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Abstract: Normality (symmetric) of the random effects and the within-
subject errors is a routine assumptions for the linear mixed model, but it may
be unrealistic, obscuring important features of among- and within-subjects
variation. We relax this assumption by considering that the random effects
and model errors follow a skew-normal distributions, which includes normal-
ity as a special case and provides flexibility in capturing a broad range of
non-normal behavior. The marginal distribution for the observed quantity
is derived which is expressed in closed form, so inference may be carried
out using existing statistical software and standard optimization techniques.
We also implement an EM type algorithm which seem to provide some ad-
vantages over a direct maximization of the likelihood. Results of simulation
studies and applications to real data sets are reported.

Key words: EM algorithm, marginal likelihood, mixed effects model, skew-
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1. Introduction

The linear mixed model (LMM) have become a most commonly used for
analyzing continuous repeated measures data from a sample of individuals in
agricultural, environmental, biomedical, economical, and social science applica-
tions. Let Yj be a (nj × 1) vector of observed continuous responses for sample
unit j, j = 1, . . . ,m. We assume that Yj follows the general LMM:

Yj = Xjβ + Zjbj + εj, j = 1, . . . ,m , (1.1)

where Xj of dimension (nj × p) is the design matrix corresponding to the fixed
effects, β of dimension (p × 1) is a vector of population-averaged regression co-
efficients called fixed effects, Zj of dimension (nj × q) is the design matrix corre-
sponding to the (q × 1) random effects vector bj , and εj of dimension (nj × 1)
is the vector of random errors. A standard but possibly restrictive assumption is
that the random effects bj and the residual components εj are independent with

bj
iid∼ Nq(0,D), εj

ind∼ Nnj(0,ψj), (1.2)
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where D = D(α) and ψj = ψj(γ), j = 1, . . . ,m, are dispersion matrices, usually
associated with the variability among- and within-individuals, which are depend-
ing on unknown and reduced parameters α and γ, respectively. Frequently,
estimation methods for the parameters in model (1.1)-(1.2) are maximum like-
lihood and restricted maximum likelihood (Lindstrom and Bates, 1988). Con-
fidence intervals and hypothesis testing for the parameters are generally based
on asymptotic results and softwares such as SAS proc mixed (Littell, Milliken,
Stroup and Wolfinger, 1996) or S-plus lme (Pinheiro and Bates, 2000) incorporate
procedures for analyzing LMM under this assumptions.

Though model (1.1)-(1.2) offers great flexibility for modelling these effects, it
suffers from the same lack of robustness against departures from distributional
assumptions as other statistical models based on the Gaussian distribution and
may be too restrictive to provide an accurate representation of the structure that
is present in repeated measures and clustered data. From a practical point of
view, the most commonly adopted approach to achieve multivariate normality
involves variables transformation. Although such methods may give reasonable
empirical results, it should be avoided if a more suitable theoretical model can
be found (Azzalini and Capitanio, 1999). Thus, considerable interest has fo-
cused on relaxing the normality assumption and jointly estimating the random
effects and model parameters. In this context, recent proposals have been made
based in replacing the assumption of normality by a weaker assumption that only
the random effects have a “smooth” density that may be skewed. For example,
Zhang and Davidian (2001) use the semiparametric (SP) density representation
proposed by Gallant and Nychka (1987) to characterize the random effect den-
sity; an appealing feature of this approach is that the likelihood for all model
parameters may be expressed in a closed form. Alternatively, Verbeke and Lesaf-
fre (1996) adopt a mixture of normals representation and carry out inference
via an EM algorithm (see Verbeke and Molemberghs, 2000, chap. 12). Magder
and Zeger (1996) use a form of non-parametric maximum likelihood based nor-
mal densities and uses somewhat ad hoc fitting and assessment of the fit. Tao,
Palta, Yandell, and Newton (1999) estimate the density of a scalar random effect
via a predictive recursive algorithm. Recently, Sahu et al. (2003) proposed and
alternative model suitable for Bayesian implementation, which seems not to be
adequate for maximum likelihood implementation. We propose an alternative
method that is particularly attractive for linear mixed models by assuming that
both the random effect and the model errors follow a skew-normal distribution.
Our approach may offer advantages of more efficient estimators and algorithms
(for special cases) and also of practical interpretation for model parameters. It
also has the advantage of providing readily available information matrices.

