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Abstract:
Forecasting incidence and/or mortality rates of cancer is of special inter-

est to epidemiologists, health researchers and other planners in predicting
the demand for health care. This paper proposes a methodology for devel-
oping prediction intervals using forecasts from Poisson APC models. The
annual Canadian age-specific prostate cancer mortality rates among males
aged 45 years or older for the period between 1950 and 1990 are calculated
using 5-year intervals. The data were analyzed by fitting an APC model to
the logarithm of the mortality rate. Based on the fit of the 1950 to 1979
data, the known prostate mortality in 1980 to 1990 is estimated. The period
effects, for 1970-1979, are extended linearly to estimate the next ten period
effects. With the aims of parsimony, scientific validity, and a reasonable fit
to existing data two different possible forms are evaluated namely, the age-
period and the age-period-cohort models. The asymptotic 95% prediction
intervals are based on the standard errors using an assumption of normality
(estimate ±1.96× standard error of the estimate).

Key words: Age-period-cohort models, cancer incidence and mortality, pro-
jections.

1. Introduction

Forecasting incidence and/or mortality rates of cancer is of special interest
to epidemiologists, health researchers and other planners in predicting the de-
mand for health care (Schaubel et al. 1998). The simplest way to predict cancer
incidence and/or mortality rates is to extrapolate from past trends by fitting a
parametric model to the observed cancer mortality cases (MacNeill et al. 1995
and Hakulinen and Dyba 1994). However, the point estimates obtained from
fitted models, and their associated variability, depend on the parametric form
of the model. It is often difficult to choose between different parametric forms,
because several models may produce equally good fits to the data but offer very
different predictions (Dyba and Hakulinen 2000). Using linear modeling, a “pre-
diction interval” was developed by Hakulinen and Dyba (1994), by assuming a
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Poisson distribution for the number of incident cases, but such linear trends are
not likely to last indefinitely and both the year in which the disease was diagnosed
(period); and the year in which the subject was born (cohort) may contribute
simultaneously to the observed rates of cancer incidence and mortality.

This has led to the increasing use of log-linear Poisson age-period-cohort
(APC) models for the statistical analysis of this type of data (Osmond 1985).
The age of a subject at the time of their diagnosis (age), along with period and
cohort, are the three time factors typically used in studying patterns of morbid-
ity and mortality rates (Osmond and Gardner 1983 and Holford 1985). However,
although these have received much attention in the literature (Kupper et al. 1983
and Holford 1991), their complex inter-relationship does pose identification prob-
lems, since knowledge of any two of these factors automatically determines the
effect of the third (Kupper et al. 1985 and Holford 1983). Fortunately, projections
based on the APC model are uniquely determined (Holford 1985). APC mod-
els were used to forecast the incidence and mortality of lung cancer in England,
Wales and Korea, and the mortality due to all cancers in Switzerland (Osmond
1985, Negri et al. 1990, and Jee et al. 1998). A Bayesian APC model has
also been used to predict incidence of Hodgkin’s disease in Oxford (Bray 2002).
In reviewing these methods, Bray (2002) showed that one particular model (the
Osmond model 1985) always provides the best fit to the data. However, all these
models are only capable of providing point estimates of future rates; the cal-
culation of prediction confidence intervals for the Poisson regression models has
remained a hard task.

A more detailed analysis of these shortcomings inherent in the earlier ap-
proaches, has stimulated us to investigate the advantages of applying Poisson
APC models in obtaining more accurate predictions and their associated confi-
dence limits. Our specific objective here is to develop prediction intervals using
forecasts from Poisson APC models.

2. The APC Model

Descriptive epidemiologists are interested in the presentation and interpreta-
tion of temporal variation in cancer rates. The issue here, in its simplest form,
concerns the analysis of a set of rates arranged in a two-way table by age group
and calendar period. A specific model commonly applied to this type of cross-
classified data is APC model. It expresses each cell of the mortality table in the
general form:

λijk = µ+ αi + βj + γk (2.1)

where αi (i = 1, . . . , I) represents the i-th age group effect; βj (j = 1, . . . , J)
represents the j-th calendar period effect; γk (k = 1, . . . , I+J −1) represents the
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k-th cohort effect, and the dependent variable λijk = f(nijk/Nijk) is a function of
the mortality rate; nijk is the observed number of deaths in the i-th age group, j-
th calendar period and k-th cohort; Nijk is the corresponding number of subjects
at risk.

I∑
i=1

αi =
J∑

j=1

βj +
I−J−1∑

k=1

γk = 0.

These restrictions imply, for example, that only the first (I − 1) age effects,
the first (J − 1) period effects, and the first (I + J − 2) cohort effects in model
(2.1) require estimation.

