equation is the method of choice (Liang and Zeger 1986;
Zeger et al. 1988). The most common CS approaches are Generalized Linear
Mixed Models (GLMMS), which extend the class of generalized linear models
by including random effects in the linear predictor (Breslow and Clayton 1993;
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Table 1: Summary Mastitis Data collected from 57 farms at six visits to each
farm.

Visit Number of Total number Total number of Percentage of
farms visited of cultured cows cows with CM positive cows

1 57 2721 277 10
2 57 2907 365 12.6
3 57 2837 342 12
4 55 2585 262 10
5 48 2304 306 13.3
6 3 141 30 21.3

Schall 1991; McGilchrist 1994; Goldstein 1991 and Longford 1994). The above
CS approach fits models to data using either the Taylor approximation of the log
likelihood function (Goldstein 1991 and Longford 1994) or the penalized quasi-
likelihood (PQL) (Breslow and Clayton’s 1993). Wolfinger and O’Connell (1993)
describe an algorithm for computing PQL estimates and implement it with a
SAS macro called GLIMMIX. Neuhaus and Segal (1997) showed that these ap-
proaches may yield highly biased estimates of covariate effects and the variance
components of the random effects distribution. Recently, Nehaus (2001) recom-
mended that care must be taken when using approximate methods in the analysis
of multilevel data. To avoid most of the problems outlined by Neuhaus (2001),
we use an exact modeling procedure.

We consider a random effects Poisson model where the mixing distribution is
the inverse-Gaussian. Details of the derivations, the method for incorporation of
the covariates, and the procedures used to obtain estimates of the parameters are
given in Section 2. In Section 3 we fit the model to the mastitis data to illustrate
the potential differences between the Poisson inverse-Gaussian Model and other
models such as the negative binomial and the generalized linear mixed model. A
general discussion is presented in Section 4.

2. Poisson Inverse Gaussian Model (PIGM)

2.1 Over-dispersion test

Assume k clusters the ith of which has ni observations. Define Yij to be
the number of events of interest (cows with clinical mastitis) in the ith farm
at visit j. Because of the hierarchical structure of the data, one should expect
that the counts Yij within a particular farm to be correlated. The result of such
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within-farm correlation is that the variance of counts would be much larger than
the mean, a phenomenon known “over-dispersion.” This over-dispersion may be
modeled as follows (Cox, 1983): first we assume that conditional on the ith cluster
(farm) effect, denoted by νi we have

E(yij |νi) = νiµij and
var(yij |νi) = νiµij

Second, we assume that the random cluster effect νi has E(νi) = 1, and var(νi) =
λ < ∞. Therefore

E(yij) = µij, and
var(yij) = E[var(yij |νi)] + var[E(yij |νi)] = µij(1 + λµij),

regardless of distribution assigned to νi. Here νi is a random variable that sum-
marizes the effect of our inability to model all pertinent explanatory factors and
other sources of variation. The above set-up has been discussed by many au-
thors (Breslow 1984, Thall 1988, Stukel 1993, Burnett et al. 1992, and Zeger
et al. 1988). Therefore λ > 0 indicates the presence of over-dispersion, λ < 0
under-dispersion, and λ = 0 equi-dispersion. Under equi-dispersion, the Poisson
model is the most commonly used model to analyze count data. It seems natural
then that our attempting to construct a plausible parametric model should be
preceded by a test for over-dispersion.

Following Cameron and Trivedi (1998, p.78), a test of over-dispersion can
empirically be carried out by using the method of least squares to fit the regression
equation:

Dij =
(yij − ȳi·)2 − yij

ȳi·
= λȳi· + εij

where, ȳi· =
∑ni

j=1 yij/ni, and εij is an error term. The reported t-statistic
for λ̃ is asymptotically normal under the null hypothesis H0 : λ = 0 versus
H1 : λ > 0. For the mastitis data, it was found that λ̃ = 0.1169 and the standard
error SE(λ̃) = 0.0232, from which t = 0.1169/0.0232 = 5.03 (p-value < 0.001).
Therefore, based on the evidence in the data, we conclude that over-dispersion
should not be ignored.