The plan of the paper is as follows. In Section 2, for the sake of completeness,
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we consider a multivariate extension of the univariate skew-normal distribution
proposed by Azzalini (1985). Properties like moments and stochastic represen-
tation of this multivariate distribution are also discussed. In Section 3 the skew-
normal linear mixed model (SNLMM, hereafter) is defined extending the usual
normal mixed model. The marginal density of Yj is obtained analytically by
integrating out the random effects bj, j = 1, . . . ,m, leading to the observed
(marginal) likelihood function that can be maximized directly by using existing
statistical softwares such as Ox, R or Matlab. We point out that the analytical
expression for the likelihood function provided in this paper is not available else-
where in the literature. Section 4 presents an EM type algorithm which presents
advantages over the direct maximization approach, specially in terms of robust-
ness with respect to starting values and a closed form to estimating β in the
iterative process. Section 5 reports results of a simulation study and Section 6
reports applications to a real data set indicating the usefulness of the approach.

2. A Skew-normal Distribution

In this section we introduce the multivariate skew-normal distribution that
will be used in defining the SNLMM considered in the following section. We start
by giving an important notation that will be used through the whole paper and
presenting a review of the bibliography in univariate skew-normal models.

Let φn(x|µ,Σ) and Φn(x|µ,Σ) be the probability density function (pdf) and
the cumulative distribution function (cdf), respectively, of the Nn(µ,Σ) distri-
bution evaluated at x. When µ = 0 and Σ = In (the n × n identity matrix), we
denote these functions as φn(x) and Φn(x).

As considered in Azzalini (1985), a random variable Y follows a univari-
ate skew-normal distribution with location parameter µ, scale parameter σ2 and
skewness parameter λ if the pdf of Y is given by

fY (y) = 2φ1

(
y|µ, σ2

)
Φ1

(
λ

y − µ

σ

)
. (2.1)

Note that if λ = 0 then the density of Y in (2.1) reduces to the density of
the normal distribution. We use the notation Y ∼ SN1(µ, σ2, λ) to denote this
distribution, which will be reduced to Y ∼ SN1(λ) when µ = 0 and σ2 = 1.
Properties of this distribution can be found in Azzalini (1985) and Henze (1986).

Studies on multivariate skew-normal distributions are considered in Azzalini
and Dalla Valle (1996), Azzalini and Capitanio (1999), Branco and Dey (2001),
Sahu et al. (2003), among others. Arellano-Valle, del Pino and San Martin (2002)
show that many of the properties of the multivariate skew-normal distribution
hold for a general class of skewed distributions obtained from a symmetric class,
defined in terms of independence conditions on signs and absolute values and give
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general formula to obtain skewed pdf’s. From these results, Arellano-Valle and
Genton (2005) introduce the class of fundamental skewed distributions, giving an
unified approach to obtain multivariate skew distributions starting from symmet-
ric ones. In this work, we consider a special case of the fundamental skew-normal
distribution, proposed by Arellano-Valle and Genton (2005) (see also Azzalini
and Dalla-Valle, 1996 and Azzalini and Capitanio, 1999). The definition is given
in the following.

Definition 1: An n-dimensional random vector Y follows a skew-normal distri-
bution with location vector µ ∈ R

n, dispersion matrix Σ (a n×n positive definite
matrix) and skewness vector λ ∈ R

n, if its pdf is given by

fY(y) = 2φn(y|µ,Σ)Φ1(λTΣ−1/2(y − µ)), y ∈ R
n. (2.2)

We denote this by Y ∼ SNn(µ,Σ,λ) and by Y ∼ SNn(λ) when µ = 0 and
Σ = In, the n-dimensional identity matrix.

Remark 1: Since the condition that Φ1(−w) = 1 − Φ1(w) for all w ∈ R is
sufficient to guarantee that (2.2) is a pdf, we can then use different reparameter-
izations to represent the asymmetric parameter λ, as for example:

λ =
∆−1/2δ√

1 − δT∆−1δ
, (2.3)

for some δ ∈ R
n and positive definite n × n matrix ∆ such that δT∆−1δ < 1.

