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Abstract: Conventional sampling in biostatistics and economics posits an
individual in a fixed observable state (e.g., diseased or not, poor or not,
etc.). Social, market, and opinion research, however, require a cognitive
sampling theory which recognizes that a respondent has a choice between
two options (e.g., yes versus no). This new theory posits the survey re-
spondent as a personal probability. Once the sample is drawn, a series of
independent non-identical Bernoulli trials are carried out. The outcome of
each trial is a momentary binary choice governed by this unobserved proba-
bility. Liapunov’s extended central limit theorem (Lehmann, 1999) and the
Horvitz-Thompson (1952) theorem are then brought to bear on sampling
unobservables, in contrast to sampling observations. This formulation reaf-
firms the usefulness of a weighted sample proportion, which is now seen to
estimate a different target parameter than that of conventional design-based
sampling theory.
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1. Introduction

Estimating a population proportion is commonplace in psychological assess-
ment, experimentation, and opinion surveys. In this vast area of research and
application the target parameter is invariably posed as a single probability that
governs a sequence of binary respondent outcomes such as “right vs. wrong”,
“agree vs. disagree”, etc. The classical central limit theorem is then used to
support the normality of the sample proportion.

Oddly, the above status quo in social research and policy application ignores
a well known fact; namely, the existence of broad individual differences on almost
any psychological variable imaginable. From a statistical point of view data col-
lectors and analysts have been content with the central limit theorem of Laplace
in 1810 rather than progressing to that of Liapunov in 1901. (These sources
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are referenced by Lehmann 1999, pp.600-601). When applied to opinion polling,
the earlier theorem assumes a population of individuals, each having an a priori
agreement or disagreement with a statement not yet heard. Thus the presentation
of this statement to a sample of individuals from this population is tantamount
to the selection of red and white balls from an urn, with the goal of estimating
the proportion of red. That is, successive individual-by-individual response so-
licitations are regarded as independent identically distributed (i.i.d.) Bernoulli
trials, each with a common probability that is the population proportion.

The present paper argues for the application of the more realistic Liapunov
central limit theorem. This relaxes the status quo to independent non-identically
distributed (i.n.d.) Bernoulli trials, each with an individual-specific (case) weight
and response probability. First, a sample of size n is drawn without replacement
from a population of N individuals. The sample design determines the inclusion
probability for each individual in the population. Next, conditioning on the se-
lected sample, the data collection consists of n solicited i.n.d. Bernoulli responses.
Rather than revealing a predetermined individual state, each Bernoulli trial gen-
erates a momentary response (a one or zero) driven by an individual’s unobserved
probability. Given this alternative representation of the survey respondent, the
Liapunov central limit theorem, and the Horvitz-Thompson (1952) theorem, are
then invoked to estimate the mean of the population of personal probabilities.

Section 2 lays out a triangular array of i.n.d. random variables and its central
limit theorem. Section 3 defines a weighted Bernoulli variate and inserts it into
this array. Section 4 restricts and interprets this formulation to design-based
sampling (without replacement) from a finite population of random variables.
This gives the conditional and unconditional expectations of the (approximately
normal) sample mean of n weighted Bernoulli variates, along with its condi-
tional variance. Section 5 treats the important and frequently used case of self
weighted, or epsem (equal probability of selection method), samples. In this case
the classical estimate of the standard error of the sample proportion is advocated
as reasonable rather than the severe underestimate it is widely believed to be.
Finally, Section 6 gives some concluding remarks relevant to this new world of
survey sampling.

2. The Central Limit Theorem for I.N.D. Random Variables

We begin with a sequence of sets of random variables of size n in the triangular
array

Yni, i = 1, 2, . . . , n

where n → ∞. The following notation will be used to describe Yn1, Yn2, . . . , Ynn:

E(Yni) = µni
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V ar(Yni) = σ2
ni < ∞

µ̄n =
1
n

(µn1 + µn2 + · · · + µnn)

s2
n = σ2

n1 + σ2
n2 + · · · + σ2

nn

Ȳn =
1
n

(Yn1 + Yn2 + · · · + Ynn).

Using this notation, a convenient lemma to Liapunov’s theorem (cf. Lehmann,
1999, pp. 97-102, 571-573) may then be invoked:

Lemma 2.2.1 Let Yni be a typical element of a triangular array of independent
random variables with E(Yni) = µni and V ar(Yni) = σ2

ni. Then

Ȳn − µ̄n√
V ar(Ȳn)

→ N(0, 1) as n → ∞ (2.1)

provided there exists a constant A such that

|Yni| ≤ A for all i and n (2.2)

and
s2
n → ∞ (2.3)

Conditions (2.2) and (2.3), which are jointly sufficient for (2.1), imply the suffi-
cient condition used by Liapunov to establish (2.1) (Lehmann,1999, pp. 98, 101).
The more restrictive conditions (2.2) and (2.3) are used here because they are
easily satisfied by the weighted Bernoulli variates defined next.

