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Anomalies and Predictability
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Abstract: Examining the daily Dow Jones Industrial Average (DJI) we
find evidence both of higher-order anomalies and predictability. While most
researchers are only aware of the relatively harmless anomalies that occur
just in the mean, the first part of this article provides empirical evidence of
more dangerous kinds of anomalies occurring in higher-order moments. This
evidence casts some doubt on the common practice of fitting standard time
series models (e.g., ARMA models, GARCH models, or stochastic volatility
models) to financial time series and carrying out tests based upon autocorre-
lation coefficients without making proper provision for these anomalies. The
second part of this article provides evidence in favor of the predictability of
the returns on the DJI and, more interestingly, against the efficient market
hypothesis. The special value of this evidence is due to the simplicity of the
involved methods.

Key words: Day-of-the-week effects, efficient market hypothesis, nonstation-
arities.

1. Introduction

It is well known that stock prices do not follow a pure random walk. Price
changes are neither independent nor identically distributed. Firstly, there are
various linear and nonlinear dependencies between successive price changes, e.g.,
serial correlation, periodic patterns, and conditional heteroskedasticity. Secondly,
both the unconditional distribution of the price changes and the conditional dis-
tributions (dependencies) change over time. Any test for a particular deviation
from randomness must therefore be designed in such a way that it takes all the
other possible deviations into account. Unfortunately, that is easier said than
done. For example, the tests that are typically used to detect serial correlation
(see, e.g., Taylor, 1984, Lo and MacKinlay, 1988, and Deo, 2000) are only ro-
bust against conditional heteroskedasticity but not against other peculiarities of
financial time series like nonstationarities and calendar effects. The researchers
using theses tests tend to play down this disadvantage. They argue that it is al-
ways possible to divide a nonstationary series of returns into roughly stationary
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segments and that tests based upon autocorrelation coefficients need not be af-
fected by calendar effects like the January effect and the weekend effect because
these effects occur only in the mean and discrepancies in the mean are small
compared to the variance. However, the empirical evidence presented in Section
2 casts some doubt on these arguments. Multiple nonstationarities are described
in Subsection 2.1, followed in Subsection 2.2 by a description of calendar effects
in higher-order moments. Concluding remarks occur at the end of each section.

In Section 3, we examine the efficient market hypothesis. A crucial question
in financial economics is whether or not there is a strategy for buying and selling
stocks that yields superior returns than the buy-and-hold strategy. Clearly, it is
practically impossible to rule out that such a strategy exists because there are
too many possibilities. So if this question cannot be answered positively, it must
remain unanswered. Amazingly, the majority of researchers dealing with this
problem do not first and foremost try to construct profitable trading strategies
but rather focus on a related question, namely whether or not stock returns are
predictable (early exceptions to this rule are Alexander, 1961, Fama and Blume,
1966, Levy, 1967, and Stevenson and Bear, 1970, Leuthold, 1972; more recent
ones are Taylor, 1986, Jegadeesh and Titman, 1993, Pesaran and Timmerman,
1995, Gencay, 1998, Qi, 1999, and Sullivan et al., 1999). A natural approach
to test whether price changes are predictable is to use past prices and additional
economic variables to construct a nontrivial predictor for future price changes and
to test whether the sum of squared prediction errors implied by this predictor is
smaller than that implied by the trivial predictor, which is given by the mean of
the past price changes. Of course, we must impose suitable restrictions on the
price changes in order to make this testing problem tractable. In the simplest
case, where the nontrivial predictor is a function of past price changes only, some
robust version of the random walk hypothesis (allowing, e.g., for a nonzero mean
and conditional heteroskedasticity) could be used as null hypothesis. A severe
shortcoming of this approach is that statistically significant predictability is not
necessarily of speculative value, particularly when transaction costs are taken
into account. Another disadvantage is that the tests that are typically used to
detect predictability are not robust against the anomalies described in Section 2.