We therefore need to develop models for count data, which properly account
for over-dispersion. In the next section, we develop a PIGM as a competitor to
the negative binomial model (NBM).

There are several reasons for comparing the PIGM to a regression model
assuming a negative binomial distribution for the counts. First, although the
NBM is commonly used to model over-dispersed count data, most data analysts
are not familiar with the PIGM, as it has not been fitted to clustered count
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data. Secondly; there is not one single model that provides a reasonable fit
to a given data set, particularly in the absence of knowledge of the biological
mechanism generating the responses. Therefore, it is not uncommon for data
analysts to attempt fitting several models and investigate the advantages and the
disadvantages of each. For example, Stukel (1993) analyzed clinical trial data of
non-melanoma skin cancer and familial polyposis, using several models for over-
dispersed longitudinal count data. As well, Have and Hartzel (1995), and more
recently Molenberghs and Geys (2001) discussed several modeling strategies to
analyze clustered binary data in developmental toxicity studies.

2.2 Model specifications

Assume that conditional on the ith cluster (farm) the within cluster observa-
tions are conditionally independent so that their joint density is

P (yi1, yi2, · · · , yini |νi) =
ni∏

j=1

e−νiµij(νiµij )yij

yij!
,

µij > 0, i = 1, 2, · · · , k, j = 1, 2, · · · , ni.
Following the generalized linear model approach, we relate the parameters µij

to the covariates xi ∈ Rp through the log-link function so that

log µij = β0 + β1numij + β2bedorgij + β3postmilkij + β4tailij ,

where β = (β0, β1, β2, β3, β4)T is the vector of parameters, numij is the number
of animals cultured from ith farm at visit j, and the rest of the covariates are as
explained in Section 1.

The specification of the joint distribution of Yi = (Yi1, Yi2, · · · , Yini)
T is com-

pleted by assigning a distribution for νi. If we assign gamma distribution for νi,
the resulting marginal density of Yi is the negative binomial (see, Collings and
Margolin 1985 and McCullagh and Nelder 1989). Alternatively, we assume that
νi has an inverse-Gaussian distribution, parameterized to have E(νi) = 1 and
var(νi) = λ > 0 so that the pdf of νi is given by

g(νi) = (2πλ)−1/2ν
−3/2
i e−(νi−1)2/2λνi .

The evaluation of the (marginalized) likelihood for the ith farm involves in-
tegrating out νi and is equal to

Li = L(Yi|β, λ) =
ni∏

j=1

Lij , (2.1)
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where

Lij =
{

(µij)yij

yij!

}
(2πλ)−1/2eλ−1

∫ ∞

0
xyi·−3/2e−x(µi·+1/2λ)−1/(2λx)dx,

where µi· =
∑ni

j=1 µij.
From Gardshteyn and Ryzhik (1980, p. 970) the integral in (2.1) is of the

form ∫ ∞

0
eaxh−bx−h

xs−1dx = (2/h)(b/a)s/2hKs/h(2
√

ab) (2.2)

where Kj(·) is the modified Bessel function of the second kind. Therefore Li can
be written as

Li = L(Yi|β, λ) =
ni∏

j=1

{
(µij)yij

yij!

}(
2

πλ

)1/2

e1/λ(1 + 2λµi·)−si/2Ksi(zi) (2.3)

where si = yi· − 1/2, zi = (1 + 2λµi·)1/2/λ, and yi· =
∑ni

j=1 yij.
Define,

p(y) = c(λ)(1 + 2λµ)−(y−1/2)/2Ky−1/2(
√

1 + 2λµ/λ).