3. I. N. D. Bernoulli Trials

For individual i let Xni be a Bernoulli variate taking the values 1 or 0 with
probabilities pni and 1 − pni . Now define i’s weighted Bernoulli variate as

Yni := wniXni, (3.1)

where wni > 0 and sum of the weights is
∑

i wni = n. Then

E(Yni) = µni = wnipni

V ar(Yni) = σ2
ni = w2

nipni(1 − pni) < ∞

The value taken by Yni is uniformly bounded, satisfying (2.2). Moreover, in this
binary situation

s2
n =

∑
i

w2
nipni(1 − pni) (3.2)
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satisfies (2.3) when the pni are bounded away from zero and one. That is, if their
exists a constant a > 0 such that

a < pni < 1 − a for all i and n,

then 1 − pni > a and pni(1 − pni) > a2. Also, the weights wni vary about one,
and there exists a constant b > 0 such that

wni > b for all i and n.

Hence, w2
ni > b2 ,

w2
nipni(1 − pni) > b2a2,

and
s2
n = nb2a2 → ∞ as n → ∞,

verifying (2.3) (cf. Lehmann, 1999, p. 99).

4. Sampling Random Variables

4.1 A finite triangular array

With conditions (2.2) and (2.3) satisfied, the limiting distribution (2.1) is now
established for the n weighted Bernoulli variates in (3.1). These i.n.d. random
variables Yn1 . . . , Yni, . . . , Ynn in lemma 2.2.1 are now interpreted as arising from
a particular sample from a finite population. Therefore we must now restrict the
array in Section 2 to a finite set of random variables and interpret these as a
sequence of samples of size n = 1, . . . , N . This setup is depicted by the array

Yni, i = 1, 2, . . . , n;n = 1, 2, . . . N

where the n-th member of this sequence is a sample of n random variables drawn
(without replacement) from the N -th member, which is a population of N random
variables. It is reiterated that respondent i in this nth sample is represented here
as a random variable Yni upon which an observation is to be realized during later
response solicitation.

Curtailing the infinite sequence in Section 2 to the finite population YN1, . . .,
YNi, . . . , YNN weakens the asymptotic normality of Ȳn to its approximate nor-
mality. Also, any simple or complex sampling design determines a probability
πni > 0 that individual i is included in the sample. For example, if the design is
self weighting this inclusion probability is n/N for each individual in the popula-
tion. (See Section 5.) Finally, in this special sampling case of lemma 2.2.1, the
weights of the i.n.d. Bernoulli variates take the form

wni =
n

Nπni
, (4.1)
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where again wni > 0 and
∑

i∈S wni = n.

4.2 The conditional and unconditional expectations of Ȳn

We now condition on the i.n.d.random variables Yn1, . . . , Yni, . . . , Ynn actually
drawn, observing that their (approximately) normal mean,

Ȳn =
1
n

∑
i∈S

Yni =
1
N

∑
i∈S

Xni

πni
, (4.2)

has the sample specific expectation

E(Ȳn) =
1
N

∑
i∈S

pni

πni
=: pn (4.3)

The sample sum in (4.3) is, by the Horvitz-Thompson (1952) theorem, an unbi-
ased estimate of the total of the N response propensities pNi in the population.
This is stated in the following lemma:

Lemma 4.2.1 Let TN = pN1 + · · · + pNN be the sum of theN unobserved prob-
abilities in the population. Then

TN = E

(∑
i∈S

pni

πni

)
. (4.4)

The Horvitz-Thompson estimator in the parentheses in (4.4) is an unbiased esti-
mate of the population total for an arbitrary sampling design (Thompson 1997,
pp.12-15; Lohr 1999, pp.196-199, 204-210). Thus lemma 4.2.1 implies that the
sample-specific expectation pn under lemma 2.2.1 itself has the expectation

E(pn) =
TN

N
= E{E(Ȳn)}, (4.5)

over all samples of size n. This latter expectation is the population mean of the N
unobservable probabilities pNi . This population mean is also the unconditional
expectation of the observed sample mean Ȳn in lemma 2.2.1.