Fortunately, we do not really need a significance test to furnish proof of the
predictability of the returns. Using a very simple trading strategy, Alexander
(1961) succeeded already long time ago in proving predictability. According to
Alexander’s filter rule the risky asset is purchased when its price increases by
v% and (short) sold when its price drops by v%. In the absence of transaction
costs, the filter rule beats the buy-and-hold strategy for small values of v. But
transaction costs typically eliminate the profits (see Fama and Blume, 1966).
This is particularly true for very small values of v. On the other hand, positive
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results obtained with values of v as large as 5% or even 10% (Stevenson and Bear,
1970, Leuthold, 1972) must be treated with caution because in these cases the
number of trades is relatively small and hence the overall positive result could
have been obtained just by luckily avoiding a few sharp falls in prices. Moreover,
there is the problem of retrospective optimization. How many different trading
rules had been examined before the “profitable” rule was found?

The results obtained with alternative trading strategies are hardly more re-
liable. For example, Levy (1967) came up with his trading strategy of buying
stocks with current prices that are substantially higher than their average prices
over the past 27 weeks after he had examined 68 different trading rules in his
dissertation (see Jensen and Bennington, 1970). Moreover, Levy’s strategy as
well as other strategies that buy stocks that have performed well in the past and
sell stocks that have performed poorly in the past (relative strength strategies)
conflict with the popular view that stock prices overreact to new information.
If this view were correct, one would rather expect that the opposite strategy
is profitable. Indeed, for very short time horizons of one week or one month,
Jegadeesh (1990) and Lehmann (1990) reported abnormal returns generated by
selling past winners and buying past losers. However, after realizing that prac-
titioners used the original relative strength strategy for time horizons of 3 to 12
months, Jegadeesh and Titman (1993) examined this strategy just for these time
horizons and found ”significant” positive returns. In this case, the possibility of
a selection bias is due to the fact that Jegadeesh and Titman used the same data
as the practitioners. An additional problem of relative strength strategies is that
they switch between different risky assets. Any extra profit could therefore be
merely due to a higher risk. Sullivan et al. (1999) used the bootstrap methodol-
ogy for the quantification of the biases in technical trading rules resulting from
using information from the data to guide subsequent analysis of the same data
(data-snooping biases). But in view of the anomalies mentioned earlier it is hard
to justify the use of the stationary bootstrap of Politis and Romano (1994), which
re-samples blocks of varying length from the original data.

More recent trading strategies are based on more sophisticated statistical
methods. For example, Gencay (1998) and Qi (1999) presented evidence in favor
of nonlinear predictability of stock returns. Both authors used neural network
models and compared the performance of their models with conventional linear
models. The same regressors were used for the linear and the nonlinear models.
Since Qi’s set of explanatory variables does not only include financial variables
but also economic variables like industrial output and inflation, there is the prob-
lem that the revised data used by the author were not available at the time when
the investors had to make their investment decisions. In contrast, Gencay used
only past prices and technical indicators (i.e., differences between prices and mov-



4 Erhard Reschenhofer

ing averages of the m most recent prices for m = 50, 200). Neither author tried
hard to justify his choice of the set of regressors. Qi used just the same set of nine
regressors, which had already been used by Pesaran and Timmerman (1995) in a
linear analysis of the same data set, and Gencay gave no reasons for his choice of
the lengths of the moving averages. Both Gencay (1998) and Qi (1999) reported
that the out-of-sample predictive performance of the neural network models was
better than that of the linear models. But this does not necessarily mean that
the neural network models are indeed superior. A comparison between differ-
ent model classes with respect to their out-of-sample predictive performance can
still be severely biased even if both estimation and identification are carried out
strictly out of sample. An additional indispensable requirement is that only one
identification method is considered. For example, trying out both AIC (Akaike’s
information criterion, Akaike, 1973) and BIC (Bayesian information criterion,
Schwarz, 1978) for the determination of the dimension of the linear model and
reporting only the results obtained with one of these criteria would clearly be
unacceptable. Not surprisingly, things get even worse in case of nonlinear mod-
els. As is well known, the performance of neural networks depends critically on
a number of subjective choices, e.g., the choice of the architecture (layers, units,
transfer functions), the choice of the training algorithm, and the choice of the
initial weights. It is therefore extremely difficult to assess the evidential value of
the results obtained with these sophisticated models.