Two special cases can be considered; ∆ = Σ, which is just the reparameterization
used by Azzalini and Dalla-Valle (1996), and ∆ = In, which is used in Arellano-
Valle and Genton (2005). In a more general way, we can replace in (2.2) the
asymmetric part (or skewing function; see Genton and Loperfido, 2001) Φ1(·)
by an arbitrary function Q(·) on [0, 1], which depends on y trough an even real
function (or antisymmetric function; see Arellano-Valle and del Pino, 2003), say
w(y), and is such that Q(w(−y)) = Q(−w(y)) = 1 − Q(w(y)). Thus, the skew-
normal distribution in (2.2) can be extended by considering

fY(y) = 2φn(y|µ,Σ)Q(w(y)), y ∈ R
n. (2.4)

Many properties of the above skew-normal distribution may be derived from
the results developed by Arellano-Valle and Genton (2005) (see also Arellano-
Valle et al., 2002 and Arellano-Valle and del Pino, 2003). From there it follows,
for example, the stochastic representation given next for an standardized skew-
normal random vector.
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(a) For λ = (0, 3)T and ρ = 0, 0.5, 0.9, respectively.
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(b) For λ = (2, 3)T and ρ = 0, 0.5, 0.9, respectively.

x

y

-2 -1 0 1 2 3

-2
-1

0
1

2
3

x

y

-2 -1 0 1 2 3

-1
0

1
2

3

x

y

-2 -1 0 1 2 3

-2
-1

0
1

2
3

(c) For λ = (−2, 2)T and ρ = 0, 0.5, 0.9, respectively.
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Figure 1: Contour of the bivariate skew-normal distribution in (2.2), with µ =

(0, 0)T ,Σ =
(

1 ρ
ρ 1

)
and λ = (λ1, λ2)T for different values of λ1, λ2 and ρ.

Proposition 1: Let W ∼ SNn(λ). Then

W d= δ|X0| + (In − δδT )1/2X1, where δ =
λ√

1 + λTλ
, (2.5)

X0 ∼ N1(0, 1) independent of X1 ∼ Nn(0, In) and “ d=” meaning “distributed as”.

In the appendix we provide a proof of this proposition. Notice that the
stochastic representation give in Henze (1986) for the univariate case is a special
case of (2.5). Thus, we have extended the univariate skew-normal distribution
given in (2.1) in a nice way for the multivariate case. In Figure 1 we present
some contours of the density associated with the bivariate skew-normal distribu-
tion SN2(0,Σ,λ) for different values of Σ and λ. Note that these contours are
not elliptical and can be strongly asymmetric depending on suitable choices of
the parameters. A direct consequence of Proposition 1 is given in the following
corollary.
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Crollary 1: Let Y d= µ+Σ1/2W, where W ∼ SNn(λ). Then Y ∼ SNn(µ,Σ,λ).
Moreover,

E[Y] = µ+

√
2
π
Σ1/2δ and V ar[Y] = Σ − 2

π
Σ1/2 δδT Σ1/2.

2. A SNLMM Likelihood Function

In order to allow symmetric-asymmetric properties in characterizing features
of real data sets, the SNLMM is defined by extending the normal mixed model
in (1.1)-(1.2) by considering that

Yj = Xjβ + Zjbj + εj , (2.1)

bj
iid∼ SNq(0,D,λb), εj

ind∼ SNnj(0,ψj ,λej), j = 1, . . . ,m , (2.2)

with bj independent of εj, which by using Corollary ??, leads to the following
hierarchical model:

Yj |bj
ind∼ SNnj(Xjβ + Zjbj ,ψj ,λej), (2.3)

bj
iid∼ SNq(0,D,λb), j = 1, . . . ,m. (2.4)

Note from (2.1)-(2.2) and Corollary 1 that,

E[Yj ] = Xjβ + E[Zjbj + εj ] = Xjβ +

√
2
π

(ZjD1/2δb +ψ1/2
j δej),

where δb = λb(1 + λT
b λb)−1/2 and δej = λb(1 + λT

ejλej)−1/2, j = 1, . . . ,m,
which must be considered in order to obtain a correct interpretation of the model
parameters. However, in practice we can in general rescue the common interpre-
tation, correcting the intercept parameter in the fitted model, as will be done
in Section 4. The main interest is to make inference on the parameter vectors
θ = (βT ,αT ,γT )T and λ = (λT

b ,λT
e1, . . . ,λ

T
em)T . As discussed in Verbeke and

Molenberghs (2000), unless the data are analyzed in a Bayesian framework, infer-
ence in this type of models has to be based on the marginal distribution for the
response Yj. The marginal density of Yj is obtained in the following theorem,
the proof is given in the appendix.