4.3 A population census

In a census n = N , and

ȲN =
1
N

(YN1 + · · · + YNN ).
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Substituting the inclusion probability of one for πni in (4.3)

E(ȲN ) = PN .

Interestingly, the target parameter PN , which is the mean of the population of N
personal probabilities, is not realized but only expected in a census. That is, in a
census the mean ȲN is still a random variable because each individual response
YNi is stochastic, taking the values 0 with probability 1 − pNi and the value 1
with probability pNi, for i = 1, . . . , N . With wNi = 1 the variance of this census
mean is easily seen to be

V ar(ȲN ) =
1

N2

∑
i∈P

pNi(1 − pNi), (4.6)

where the summation is over i = 1, . . . , N for the entire population. The miniscule
variance in (4.6) shows that the census ȲN is a random variable that is distributed
tightly around the target parameter PN . In contrast, in standard design-based
surveys (Lohr, 1999) the census mean is the fixed proportion of 1’s (versus 0’s)
in the population.

4.4 The conditional variance of Ȳn

The variance of the sample mean Ȳn in (4.2), which is conditioned on the
sample, may be alternatively expressed as

V ar(Ȳn) = n−2s2
n (4.7)

= N−2
∑
i∈S

pni(1 − pni)
π2

ni

(4.8)

where s2
n is given in (3.2). Writing (4.7) as

V ar(Ȳn) = n−1 s2
n

n
,

the variance of the sample mean is seen to be the mean of the n variances divided
by the sample size n. This is a generalization of the classic special case, where
the variance of the sample mean is the (single) population variance divided by
the sample size.

Finally, the Horvitz-Thompson (1952) theorem can also be applied to the
unobserved individual variances pni(1 − pni) in (4.8):

Lemma 4.4.1 Let VN = pN1(1 − pN1) + · · · + pNN (1 − pNN ) be the sum of the
N unobserved variances in the population. Then

V ar(ȲN ) =
1

N2
VN =

1
N2

E

{∑
i∈S

pni(1 − pni)
πni

}
. (4.9)
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Writing the expectation of the variance of the sample mean in (4.8) as

E(V ar(Ȳn)) =
1

N2
E

{∑
i∈S

pni(1 − pni)
πni

· 1
πni

}
(4.10)

it becomes evident that

E(V ar(Ȳn)) > V ar(ȲN )

due to the multiplier π−1
ni > 1 in (4.10). In the important case of self weighting

in Section 5, π−1
ni = N/n and therefore

E(V ar(Ȳn)) =
N

n
V ar(ȲN ) (4.11)

Equation (4.11) shows that the conditional variance of the mean Ȳn is a different
order of magnitude than the (miniscule) variance of the census mean ȲN . A
particular estimate of V ar(Ȳn) is suggested for the case of self weighting.

5. Self Weighting

Complex surveys commonly use stratified multi-stage sampling with all units
selected with probability proportional to size except at the final stage. In this
last stage a fixed number of individuals are drawn from the last unit (e.g., voting
district) by simple random sampling without replacement. This sampling design
is self weighting in the sense that each individual in the population has the same
probability n/N of being included in the sample. (Skinner, Holt, and Smith, 1989,
pp.16, 40; Thompson, 1997, pp.12-15). Other types of epsem designs are used
in random-digit-dialing telephone surveys in marketing research. Self weighting
also occurs in simple surveys, where n individuals are drawn directly from a
population of size N by simple random sampling without replacement.

5.1 The conditional epsem variance of Ȳn

Substituting n/N for πni in (4.1) gives

wni = n(Nn/N)−1 = 1 for i = 1, 2, . . . , n

Replacing wni, in turn, by one in (3.2) and (4.7) gives

V ar(Ȳn) = n−2
∑
i∈S

pni(1 − pni). (5.1)
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Formula (5.1) is also found by substituting n/N for πni in (4.8). It is then
easily shown that∑

i∈S

pni(1 − pni) = npn(1 − pn) −
∑
i∈S

(pni − pn)2 (5.2)

Replacing πni by n/N in (4.3), reveals that pn in (5.2) has the structure

pn =
1
n

(pn1 + pn2 + · · · + pnn),

which is the mean of the n individual probabilities controlling the sampled Bernoulli
variates Yn1, . . . , Yni, . . . , Ynn. Finally, dividing both sides of (5.2) by n2 gives

V ar(Ȳn) =
pn(1 − pn)

n
− 1

n2

∑
i∈S

(pni − pn)2, (5.3)

showing that the conditional variance of Ȳn increases as pn1, . . . , pnn become
more homogeneous, maximizing when these probabilities are all equal. Therefore,
pn(1 − pn)/n is an upper bound for V ar(Ȳn) in (5.3).