3. Estimation

Model (2.1) belongs to a class of generalized linear models and can be fit-
ted using standard methods developed for those models (McCullagh and Nelder
1989). For this class of models, a function of the mean is linearly related to a set
of regression variables. Under Poisson error, the model is linear in the logarithm
of the expected cell count µijk = E(nijk). In our case, the expected value in any
cell is given by

µijk = E(nijk) = Nijk exp{µ+ αi + βj + γk} = Nijk exp{ηijk},

i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . ,K.
The actual model being fitted is:

log(E(nijk)) = µ+ αi + βj + γk + log(Nijk) = XB (3.1)

where log(Nijk) is referred to as an offset and is treated as a known constant,
X is the model matrix and B is the column vector of parameters µ, α, β and γ.
Let b be the estimate of B, then the maximum likelihood estimates are obtained
iteratively from the equations

(XT ΓX)(m−1)b(m) = (XT ΓZ)(m−1) (3.2)

where the superscript (m − 1) denotes evaluation at b(m−1), Γ the diagonal
matrix with elements Γ−1

ijk = var(ηijk)(∂ηijk/∂µijk)2 and zijk = ηijk + (nijk −
µijk)(∂ηijk/∂µijk). The procedure begin by using some initial approximation b(0)

to evaluate Z and Γ, then (3.2) is solved to give b(1) which in turn is used to
obtain better approximations for Z and Γ, and so until adequate convergence
is achieved. When the difference between successive approximations b(m−1) and
b(m) is sufficiently small, b(m) is taken as the maximum likelihood estimate.
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4. Variance of Future Estimates for Age-Period-Cohort Model

The motivation for using an age, period and cohort approach to the estimation
of future mortality rates is that it takes account of both period and cohort effects,
in addition to age effects. Let

ψT = (µ, α1, . . . , αI , β1, . . . , βJ , γ1, . . . , γK) (4.1)

The first step is to obtain α̂i, β̂j and γ̂k the estimates of αi, βj and γk produced
by iteratively reweighted least squares. To extrapolate, keep the α’s unchanged;
that is, no extension to other ages is required. The estimates for future period
values and cohort values will be obtained by linear regression applied to the most
recent period and cohort values.

Let θ̂ilk be the maximum likelihood estimate of the expected number of cases
in the i-th age group, l-th future year (I = J +1, . . .) and the corresponding k-th
cohort. That is

θ̂ilk = Nilk exp{αt
ilkψ̂} (4.2)

where the constant Nilk represents the size of the population at risk in the i-th
age group, l-th future period and k-th future cohort, and αt

ilk is a constant vector
chosen so that

αt
ilkψ̂ = µ+ αi + β̂l + γk

The variance of θ̂ilk can be approximated using the delta-method as

var(θilk) ≈

(
∂θ̂ilk

∂η̂ilk

)2

var(ln θilk) = θ̂2
ilkvar(ln(θ̂ilk)) (4.3)

where η̂ilk = αt
ilkψ̂ = ln θ̂ilk − lnNilk and

var(ln(θ̂ilk))
= var(αt

ilkψ̂)

= αilk
T cov(ψ̂)αilk

= var(µ̂) + var(αi) + var(β̂l) + var(γk)
+ 2cov(µ, αi) + 2cov(µ, βl) + 2cov(αi, βl)
+ 2cov(µ̂, γk) + 2cov(αi, γk) + 2cov(β̂l, γk)

The variance of the predicted number of deaths at time l is

var(θ̂l) =
∑

i

∑
k

var(θ̂ilk) +
∑

(i,k)�=(i′,k′)

cov(θilk, θ̂i′l′l) (4.4)
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cov(θ̂ilk, θ̂i′lk′)

≈

∂θ̂ilk

∂η̂ilk

∂θ̂i′lk′

∂η̂i′lk′
cov(αilkψ̂, αi′lk′ψ̂)

= θ̂ilkθ̂i′lk′
[
cov(µ̂+ α̂i + β̂l + γ̂k, µ̂+ α̂i′ + β̂l + γ̂k′)

]
= θ̂ilkθ̂i′lk′

[
var(µ̂) + cov(µ̂, α̂i′) + cov(µ̂, β̂l) + cov(µ̂, γ̂k′) + cov(µ̂, α̂i)

+ cov(α̂i, α̂i′) + cov(α̂i, β̂l) + cov(α̂i, γ̂k) + cov(µ̂, γ̂k) + cov(α̂′
i, γ̂k)

+ cov(γk, γ̂k′) + cov(γ̂k, βl) + cov(µ̂, β̂l)

+cov(α̂i′ , β̂l) + cov(α̂i′ , β̂l) + var(β̂l)
]

(4.5)

The asymptotic 95% prediction intervals will be based on the standard er-
rors using an assumption of normality (estimate ±(1.96× standard error of the
estimate)). The estimated SE are obtained on substituting the MLE of Ψ in
(4.5).