Theorem 1: Let Yj = Xjβ + Zjbj + εj , where bj
ind∼ SNq(0,D,λb) and

εj
ind∼ SNnj(0,ψj,λej ) are independent. Then, the marginal distribution of Yj

is given by

fYj (yj |θ,λ) = 22φnj (yj |Xjβ,Σj)

×Φ2

(
(µ2j

− Γjµ1j
)(yj − Xjβ)|0, I2 + ΓjΛjΓT

j

)
, (2.5)
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where

µ1j
= ΛjZT

j ψ
−1
j , Σj = ψj + ZjDZT

j , Λj = (D−1 + ZT
j ψ

−1
j Zj)−1, (2.6)

µ2j
=

(
λT

ej
ψ

−1/2
j

0

)
and Γj =

(
λT

ej
ψ−1/2Zj

−λT
b D−1/2

)
, j = 1, . . . ,m. (2.7)

Note that the likelihood (2.5) is not in the class defined here, since the skew-
ness factor in this expression is of dimension 2. It is, however, in the class of
fundamental skew-normal distributions considered by Arellano-Valle and Gen-
ton (2005) (see also, (2.4) in Remark 1). The result presented in Theorem is
important because it avoids using more complex numerical techniques such as
Monte Carlo integration to carry out inference in this type of models, given that
it allows a closed form for the marginal distribution of Yj, j = 1, . . . ,m, facili-
tating straightforward implementation of inferences with standard optimization
routines. Thus, denoting the log-likelihood function by �(θ,λ), it can be written
as

�(θ,λ) ∝ −1
2

m∑
j=1

log |Σj| − 1
2

m∑
j=1

{(yj − Xjβ)TΣ−1
j (yj − Xjβ)}

+
m∑

j=1

log Φ2

(
(µ2j

− Γjµ1j
)(yj − Xjβ)|0, I2 + ΓjΛjΓT

j

)
, (2.8)

where µ1j , µ2j , Σj , Γj and Λj as defined in (2.6) and (2.7).

We call attention to the fact that no explicit solution is available for the
maximization problem so that the likelihood function has to be maximized nu-
merically. Some special cases may be of interest. For instance, the situation
where λe1 = . . . = λem = 0 or λb = 0, which are special cases of the above
general situation. These situations are treated next.

Corollary 2: Under the conditions of Theorem , it follows that:

(i) if λej = 0, j = 1, . . . ,m, then

fYj (yj |θ,λb) = 2φnj (yj |Xjβ,Σj)Φ1

(
λ̄bj

TΣ−1/2
j (yj − Xjβ)

)
, (2.9)

i.e.,

Yj ∼ SNnj(Xjβ,Σj , λ̄bj
), with λ̄bj

=
Σ−1/2

j ZjD1/2λb√
1 + λT

b D−1/2ΛjD−1/2λb

,
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(ii) if λb = 0, then

fYj (yj |θ,λej) = 2φnj (yj |Xjβ,Σj)Φ1

(
λ̄

T
ej
Σ−1/2

j (yj − Xjβ)
)

, (2.10)

i.e.,

Yj ∼ SNnj(Xjβ,Σj, λ̄ej), with λ̄ej =
Σ−1/2

j ψ
1/2
j λej√

1 + λT
ej
ψ

−1/2
j ZjΛjZT

j ψ
−1/2
j λej

.

Although simpler, the log-likelihood functions that follow from (2.9) and
(2.10) must also be maximized numerically. The asymptotic covariance matrix of
the maximum likelihood estimators (MLE) can be estimated by using the Hes-
sian matrix, which can also be computed numerically by using the program R,
for example. In the next section we present an EM-type algorithm for computing
the MLE of densities obtained in Corollary 2.

4. An EM-type algorithm

A direct maximization of the likelihood (2.9) and (2.10) may sometimes poses
problems since it involves terms like log(Φ1(w)), which causes computational
problems for negative w (w < −40, for example). Further, the approach seems not
too robust with respect to starting values, that is, unless good starting values are
used, the direct maximization approach will typically not converge. Simulation
studies conducted indicate the EM to be more robust in the sense that it may
converge more often than the direct maximization approach.

The EM algorithm (Dempster, Laird, and Rubin 1977) is a popular iterative
algorithm for ML estimation in models with incomplete data. More specifically,
let y denote the observed data and t denoted the missing data. The complete
data ycomp = (y, t) is y augmented with t. We denote by �c(θc), θc ∈ Θ, the
complete-data log-likelihood function and by Q(θc|θ′c) the expected complete-
data log- likelihood

Q(θc|θ′c) = E[�c(θc)|y,θ′c]

Each iteration of the EM algorithm consist of two steps, the expectation step and
the maximization step:

• E-step: Compute Q(θc|θ(r)
c ) as a function of θc;

• M-step: Find θ(r+1)
c such that Q(θ(r+1)

c |θ(r)
c ) = maxθc∈Θ Q(θc|θ(r)

c ).