In view of the above discussion it is no wonder that the various claims of
having found strong evidence against market efficiency are perceived by many
researchers as greatly exaggerated (see, e.g., Malkiel, 1999). Obvioulsy, there
is still a need for more conclusive evidence. In Section 3, we consider possibly
profitable trading strategies. These strategies are kept as simple as possible
because they only serve as counter-examples to (the weak form of) the efficient
market hypothesis. They are just rules for switching between a single risky asset
and a risk-free asset. The extra profit is therefore not obtained at the price of
bearing a higher risk. The trading decisions are solely based on the past history
of the risky asset itself.

2. Higher-order Anomalies

2.1 Multiple nonstationarities

A useful method to detect nonstationarities in a time series is to calculate
various statistics locally and to plot them cumulatively. For example, in order to
check the stationarity of the returns

rt = log(DJIt) − log(DJIt−1), t = 1, 2, · · · , n



Unexpected Features of Financial Time Series 5

on the daily Dow Jones Industrial Average (DJI), we could first calculate the
sample autocorrelation coefficient of order k

ρ̂k[j] =
γ̂k[j]
ρ̂0[j]

, (2.1)

where

γ̂k[j] =
1
q

j+q−1−k∑

s=j

(rs − r̄[j])(rs+k − r̄[j]),

and

r̄[j] =
1
q

j+q−1∑

s=j

rs,

for each of the n−q+1 overlapping segments (rj , · · · , rj+q−1), j = 1, 2, · · · , n−q+1
of length q and then plot the sums

St =
1

n − q + 1

t∑

j=1

ρ̂k[j].

against time t. For k = 1, 2, · · · , 5 and q = 250 and we obtain the five graphs dis-
played in Figure 1. The data were downloaded from Yahoo! Finance. The overall
first-order autocorrelation coefficient is close to 10%. Obviously, the magnitude
of this coefficient changes over time. It was much smaller in the 1980s and 1990s
than before. We should therefore calculate and interpret this coefficient only for
seemingly stationary sub-periods in which there is a fairly linear increase in the
cumulative first-order autocorrelation.

Methods for the division of a financial time series into stationary segments
need not necessarily be based only on the first-order autocorrelation coefficient.
Higher-order autocorrelation coefficients are also of interest. But this does not
mean that we have to examine each autocorrelation coefficient separately, we
could as well try to find instabilities in the spectral distribution function. Simi-
larly, we could look for instabilities in the unconditional distribution rather than
investigate individual numerical measures like the mean, the variance, the skew-
ness, and the kurtosis. Many procedures for the detection of structural breaks are
available (see, e.g., Andrews, 1993; Bai, 1994, 1996; Chu, 1995; Chu et al., 1996;
Hidalgo, 1995; Picard, 1985; Sowell, 1996) but they often are not robust against
heavy tails or require that the locations of the possible changes are specified a
priori or do not allow for dependence in the data. Recently, Inoue (2001) pro-
posed a nonparametric test for distributional stability, which does not have any
of these disadvantages. His test is based on the distance (Kolmogorov-Smirnov or
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Figure 1: Cumulative local autocorrelations of order k = 1, . . . , 5 calculated
from segments of 250 returns on the DJI

Cramer-Von Mises) between the pre-change distribution function and the post-
change distribution function. Applying his test to the weekly log-differences of
several exchange rates and stock market indices (including the DJI from 1969 to
1996) he found evidence of distributional instability. If this instability is caused
by a single structural break, the time point maximizing the Kolmogorov-Smirnov
distance could serve as an estimate of the break location. In the more general
case of multiple breaks, no meaningful estimates of break locations are provided.
In addition, it may be expected that tests based on the Kolmogorov-Smirnov
distance will have extremely low power in case of multiple breaks (see, e.g.,
Reschenhofer and Bomze, 1991). Both shortcomings could be rectified at the
same time by replacing the Kolmogorov-Smirnov distance with the generalized
Kolmogorov-Smirnov distance (Reschenhofer, 1997). But even if this could be
accomplished somehow, we would still have to determine the number of breaks as
well as to distinguish between structural breaks and other nonstationarities like
smooth transitions.