Then,
p(y + 1) = c(λ)(1 + 2λµ)−(2y+1)/4Ky+1/2(

√
1 + 2λµ/λ).

where c(λ) = (2/πλ)1/2e1/λ.
The Bessel functions has the following important properties:

K1/2(a) = K−1/2(a) = (π/2a)1/2e−a

K3/2(a) = (1 + 1/a)K1/2(a). (2.4)

Therefore,
Ky+1/2(a)
Ky−1/2(a)

= (1 + 2λµ)1/2M(y) (2.5)

where
M(y) = (y + 1)

p(y + 1)
p(y)

, (2.6)

from which it follows that

M(0) = (1 + 2λµ)−1/2.

Moreover,

p(0) = exp
[

1
λ

(1 − (1 + 2λµ)1/2)
]

.
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The importance of equations (2.5) and (2.6) will be apparent when we derive
the estimating equations of the model parameters in Appendix I. We will show
that the partial derivatives of the log-likelihood function with respect to the model
parameters do not depend on the Bessel functions, rather they depend on M(y)
which can be recursively computed.

To obtain the maximum likelihood estimators of the parameters we construct
the total (marginalized) likelihood L, which is the product of k terms of equation
(2.3).

L =
k∏

i=1

Li.

The log-likelihood function � = log(L) is given by:

� =
k∑

i=1

ni∑
j=1

yijx
T
ijβ +

k

λ
− (k/2) log λ

−
k∑

i=1

(
2yi· − 1

4

)
log(1 + 2λµi·) +

k∑
i=1

log Ksi(zi) (2.7)

In Appendix I, we provide the estimating equations for β and λ.

2.3 Estimating unknown parameters

As in the nonlinear mixed models, the maximum likelihood equations can-
not be explicitly solved. It is natural to use the Newton-Raphson algorithm or
any of its variants to estimate the parameter vector θ = (β0, β1, β2, β3, β4, λ)T .
However, like other iterative techniques this method depends on the validity of a
quadratic approximation to the surface of �, and for many nonlinear mixed-effects
models, straightforward approximations do not provide consistent estimates re-
gardless of the number of clusters, or the number of observations per cluster (see,
Demidenko 1997). Therefore, we needed an optimization algorithm that could ef-
ficiently handle this complicated log-likelihood function. After some exploration,
we have chosen to use “fminunc” (unconstrained function minimization) routine
of the Optimization Toolbox of the MATLABTM Software (The MathWorks,
Inc., Natick, MA) to locate the minimum of the negative log-likelihood func-
tion. The routine implements a subspace trust region method which is based
on the interior-reflective Newton method described in Coleman and Li (1994,
1996). Each iteration in this “large-scale optimization” algorithm involves the
approximate solution of a large linear system using the method of reconditioned
conjugate gradients.

The routine requires the user to provide an initial estimate for the parameter
vector θ. Since PIGM reduces to Poisson regression model when λ = 0, we
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obtained the initial estimate by fitting a Poisson regression model to mastitis
data using SAS (Genmod procedure). The result of the optimization, i.e., log-
likelihood maximization, was:

θ̂ = (3.212, 0.130,−0.034,−0.816,−0.798, 0.392)T

To ensure that the global maximum was located, we perturbed the initial pa-
rameter estimates and verified that this solution was indeed the optimum. The
optimization routine also produced the Hessian matrix from which we calculated
Fisher’s information matrix, I(θ). The asymptotic standard errors of the esti-
mated parameters are the square roots of the elements on the diagonal of I(θ).

3. Analysis of Mastitis Data

Clinical mastitis (CM) is one of the endemic diseases and conditions of dairy
cattle in many countries. Such disease causes significant losses to the dairy in-
dustry both in terms of the reduction in output levels and wastage of resources
incurred, in addition to the costs of disease prevention and treatment. Various
studies, although followed different methods of assessments, have estimated di-
rect costs associated with CM, but not the wider effects of disease, such as impact
on human health, animal welfare and livestock markets. In the UK, Bennett et
al. (1992) demonstrated that mastitis treatment costs are substantial, owing to
the large number of cows requiring treatment and the relatively high costs of
treatment (which includes milk withdrawal following antibiotic use). Therefore,
effective control and prevention are functions of our ability to identify potential
farm level management practices that affect the distribution of the disease.