Each iteration of the EM algorithm increases the likelihood function �(θc)
and the EM algorithm typically converges to a local or global maximum of the
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likelihood function. When the M-step in the EM algorithm is difficult to imple-
ment, it is useful to replace it with a sequence of constrained maximization (CM)
steps, each of which maximizes Q(θc|θ(r)

c ) over θc with some function of θc held
fixed. The sequence of the CM-steps is such that the overall maximization is over
the full parameter space. This leads to a simple extension of the EM algorithm,
called the ECM algorithm (Meng and Rubin, 1993). In this work we implemented
the ECM algorithm which irrespectively will be called EM-algorithm.

In order to implement the two steps of the EM-algorithm for maximizing the
likelihood from Corollary , we need first some additional results. The proofs are
given in the appendix.

Proposition 2: Suppose that Y|T = t ∼ Nn(µ + dt,Ψ) and T ∼ HN1(0, 1)
(the standardized half-normal distribution). Let Σ = Ψ + ddT . Then the joint
distribution of (YT , T )T can be written as

fY,T (y, t|θ,λ) = 2φn(y|µ,Σ)φ1(t|η, τ2)I{t > 0}, (4.1)

where

η =
dTΨ−1(y − µ)
1 + dTΨ−1d

and τ2 =
1

1 + dTΨ−1d
. (4.2)

Notice that the marginal distribution of Y follows from (4.1) after integrating
out t and is given by

fY(y|θ,λ) = 2φn(y|µ,Σ)Φ1

(η

τ

)
. (4.3)

Proposition 3: Under the conditions in Proposition ,

E[T k|y] = E[Xk|X > 0],

where X ∼ N1(η, τ2), with η and τ2 given in (4.2). Particularly,

E[T |y] = η +
φ1( η

τ )
Φ1( η

τ )
τ, (4.4)

and

E(T 2|y) = η2 + τ2 +
φ1( η

τ )
Φ1( η

τ )
τη. (4.5)

4.1 EM algorithm when λe1 = . . . = λem = 0

Under this assumption we have the following SNLMM:

Yj = Xjβ + Zjbj + εj , (4.6)
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with

εj
ind∼ Nnj(0,ψj), bj

ind∼ SNq(0,D,λb), j = 1, . . . ,m. (4.7)

It is clear that, (4.7) jointly with Proposition 1 implies that

bj
d= D1/2δb|X0j | + D1/2(Iq − δbδ

T
b )1/2X1j , j = 1, . . . ,m, (4.8)

where X0j
iid∼ N1(0, 1), X1j

iid∼ Nq(0, Iq), with X0j and X1j independent j =

1, . . . ,m, and δb =
λb√

1 + λT
b λb

. Moreover, independence between bj and εj, j =

1, . . . ,m, imply that Vj = (X0j ,XT
1j)

T and εj , are independent, j = 1, . . . ,m.
Hence, replacing (4.8) in (4.6) we have that

Yj = Xjβ + Zj δ̄btj + rj, (4.9)

where

δ̄b = D1/2δb, tj = |X0j | and rj = εj + ZjD1/2(Iq − δbδ
T
b )1/2X1j,

which are such that

rj
ind∼ Nnj(0,ψj + Zj(D − δ̄bδ̄

T
b )ZT

j ), tj
iid∼ HN(0, 1), (4.10)

and are independent, j = 1, . . . ,m. Note that rj has mean zero, so that it can
be used, for example, in residual analysis to check model adequability. Besides,

the second term on the right side of equation (4.9) has mean
√

2
πZj δ̄b which can

be used to correct the model intercept so that the fixed effects have the same
interpretation as in the usual LMM (population average).

Therefore, (4.9) and (4.10) imply that the model defined by (4.6)-(4.7) can
be written as

Yj|tj ind∼ Nnj (µj + djtj,Ψj) and tj
iid∼ HN1(0, 1), j = 1, . . . ,m, (4.11)

where

µj = Xjβ, dj = Zj δ̄b, Ψj = Σj − djdT
j and Σj = ψj + ZjDZT

j . (4.12)

Note that in (4.12) µj and Σj are the marginal mean vector and covariance ma-
trix, respectively, under the usual linear mixed model. Let yT = (yT

1 , . . . ,yT
m)T

and t = (t1, . . . , tm)T , as a direct consequence of Proposition using simple algebra
we have the next result.
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Proposition 4: Under (4.11) it follows that the complete log-likelihood function
associated with (y, t) in the SNLMM (4.6)-(4.7), can be written as

�c(θ,λb) ∝ −1
2

m∑
j=1

log |Ψj| − 1
2

m∑
j=1

(yj −µj)
T Σ−1

j (yj − µj) −
1
2

m∑
j=1

(tj − ηj)2

τ2
j

,

(4.13)
where by (4.2)

ηj =
dT

j Ψ−1
j (yj −µj)

1 + dT
j Ψ−1

j dj

and τ2
j =

1
1 + dT

j Ψ−1
j dj

, (4.14)

with µj, dj , Σj and Ψj as defined in (4.12).