Anyhow, when we have a closer look at Figure 1, we might even call the whole
idea of stationary sub-periods into question. The second largest autocorrelation
coefficient is that of order two. The size of this coefficient decreased already in the
early sixties. There is no way that the changes in the first two autocorrelation
coefficients could have occurred at the same time. It is to be feared that the
number of possible breakpoints will increase further if we examine additional
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features of this time series. On top of that it will be shown in the next subsection
that covariance stationarity is even violated in very short periods of just a few
days.

2.2 Calendar effects in higher-order moments

Structural breaks are not the only undesirable features of financial time series.
It is well known that series of daily stock returns exhibit significant weekly and
seasonal patterns. To examine whether the days of the week differ also with
respect to higher-order characteristics we study the autocorrelation in the returns
as well as in the squared returns separately for each day of the week. For example,
to estimate the local autocorrelation of order one for Tuesday returns we consider
the last 50 pairs (xt, yt) of (non-missing) Monday returns xt and (non-missing)
Tuesday returns yt and calculate the local sample correlation coefficient

ρ̂ =
∑

(xt − x̄)(yt − ȳ)√∑
(xt − x̄)2

∑
(yt − ȳ)2

from this sample. All local sample correlation coefficients are then divided by
the total number of local sample correlation coefficients and plotted cumulatively
against time. Analogously we proceed for the other days of the week and also
for the squared returns. Figure 2 shows that in the 1980s and 1990s the Thurs-
day returns have been positively correlated with the Friday returns while the
Monday returns have been negatively correlated with the Tuesday returns. Sim-
ilarly, Figure 3 shows that in the 1970s, 1980s, and 1990s the squared Monday
returns have been positively correlated with the squared Wednesday returns while
the squared Tuesday returns have basically been uncorrelated with the squared
Thursday returns. These findings suggest that the common approach of calculat-
ing autocorrelation coefficients, carrying out tests based upon autocorrelation co-
efficients, and estimating ARCH/GARCH models (Engle, 1982, Bollerslev, 1986)
or stochastic volatility models (Taylor, 1986) is untenable in the analysis of daily
financial data.

2.3 Concluding remarks

The evidence of multiple nonstationarities and higher-order day-of-the-week
effects provided by Figures 1-3 is beyond doubt. Although carefully produced
graphs can provide more conclusive evidence than significance tests that are based
on implausible assumptions, some researchers are seriously addicted to p-values
and keep on testing even in desperate situations, typically by resorting to the
bootstrap methodology as a universal remedy. However, in the light of Figures 1-
3 it seems unlikely that the stationary bootstrap of Politis and Romano (1994) is
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appropriate for series of daily stock returns. It is also very questionable whether
it is possible to modify conventional heteroskedasticity robust tests in order to
make them insensitive to these kinds of anomalies. At least, we would have to add
additional assumptions to the already long list of implausible and/or unverifiable
assumptions required by these tests. As pointed out by Heckman (2001) there is
a very real danger that such tests might be perceived by many applied economists
as irrelevant to empirical research.
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Figure 2: Cumulative local correlation coefficients (calculated from 50 pairs of
returns) between Monday returns and Tuesday returns, Tuesday returns and
Wednesday returns, etc.