In Table 2, we provide a summary fitting of the data using the PIGM, NBM
and the generalized linear mixed model (GLMM) with log-link (Schall 1991,
McGilchrist 1994). The estimating equations of the two models are given in
Appendices I & II. The MATLAB codes for fitting the PIGM and the NBM are
available from the authors. The GLIMMIX is a SAS macro (1996) that fits the
GLMM. It uses the pseudo likelihood method for estimating parameters of the
GLMM as proposed by Wolfinger and O’Connell (1993). In summary, the pseudo
likelihood approach fits a linearized pseudo variable (i.e., a transformation of Yij

onto to the linear scale using the weighted normal mixed model.) The name
pseudo likelihood was used because the likelihood function maximized at each
iteration, is that of the linearized (pseudo) variable and not that of the original
data (Breslow and Clayton, 1993).

For the GLIMMIX, the residual log-likelihood, rather than the log-likelihood,
is provided by SAS, and is not included in the summary. Note that, the only
non-categorical covariate included in the model was the “number cultured.” This
covariate zij was standardized so that it is modeled as z∗ij = (zij − z̄i)/si where zij
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is the number of animals cultured in the ith farm at the jth visit, z̄i is the average
number of animals cultured in the ith farm, and si is the standard deviation. As
can be seen, the PIGM and NBM models are equivalent as they comprise the same
significant covariates and the values of their maximized log-likelihood functions
are almost the same. However, there is a difference in the sign of the “bedding”
covariate. This covariate has been coded in such a way that the code “1” is given
to farms that used sands, and code “0” for farms that used organic material.
Therefore a positive sign for the regression coefficient of bedding means that, for
a randomly selected farm, the use of sand should increase the mean number of
diseased animals (on the log-scale) on that farm, as was shown by the NBM and
the GLIMMIX. This is in contrast to what the PIGM fit gives, which shows that
the use of sand as a bedding material, should decrease the number mastitis cases.
This is in support of what is widely known among veterinarians.

Although we found statistically significant relationship between CM and man-
agement practices, those management practices are not necessarily causally re-
lated to the CM on the farm. Clearly “postmilk” which is directly related to
udder health, should be either stopped or preceded by proper preparation (e.g.,
through hand washing and use of disinfectants). Moreover, the risk of transmit-
ting the pathogens may be substantially reduced if ”tail-docking” is practiced.
Although previous studies (Barkema et al. 1999) demonstrated strong association
between types of bedding and the distribution of CM, such an association was
absent in our data, as can be seen from Table 2. The justification is that in our
data, only one farm did not use organic bedding, and that particular farm was
visited three times only. Therefore, this lack of association may be attributed to
insufficient data.

To test the adequacy of the models, we provide two sets of residual plots. As
was advocated by Davison and Gigli (1989) we plot Pearson’s residuals rij ,

rij =
yij − µ̂ij[

µ̂ij(1 + λ̂µ̂ij)
]1/2

(3.1)

where µ̂ij = exp(xT
ij β̂), against the normal quantiles. Deviation of the plot of

rij against the normal quantiles from a straight line, indicates that the residuals
are not normally distributed. In Figure 1, we notice, for both models, a slight
deviation from a straight line at the upper tails of the distribution as would be
expected for count data.

We also provided plots of the “deviance residuals” for over-dispersed count
data, defined as

dij = 2sign(yij − µij)

[
yij log(yij/µ̂ij − (yij + λ̂−1) log

(
yij + λ̂−1

µ̂ij + λ̂−1

)]
(3.2)
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Table 2: Summary of the PIGM, NBM and GLIMMIX (SAS) analysis of the
mastitis data.