Letting θc = (θT ,λT
b )T , t̂j = E(Tj |θ̂c,Yj = yj) and t̂2j = E(T 2

j |θ̂c,Yj = yj),
we obtain from Preposition ?? that

t̂j = η̂j +
φ1(

η̂j

τ̂j
)

Φ1(
η̂j

τ̂j
)
τ̂j, (4.15)

t̂2j = η̂2
j + τ̂2

j +
φ1(

η̂j

τ̂j
)

Φ1(
η̂j

τ̂j
)
τ̂j η̂j, (4.16)

where ηj and τ2
j as in (4.14). We then have the following EM algorithm:

E-step: Given θc = θ̂c, compute t̂j and t̂2j for j = 1, . . . ,m, using (4.15) and
(4.16), respectively.

M-step: Update θ̂c by maximizing E[�c(θc)|y, θ̂c] over θc, which leads to

β̂ = [
m∑

j=1

XT
j (Σ̂

−1

j + τ̂2
j Ψ̂

−1

j d̂jd̂T
j Ψ̂

−1

j )Xj]−1 ×

m∑
j=1

[XT
j (Σ̂

−1

j + τ̂2
j Ψ̂

−1

j d̂jd̂T
j Ψ̂

−1

j )yj − t̂jXT
j Ψ̂

−1

j d̂j], (4.17)

and
ν̂ = argmaxν [�c(β̂,ν)], with ν = (αT ,γT ,λT

b )T , (4.18)

where �c(β̂,ν) is (4.13) evaluated at updated β̂, tj = t̂j and t2j = t̂2j , j = 1, . . . ,m.
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4.2 EM algorithm when λb = 0

Likewise, considering the case where λb = 0, that is, the linear mixed model
in (4.6), with the assumption that

εj
ind∼ SNnj(0,ψj,λej) and bj

iid∼ Nq(0,D), j = 1, . . . ,m, (4.19)

all independent, we can write

Yj = Xjβ +ψ1/2
j δejtj + rj , (4.20)

where

tj = |X1j |, δej =
λej

(1 + λejλ
T
ej)1/2

and rj = Zjbj +ψ1/2
j (Inj − δejδ

T
ej)

1/2X0j,

this is

Yj |tj ind∼ Nnj(µj + djtj,Ψj) and tj ∼ HN1(0, 1), j = 1, . . . ,m, (4.21)

where

µj = Xjβ, dj = ψ
1/2
j δej , Ψj = Σj − djdT

j and Σj = ψj + ZjDZT
j . (4.22)

As a consequence of the above results, it follows from Proposition 2 that:

Proposition 5: Under (4.21) it follows that the complete log-likelihood function
associated with (y, t) in the SNLMM (4.6) and (4.19), can be written as

�c(θ,λe) ∝ −1
2

m∑
j=1

log |Ψj| − 1
2

m∑
j=1

(yj − µj)
TΣ−1

j (yj − µj) −
1
2

m∑
j=1

(tj − ηj)2

τ2
j

,

(4.23)
where

ηj =
dT

j Ψ−1
j (yj − µj)

1 + dT
j Ψ−1

j dj

and τ2
j =

1
1 + dT

j Ψ−1
j dj

, (4.24)

with µj, dj , Σj and Ψj defined as in (4.22).
The EM algorithm in this case proceed as in (4.15)-(4.18), with ηj and τ2

j as
in (4.24). Note that in both cases the M-step require numerical maximization
which can be easily implemented using statistical software as Ox, R and Matlab
with bfgs, optim and fmincon routines, respectively. The starting values are often
chosen to be the corresponding estimates under a normal assumption, where the
starting values for the asymmetric parameters are set to be 0 and as recommended
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in the literature, it is useful to run the EM-algorithm several times with different
starting values.

Following other authors (e.g. Zhang and Davidian, 2001 ) we propose eval-
uate a series of fits by inspection of information criteria such as Akaike’s Infor-
mation Criterion (AIC, −�(θ̂, λ̂)/N + P/N), Schawarz’s Bayesian Information
Criterion (BIC, −�(θ̂, λ̂)/N + 0.5 log(N)P/N), and the Hannan-Quinn Criterion
(HQ, −�(θ̂, λ̂)/N + log(log(N))P/N), where P is the number of free parameters
in the model and N =

∑m
j=1 nj, as we demonstrate shortly in the next section.