5.2 Inferences from Ȳn to pn and PN

Equation (5.3) suggests the classical statistic Ȳn(1− Ȳn)/n as an overestimate
of the conditional (sample dependent) variance in the self weighted case. More-
over, this conservative variance estimate holds for all sample sizes up to and
including the population size N . Thus, even in a census, where

ȲN = N−1
∑
i∈P

YNi

the statistic
ȲN (1 − ȲN )

N

is an overestimate of V ar(ȲN) in (4.9).
Over-estimating V ar(Ȳn) in (5.3) as Ȳn(1−Ȳn)/n sets up the very conservative

confidence interval

Ȳn ± 1.96

√
Ȳn(1 − Ȳn)

n
, (5.4)

which is greater than 95% for covering pn. This interval is less conservative for
covering PN , which is generally more distant from Ȳn than pn .

Finally, it is well known that Ȳn(1 − Ȳn)/n severely underestimates the vari-
ance of the sample proportion in conventional complex sampling, where each
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fixed-state respondent is represented by a 0 or 1. In this standard design-based
situation the true variance of the proportion is inflated by the homogeneous clus-
tering of 0’s and 1’s in the population. In contrast, the present construction
represents the respondent by a Bernoulli trial that is driven by an unobserved
personal probability. In this alternative, more realistic representation of the re-
spondent, the statistic Ȳn(1− Ȳn)/n is a reasonable estimate of the unconditional
variance of Ȳn over all samples of size n.

6. Discussion

The present paper advocates the design-based sampling of random Bernoulli
variates versus the conventional design-based sampling of 1’s and 0’s. Both pro-
cedures produce an observed sample of 1’s and 0’s and a sample proportion, but
their generating processes are very different. A sample of random variables, with
subsequent Bernoulli trials, gives a sample proportion that estimates the mean of
a population of proportions. In contrast, numerical samples give a sample pro-
portion that estimates the mean of a population of 1’s and 0’s. Although these
two sample proportions are identical, their variances and target parameters are
quite distinct.

In the case of Bernoulli variate sampling, individual differences are treated
in two senses. First, they are regarded as varying response dispositions governed
by individual-specific probabilities pni . Second, these dispositions are attended
by individual-specific weights wni that are differential representations of the in-
dividuals in a population. In this setup individual i’s personal probability takes
a value in the open interval (0,1), in contrast to i being (extremely) represented
by either zero or one. Hence, the sampling is from a population of unobservable
probabilities rather than a population of observable zeros and ones. The latter
convention is appropriate in biomedical and economic research, where individual
i is in a fixed and noticable state, such as diseased or not, poor or not, etc. In
social, market, and opinion research, however, an individual has a choice of re-
sponding one way or the other. In the present formulation, this choice is under
the control of a personal response disposition pni that is activated upon stimulus
presentation. The response observed is still a zero or one but now these two
values are taken by a random Bernoulli variate at the individual level.

An important strength of the present approach is that the individual propen-
sity pni remains unobserved, allowing us to side step its estimation by complex
numerical iterations or lengthy experimental replications. For example, item re-
sponse theory requires computationally intensive methods to estimate distinct
individual probabilities for saying “yes” to a survey question. On the other hand,
signal detection theory uses arduous replications to estimate subject-specific
probabilities for saying “yes” that a tone is present amid noise. Calculations
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such as these may be necessary for individual evaluation in psychology and edu-
cation, but the Liapunov and Horvitz-Thompson theorems allow us to circumvent
them for group assessment at the population level.

Finally, equation (5.3) provides a conventional estimate of V ar(Ȳn) in the
context of the sampling theory developed in Sections 2 through 5. In the case
of self weighting the homogeneity of the pni reduces the second term in (5.3),
increasing V ar(Ȳn). Thus the estimate of this conditional variance, suggested in
Section 5.2, is very conservative, providing a reasonable estimate of the uncon-
ditional variance of Ȳn. In the unweighted case this is a reassuring property for
an ordinary sample mean because the overestimate Ȳn(1 − Ȳn)/n of Ȳn’s condi-
tional variance holds for all sample sizes up to and including the population size
N . In contrast, this classical statistic severely underestimates the variance of the
sample mean in standard complex sampling from populations with homogeneous
clusters of zeros and ones. Thus, replacing a respondent’s spurious zero or one
by a Bernoulli trial driven by his (or her) personal probability provides a fresh
look at the important issue of variance estimation in opinion surveys.
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