Model Term Estimate St. error p-value

PIGM intercept 3.212 0.820 0.000
number-cultured 0.130 0.028 0.000
bedding −0.034 0.659 0.958
postmilk −0.816 0.397 0.040
tailed −0.798 0.267 0.002
λ (dispersion parameter) 0.392 0.093 0.000
log-likelihood (−1484)

NBM intercept 3.195 0.468 0.000
number-cultured 0.131 0.055 0.017
bedding 0.120 0.374 0.748
postmilk −1.055 0.234 0.000
tailed −0.692 0.145 0.000
α (dispersion parameter) 0.447 0.054 0.000
log-likelihood (−1451)

GLIMMIX intercept 2.614 0.522 0.000
(SAS) number-cultured 0.128 0.001 0.000

bedding 0.119 0.661 0.857
postmilk −1.068 0.523 0.041
tailed −0.676 0.424 0.111
σ2 (dispersion parameter) 0.402 − −

(McCullagh and Nelder 1989, p.39 and Cameron and Trivedi 1998, p.142). Figure
2 shows the plots of dij versus the observed counts yij for both models. As can
be seen, both models provide adequate fit to the data.

4. Discussion

During the last fifteen years, hierarchical statistical modeling of epidemiolog-
ical data has been an area of intense research. Depending on the objectives of
the investigation, an appropriate model is selected. If interest is focused on the
efficient estimation of the parameters of the regression function on the expense
of the other parameters that characterize the components of dispersion, then
the Generalized Estimation Equation approach of Liang and Zeger (1986) would
be an appropriate tool, and the regression coefficients would have a population
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Figure 1. Upper panel: Quantiles of the Pearson’s residuals of the PIGM
against the normal quantiles. Lower panel: Quantiles of the Pearson’s residuals
of the NBM against the normal quantiles.

average interpretation. On the other hand, if in addition to the regression coeffi-
cients, the dispersion parameter is of interest, the cluster specific model is more
appropriate. We would like to emphasize that had the main objectives of the
study been the estimation of the disease prevalence, a binomial regression with
over-dispersion parameter would be appropriate. However the main objective of
the present project was the identification and estimation of the effects of the herd
level covariates that influence the variability of the disease. Due to the fact that
the number of cultured cows was large (excluding the sixth visit), and that the
percentage of positive cows did not change significantly over time, we assumed,
conditional on the herd, that the number of mastitis cases can be approximately
modeled by the Poisson distribution, whose mean is a function of the herd level
covariates, and an unobservable random effect.

The inverse-Gaussian distribution may be an attractive choice as a mixing
distribution for models of count data that exhibit over dispersion caused by the
hierarchical structure. When suitably parameterized it can be used as an alter-
native to the widely used gamma distribution. Although the use of the negative
binomial, which results from mixing the Poisson with the gamma is long stand-
ing, the Poisson inverse-Gaussian can be used to analyze data with this structure
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Figure 2. Upper panel: Deviance residuals of the PIGM versus the observed
counts yij . Lower panel: Deviance residuals of the NBM versus the observed
counts yij .

(see; Wilmot 1987). Moreover, we were able to fit the PIGM quite easily.
The GLIMMIX, although uses a general approximation to the integral in

equation (2.1), to our surprise produced somewhat similar results to those of the
PIGM and NBM. Evidence from the literature suggested that the GLIMMIX
fitting procedure of Schall, McGilchrist and Breslow and Clayton are biased, and
a full mixture model should be employed to analyze clustered data. We would like
to point out that the difference in the sign of one of the coefficients (bedding) is
not unexpected and has been reported in similar context by Lesaffre and Spiessens
(2001) and Neuhaus and Segal (1997). Although the two models give close fits,
common knowledge regarding the effect of the “bedding” factor, supports the
selection of the PIGM over the NBM.
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Appendix I: Estimating Equations for PIGM