3. Examining the Efficient Market Hypothesis

3.1 Simple trading rules

To avoid controversial risk evaluations we consider only trading strategies that
switch from the DJI to cash and vice versa. Using the DJI as the risky asset has
the advantage that we can be quite sure that all stocks contained in this index are
traded very frequently, particularly also near the open and near the close of the
trading day. This reduces the risk that artificial autocorrelation is induced when
some stocks are not traded towards the close and then tend to catch up with the
other stocks on the next trading day (nonsynchronous trading effect). Anyhow,
there is hardly any empirical evidence that the nonsynchronous trading effect is
an important source of spurious autocorrelation (see Campbell et al., 1997). We
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Figure 3: Cumulative local correlation coefficients (calculated from 50 pairs
of squared returns) between squared Monday returns and squared Wednesday
returns, squared Tuesday returns and squared Thursday returns, etc.

also do not need the nonsynchronous trading effect for the explanation of the
fact that the strong autocorrelation observed in returns on the DJI is not present
in returns on index futures. This discrepancy is simply due to nonstationarities
in the DJI series and the fact that the trading with index futures started only
in the 1980s. Note that the high autocorrelation in the returns on the DJI is
basically due to the 1940s, 1950, 1960, and 1970s. In the 1980s and 1990s the
autocorrelation was much smaller. The availability of long series of historical
quotes is the main argument to use the DJI.

We will first consider strategies, which are profitable in the absence of trans-
action costs, and then try to achieve competitiveness in the harsh reality. At
each stage, we will try to minimize the number of independently adjustable pa-
rameters in order to safeguard against data-snooping biases. Even with daily
data we must still be aware of the risk of over-fitting. Using only a small num-
ber of parameters, e.g., one dummy variable for every time period in which the
DJI suddenly lost a lot of value, we could easily construct strategies that would
have been extremely profitable in the past, but are of no use to predict future
crashes. We could use Alexander’s (1961) filter rule as a starting point. A minor
disadvantage of this rule is that its performance is highly sensitive to the choice
of the threshold value v. While the use of a single parameter for the fine-tuning
of a successful strategy for short-term trading is relatively harmless, the situation
can quickly deteriorate, when we introduce additional parameters to improve its
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performance. For that reason, we prefer to start with even simpler strategies,
which do not depend on any parameter:

Strategy 1: Buy at the end of a good day (rt > 0) and sell at the end of a bad
day (rt < 0).

Strategy 2: Buy at the end of a day that is better than the previous day
(rt > rt−1) and sell at the end of a day that is worse than the previous day
(rt < rt−1).

To keep things simple we assume that there are no partial transactions. We
can either sell all we have or buy with all available cash. The starting capital
is just the value of the DJI on the first day of the observation period. Strictly
speaking, we do not face the possibility of ruin because all changes are in per-
centages. Nevertheless, a bad strategy can bring the capital very quickly close to
zero. To implement Strategies 1 and 2 in practice, we must place suitable limit
orders just before the end of the trading session. Alternatively, we could take a
price stated shortly before the end of the trading session instead of the not yet
available closing price as a basis for our investment decision. In the absence of
transaction costs, both strategies are extremely successful (see Figure 4). Only
at times when the DJI skyrocketed, the two strategies could not outperform the
DJI. However, these facts are only convincing evidence in favor of predictability
but not against market efficiency.

To prove market inefficiency we need to introduce transactions costs. Clearly,
if we intend to follow our own trading strategy, we do not need the investment
advice of a full service broker. Hence we can deal with a discount broker to
minimize costs. If we trade on a large scale, we will have to pay less than 0.1% of
the total market value of the transaction. Transactions costs for small investors
have been much higher in the past, but it is hard to estimate the real costs for
institutional investors throughout the century. In the following we assume that
the one-way transaction costs are 0.1%. Even with these low costs Strategies
1 and 2 would have been ruinous. They simply trade too frequently. What we
need is a choosier strategy. For additional hints about future price movements we
might look at the four popular summary measures (open, high, low, close) of the
intraday data. In case of a clear upward trend, we could expect that the opening
price is close to the lowest price and the closing price is close to the highest price.
Analogously, in case of a clear downward trend, we could expect that the opening
price is close to the highest price and the closing price is close to the lowest price.
In both cases, the absolute value of the quotient

q =
close − open
high − low
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should be large. To distinguish between large and small values we need a thresh-
old value q∗. Instead of trying to find the “optimal” threshold value by maximiz-
ing the profit in the past, we prefer to use simply the sample mean |q̄| = 0.35 of
the absolute values to avoid any suspicion of data-snooping.