5. Model Selection

Clytton and Schifflers (1987a and 1987b) advised the use of a reduced age-
period (AP) or age-cohort (AC) model whenever possible, and the use of the full
age-period-cohort (APC) model only when neither of these provides a satisfactory
fit. In cancer epidemiology, however, this is often the case (Clytton and Schifflers
1987a; Clytton and Schifflers 1987b; Post et al. 1999). Since age is the most
important predictor of prostate cancer mortality (Morrison et al. 1995), only
models that include age will be considered in selecting a model to summarize the
observed cancer rates. The two possible alternatives for model selection are an
age-period-cohort model or an age-period model (AP). The AP model has the
form

log(E(nij)) = µ+ αi + βj + log(Nij),

where αi are the age effects, βj are period effects, log(Nij) is an offset and E(nij)
expected number of mortality cases.

One way to confirm the effectiveness of a given model is to establish how
it would have performed in predicting data that we have already observed. To
evaluate the behavior of the APC models, we have examined prostate cancer
mortality data from 1950 to 1979 as a means of predicting the mortality rates
for the period of 1980 to 1990. The choice of the form of the model could have a
profound effect on the forecasts. Accordingly, we evaluated two possible forms,
with the aims of parsimony, scientific validity, and a reasonable fit to existing
data.
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Figure 1: Canadian age-period specific mortality rates for prostate cancer,
1950-1990.
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Figure 2: Canadian male age-period specific population, 1950-1990, with pro-
jections to the year 2010.

We chose two Poisson regression models: the AP and the APC models. The
age-cohort model was not incorporated because we are interested in knowing the
number of cases in the future per period but not per cohort, as it is unrealistic to
extrapolate based on the few cases that appear in the most recent cohorts. Three
indices of model performance were calculated:
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1. Mean prediction error = mean (predicted number of cases − actual num-
ber of cases). This estimates the bias of the prediction. If negative, then the
prediction is considered to be too low.

2. Mean absolute prediction error = mean (absolute (predicted number of
cases − actual number of cases)). This index was used to provide the average
difference from the actual observed cases.

3. Mean squared prediction error = mean ((predicted number of cases −
actual number of cases)2). This index of the performance incorporates both bias
and variance. In this paper it is regarded to be more sensitive to outliers than
the mean absolute error.

6. Example

Cancer is a leading health problem in Canada. Of all cancer among males,
cancer of the prostate is the most common cancer diagnosed and is the third
leading cause of death next to lung and colorectal cancers (National Cancer In-
stitute of Canada 1993; Morrison et al. 1995). Because the Canadian population
is growing and aging, the number of prostate cancer deaths is expected to con-
tinue to increase progressively (Figure 1). The age-period specific population
data by five-year age groups for Canadian males for the time period 1950 to 1990
and extrapolated values to the year 2010 were obtained from Statistics Canada
(Demography Division, 1993). It is worth mentioning that there is a large wave
created by the baby boom of the period 1945-1970 (Figure 2) which is expected
to influence health care delivery in the future as with regard to prostate cancer.
We calculated the annual Canadian age-specific prostate cancer mortality rates
among males aged 45 years or older for the period between 1950 and 1990 using
5-year intervals (i.e. 45-49 years to 85+ years). Age-specific rates were not cal-
culated for men under the age of 45 because prostate cancer is very rare in this
group ( Figure 1). One-year periods were used to allow forecast for individual
years. Cohorts were taken as the midpoints of five-year cohort intervals. This
resulted in having 9 age groups, 40 periods and 17 cohorts.

7. Results

The two Poisson regression models fit separate parameters for each different
age group and each year. The analysis of deviance shows evidence that all the
effects (age, period and cohort) are nonzero (p < 0.0001, Table 1). Table 1
represents the effect of sequential inclusion each of the terms in the model, starting
from the null model.
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Table 1: Analysis of deviance table for age-period-cohort (APC) model

Df1 Deviance2 Residual df Residual deviance Pr(Chi)3

Null4 368 153486.2
Age 8 152239.0 360 1247.2 < 0.0001

Period 40 672.8 320 574.4 < 0.0001
Cohort 15 190.9 305 383.5 < 0.0001

1df = degrees of freedom
2Deviance: difference in residual deviance between each model and the
one above it.
3Pr(Chi) = the tail probability (p-value) of the Chi-Squared distribution
corresponding to the values in the “df” and “Deviance” columns. Small
p-value indicates that there is not much evidence in favor of the null
hypothesis, that the smaller model is correct, and it should be rejected.
4The null model is the mean of the response if an intercept (µ ) is present
in the model.