The log-likelihood function of the PIGM is given by

� =
k∑

i=1

ni∑
j=1

yij

p∑
r=0

xijrβr + (k/λ) − (k/2) log λ

−
k∑

i=1

(
2yi· − 1

4

)
log(1 + 2λµi·) +

k∑
i=1

Ksi(zi)
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where yi· =
∑ni

i=1 yij , µi· =
∑ni

j=1 µij, µij = exp(
∑p

r=0 xijrβr), si = yi· − 1/2 and
zi = (1 + 2λµi·)1/2/λ. Then,

∂�

∂βr
=

k∑
i=1


 ni∑

j=1

yijxijr −
λ
∑ni

j=1 xijrµij

1 + 2λµi·

(
2yi· − 1

2

)
+

∂ log Ksi(zi)
∂βr


 and

∂�

∂λ
= − k

λ2
− k

2λ
−

k∑
i=1

µi·
1 + 2λµi·

(
2yi· − 1

2

)
+

k∑
i=1

∂ log Ksi(zi)
∂λ

.

The recurrence relations

Ks+1(z) = Ks−1(z) +
2s
z

Ks(z)

z
∂Ks(z)

∂z
= −zKs+1(z) + sKs(z) (A.1)

(see; Gradshteyn and Ryzhik 1980, p. 970) together with equations (2.5) and
(2.6) can be used to show that

∂ log Ky−1/2(z)
∂λ

=
M(y)(1 + λµ)

λ2
− (1 + λµ)(y − 1/2)

λ(1 + 2λµ)
(A.2)

where z = (1 + 2λµ)1/2/λ. (Note that subscripts have been dropped for conve-
nience.) Therefore,

∂�

∂λ
=

k∑
i=1

[−λ−2 − yi·λ−1 + M(yi·)(1 + λµi·)λ−2] (A.3)

Again, using the recurrence relations (A.1), and equations (2.5) and (2.6) we can
show that

∂ log Ky−1/2(z)
∂βr

=
[
−M(y)(1 + 2λµ)1/2 +

λ(y − 1/2)
(1 + 2λµ)1/2

]
µxr

(1 + 2λµ)1/2
(A.4)

Therefore,
∂�

∂βr
=

k∑
i=1

ni∑
j=1

[yij − M(yi·)µij ]xijr . (A.5)

Clearly, the Bessel functions do not appear in the estimating equations and
M(yi·) can be recursively computed when solving

∂�

∂λ
= 0,

∂�

∂βr
= 0, r = 0, 1, · · · , p
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Appendix II: Estimating Equations for NBM

The log-likelihood function of the NBM is given by

�NB =
k∑

i=1

ni∑
j=1

[
yij

p∑
r=0

xijrβr − (yij + λ−1) log(1 + λµij) +
yij∑
t=1

log(1 + λ(t − 1))

]
.

Then,

∂�NB

∂βr
=

k∑
i=1

ni∑
j=1

xijr

1 + λµij
(yij − µij) and

∂�NB

∂λ
=

k∑
i=1

ni∑
j=1

[
log(1 + λµij)

λ2
− 1 + λyij

λ(1 + λµij)
µij +

yij∑
t=1

t − 1
1 + λ(t − 1)

]
.

Received September 3, 2002; accepted November 21, 2002.

M. M. Shoukri
Department of Biostatistics, Epidemiology and Scientific Computing
King Faisal Specialist Hospital and Research Center
MBC-03 / P. O. Box 3354
Riyadh, KSA 11211
shoukri@kfshrc.edu.sa

M. H. Asyali
Department of Biostatistics, Epidemiology and Scientific Computing
King Faisal Specialist Hospital and Research Center
MBC-03 / P. O. Box 3354
Riyadh, KSA 11211
asyali@kfshrc.edu.sa

R. VanDorp
Department of Animal and Poultry Sciences
University of Guelph
Guelph, Ontario, NIG 2W1
Canada

D. Kelton
Department of Population Health
University of Guelph
Guelph, Ontario, NIG 2W1
Canada