Strategy 3a: Buy, if qt > |q̄|, and sell, if qt < −|q̄|.
Amazingly, it turns out that this primitive strategy is already quite com-

petitive. Its performance is striking (see the upper half Figure 5). Overall, it
outperforms the DJI. Relative to the DJI, it gains more in bear-markets than it
looses in bull-markets. Its excellent performance from 1966 to 1976 casts serious
doubts on market efficiency. Of course, arbitrageurs as well as nonstationarities
will prevent any trading strategy from remaining profitable over a long period
of time. For example, the performance of Strategy 3a may be affected by the
fact that the distribution of |qt| changes over the years. Its mean exhibits a clear
downward trend, which may be attributed to the steady increase in the number
of transactions per trading session. Besides the autocorrelation in the 1980s and
1990s was less significant than before.
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Figure 4: Performance of strategies 1 and 2 in the absence of transaction costs

We may take steps to improve the overall performance of Strategy 3a. First
the threshold value could be increased to reduce trading frequency. Also two
separate threshold values for buying and selling could be used. In this case, the
threshold value for selling, q−, should be greater than that for buying, q+, to
improve the poor performance in bull markets:
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Strategy 3b: Buy, if qt > q+, and sell, if qt < −q−, where q− > q+ > |q̄|.
For q+ = 0.4, 0.5 and q− = q+ + 0.1, q+ + 0.2 we obtain the four graphs

displayed in the lower half of Figure 5. The overall performance has increased
dramatically (the final wealth ranges from 25,559.2 to 41,195.5) but we should
not pursue the fine-tuning too far. We might obtain over-optimistic results. For
example, if we end up with very large values for both threshold values, the number
of trades will be small and the chance of earning money just by luckily avoiding
one or two of the big crashes will be high. Consequently, even a high profit would
be of little evidential value.

In contrast, if our main interest is to earn money rather than to collect ev-
idence against the efficient market hypothesis, we cannot afford being purists.
In this case, we should from the beginning look at all the available information
(e.g., trading volumes, dividends, earnings-price ratios, prices of other assets, in-
terest rates, exchange rates, . . . ). Of course, that means arduous and detailed
work. To make our life easier, we might be tempted to pass the buck to powerful
nonparametric regression techniques (e.g., artificial neural networks) and auto-
matic model selection criteria. But this is not recommended for anyone but a
very experienced time-series modeler. The risk of finding spurious relationships
is enormous. This is even true for the univariate case. Just imagine a sequence
of plots of cumulative sample autocorrelation coefficients. As the lag-order in-
creases the magnitudes of the coefficients will decrease and soon the plots will
look like plots of random walks. Almost inevitably, some linear combination of
these “random walks” will be very similar to the original price series. How can a
stupid regression technique ever recognize that this similarity is coincidental.

3.2 Concluding remarks

Using a very simple and basically purely qualitative trading strategy (Strategy
3a) we managed to outperform (or even outclass) the buy-and-hold strategy for
a long period of time (from 1966 to 1976). The special value of this empirical
evidence against the efficient markets hypothesis is due to the simplicity of the
strategy, the high trading frequency, and the length of the time period in which
the strategy is highly profitable. In contrast, previous investigations of market
efficiency mostly used trading strategies with several independently adjustable
parameters and/or monthly data. However, even our study contains some fuzzy
elements (e.g., our ignorance about the real transactions costs for institutional
investors and our disregard for possibly non-negligible differences between the
size of dividends and the size of short-term interest rates) that allow passionate
advocates of market efficiency to play down the significance of our results.
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Figure 5: Performance of strategy 3a and four examples of strategy 3b with
transaction costs of 0.1%
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