To forecast, both the period and cohort parameters were projected. Since the
choice of periods is important for accuracy of the period parameters, we based
the forecasted years on the most recent decade and on the 7 most recent cohorts
only. Forecasts for the next ten years required an addition of ten period (1980,
. . . , 1990) and four cohort values (1933, 1938, 1943, and 1948). The new cohort
values were not considered to be so crucial because it would be a long time before
rates become large for young cohorts (Osmond and Gardner 1983). Based on the
fitted 1950-1979 prostate cancer mortality data, the period effects and the cohort
effects were both extended linearly to obtain the next ten period values and the
next four cohort values. Recombining these values with the estimated age-values
produced the projected rates, that is the projected rates, λ̂ilk, can be estimated
by combining α̂i, β̂l and γ̂k as λ̂ilk = µ̂+ α̂l + γ̂k.

Based on the three indices of model projections performance, the AP model
seems to be able to make slightly better predictions than the APC model. How-
ever, as a result of the change of 1980-1990 mortality trends, both models pro-
duced very low predictions (Table 2).

Table 2: Results of the three indices of model projection performance

Model Mean Error Mean Absolute Error Mean Squared Error

Age-period −10.94 23.45 1350
Age-period-cohort −18.98 25.49 1503
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Figure 3: Observed and predicted number of deaths from prostate cancer in
Canada based on the AP model. The vertical broken lines represent 95 percent
prediction intervals for future observation accommodating the over-dispersion.

Table 3 and Figure 3 contain a summary of the results of fitting the AP
model using 1950-1979 prostate data and predicting for 1980-1990. The AP
model under-predicts the number of cases. The predicted values were within
± 3% of the observed values for the years 1980-1984. However, the AP model
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under-predicted the number of cases of prostate cancer by around 10%.

Table 3: Observed and predicted numbers of prostate cancer deaths for 1980 to 1990.

Year Observed cases Predicted cases 95% prediction intervl

1980 2032 2064 1920 - 2208
1981 2192 2129 1960 - 2298
1982 2172 2189 1993 - 2385
1983 2285 2251 2027 - 2475
1984 2392 2319 2065 - 2573
1985 2627 2391 2104 - 2678
1986 2744 2458 2137 - 2779
1987 2842 2538 2180 - 2896
1988 3032 2614 2217 - 3011
1989 3042 2696 2258 - 3134
1990 3209 2790 2307 - 3273

8. Discussion

In this study, we fitted AP and APC models to prostate cancer mortality
rates in Canada. Despite its nonidentifiability problem, the APC model appears
suitable for forecasting the mortality due to prostate cancer. It has been shown
that projections based on APC models can be uniquely determined and are not
affected by the identifiability problem (Holford 1985). Regardless of the limi-
tations of the APC model, our results show that it is useful in predicting the
underlying trend of mortality rates due to prostate cancer in Canada.

Based on the three performance indices for model projections, the AP model
appears to be able to slightly more successful in its predictions than the APC
model. However, due to the changes in the mortality trends for 1980-1990, both
models under-estimated the number of cases. This under-prediction of prostate
cancer mortality may also be attributable to the observed baby boom of 1945-
1970.

We have clearly demonstrated that accurate prediction intervals for the num-
bers of deaths from prostate cancer can be constructed using the AP model. A
previous study (Hakulinen and Dyba 1994) discussed the prediction intervals for
linear models assuming the Poisson distribution. Extra-Poisson variation is a
particular problem in large geographical areas or with a common disease with
a large number of cases (McCullagh and Nelder 1989). It will not make much
difference to the estimates of the coefficients but it can have a considerable influ-
ence on the prediction intervals. Therefore, the prediction interval was adjusted
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using a dispersion factor of 1.63 (McCullagh and Nelder 1989).
We conclude that the assumption of the Poisson distribution is not appropri-

ate in describing the mortality of Canadian prostate cancer. The analysis of the
deviance suggested over-dispersion and therefore a lack of fit, since the residual
deviance was greater than the degrees of freedom. The assumption of a Pois-
son distribution for the number of cancer cases turns out to be unrealistic when
Canada as a whole is considered. However, breaking down the data by small
regions and/or socio-economic factors may improve the validity of these assump-
tions. Nevertheless, our study is one of only a few which have examined the values
of forecasting by Poisson APC models. It differs from other studies in that it has
identified the prediction intervals for new cases, addressed the practical problems
of APC forecasts, and estimated the variance for the predicted number of cases
using Poisson-distribution observations.
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