Table 1: Monte Carlo results based on 100 data sets, true Gamma(4, 1) distri-
bution for the random effects. MC Mean and MC SD are average and standard
deviation of the estimates, AVE SE is average of estimated standard errors. EC
is the empirical coverage probability of the 95% confidence intervals of the es-
timates. True values of parameters are in parentheses.

Parameter MC Mean MC SD AVE SE EC

(a) Skew-Normal Scenario

α 1.5447 0.3349 - -
β1(2) 2.0008 0.0106 0.0108 0.95
β2(1) 0.9731 0.2081 0.2083 0.95

σ2
e(0.25) 0.2490 0.0135 0.0119 0.93

E[α + b] (4) 4.0083 0.1636 - -
V ar[α + b](4) 3.9853 0.5399 - -

(b) Normal Scenario

α 4.0213 0.1828 - -
β1(2) 2.0008 0.0106 0.0116 0.98
β2(1) 0.9336 0.2638 0.3035 0.93

σ2
e(0.25) 0.2490 0.0135 0.0125 0.93

E[α + b] (4) 4.0213 0.1828 - -
V ar[α + b](4) 3.9409 0.5839 - -

5. Simulation Study

To assess the performance of the proposed model and methods, we conducted
two simulation studies. In all cases, we took the linear mixed model to be

Yij = α + tijβ1 + wjβ2 + bj + eij , (5.1)

where for i = 1, . . . , 5, tij = i − 3, β1 = 2, β2 = 1, and eij ∼ N(0, 0.52). In each
simulation, 100 Monte Carlo data sets were simulated from (5.1) according to the
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additional specifications described below. As an advantage of the skew-normal
representation for the random effects is its propensity for accommodating skew-
ness, in the first simulation we generated the α + bj according to a Gamma(4, 1)
distribution with probability density (1/6)x3 exp(−x), yielding a highly skewed
distribution as suggested by Figure 2. Under this specification, E[α + bj] = 4,
and V ar[α + bj] = 4. Note that tij represents a covariate with values changing
within individuals and the same for all individuals, while wj is the individual
level-covariate, e.g., a treatment indicator. We took m = 200 with wj = 1 if
j ≤ 100 and wj = 0 if j > 100. For each of 100 Monte Carlo generated data
sets, (5.1) was fit two times under the assumption of previous section, with the
density of bj represented by the skew-normal distribution and also by the normal
distribution. For evaluating the objective use of the criteria, the model preferred
by each of AIC, BIC and HQ was recorded.

Table 2: Monte Carlo results based on 100 data sets, true Normal(0, 4) distri-
bution for the random effects. Entries are as in Table 1.

Parameter MC Mean MC SD AVE SE EC

(a) Skew-Normal Scenario

α (4) 3.6766 1.1681 1.3058 0.60
β1 (2) 2.0009 0.0103 0.0108 0.96
β2 (1) 1.0161 0.3137 0.2953 0.92

σ2
e(0.25) 0.2482 0.0143 0.0121 0.89

E[α + b] (4) 3.9799 0.1916 - -
V ar[α + b](4) 3.9368 0.4306 - -

(b) Normal Scenario

α (4) 3.9780 0.1923 0.2056 0.96
β1 (2) 2.0009 0.0103 0.0111 0.96
β2 (1) 1.0207 0.3167 0.2932 0.95

σ2
e (0.25) 0.2482 0.0143 0.0124 0.90

E[α + b] (4) 3.9780 0.1923 - -
V ar[α + b](4) 3.9347 0.4312 - -

6. An Application

We illustrate the usefulness of the proposed methods by applying them to
longitudinal data on cholesterol levels collected as part of the famed Framingham
heart study. The file includes the cholesterol levels over time, age at baseline
and gender for m = 200 randomly selected individuals, reported in Zhang and



Skew-normal Linear Mixed Models 429

Davidian (2001). We adopt the same linear mixed model used by these authors,
given by

yij = βo + β1sexj + β2agej + β3tij + boj + b1jtij + εij , (6.1)

where yij is cholesterol level divided by 100 at the i-th time for subject j and
tij is (time − 5)/10, with time measured in years from baseline; agej is age at
baseline; sexj is the gender indicator (0 = female, 1 = male). Thus, xij =
(1, agej , sexj, tij)T , bj = (boj , b1j)T and Zj = (1, tij)T . Figure 3(a) shows the
histogram of cholesterol levels, clearly indicating its asymmetric nature and that it
seems adequate fitting a skew-normal model to the data set. Zhang and Davidian
(2001) analyzed this data and show that the asymmetric behavior is partially
explained by the available covariates and the random effects may not be normally
distributed. Based in this information, three statistical models, differing in the
error term and random effects distributions, are entertained. These models are:

Model 1: A model with independent multivariate normal distribution for the
errors and multivariate skew-normal distribution for random effects with λb =
(λb1, λb2)T ;

Model 2: A model with independent multivariate skew -normal distribution
for random random errors with common shape parameter between groups and
multivariate symmetric normal distribution for the random effects; and

Model 3: A purely Gaussian model.

For the EM algorithm, none of AIC, BIC, or HQ selected the normal speci-
fication for any of the 100 data sets, demonstrating the ability of these selection
methods to detect an obvious departure from normality and suggesting strong
evidence of skewness. Table ?? shows the numerical results for the estimates
where normality and skew-normal was considered. For the most part, parameter
estimates are unbiased. In the most cases, the average of estimates standard
errors agrees well with the Monte Carlo standard deviation. As found by other
authors (e.g., Tao et al., 1999; Zhang and Davidian, 2001), efficiency of estima-
tion on β2 associated with the individual-level covariate wj is degraded when
normality is assumed relative to allowing a more flexible representation via the
skew-normal distribution. Because one of the main focuses of such analysis may
well be evaluation of treatment effect, this suggests that adopting the normality
assumptions routinely may lead to inefficient inferences on fixed effects of pri-
mary interest. Note that some efficiency loss is also associated with estimation of
the inter-individual variance V ar[bj ]. Thus, although unbiased estimation is still
possible under normality, failure to take appropriate account of the true features
of the random effects leads to less precise inference on what are usually quantities
of key interest.
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The advantage of estimating the random effects density may be appreciated
from Figure 2. Figure 2(a) shows the Monte Carlo average of density estimates
over the 100 data sets along with the true density, the symmetric-normal fit
and the fit for the skew-normal. The figure demonstrates that the additional
flexibility afforded by the skew-normal representation is sufficient to capture quite
accurately the true underlying features of the random effects. This observation
is further supported by Figure 2(b), which shows the 100 density estimates from
the skew-normal fits.
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Figure 2: Simulation results based on 100 data sets. (a) True density (solid line)
and Monte Carlo average estimated densities for 100 data set: using normal
(dashed-dotted) and using skew-normal (dotted-line) (b) Estimated densities
for the skew-normal fits.

The second simulation was identical to the first except that the true distri-
bution of α + bj was instead N(4, 4), that is, α = 4 and bj ∼ N(0, 4). Here,
then, there is no need for greater flexibility on the random effect, and the hope
would be that the proposed methods would identify this. The AIC, BIC and
HQ criteria correctly selected the normal distribution 86%, 98%, and 93% of the
time, respectively. Summaries of the Monte Carlo result are given in Table 2,
which shows that there is no efficiency loss associated with using the skew-normal
distribution. The apparent conclusion is that the price to pay for estimating the
random effects density when the normality assumption holds is mild; similar re-
sults are reported in Hu, Tsiatis, and Davidian (1998) and Zhang and Davidian
(2001).

In all cases we considered ψj = σ2
eInj , j = 1, . . . , 200 (conditional indepen-

dence). Table 3 presents the results obtained using the EM-type algorithm of the
three models described above, SE are the estimated asymptotic standard errors
based in the Hessian matrix computed numerically. When considering Model 2
(only random errors are asymmetrically distributed), asymmetry is not detected
and parameter estimates are close to the ones obtained under normality (Model
3). The AIC, BIC and HQ criteria indicate that Model 1 presents the best
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fit, supporting the contention of a departure from normality. Estimates of the
individual-level covariate coefficients β1, β2 and β3 differ as well, reflecting the
qualitative behavior seen in the simulations. Figure 3(b)-(d) shows the estimated
random effects distribution which is obvious skewness that is particularly evident
in the contour plot showed in Figure 3(b). Figures 3(c) and (d) show the esti-
mated marginal densities of boj and b1j , respectively. Note that the distribution
of slopes appears normal, while the shape of the density for intercepts shows
evidence of skewness as Zhang and Davidian (2001) concluded using the SNP
representation.

Table 3: Results of fitting models 1, 2 and 3 to the cholesterol data. d11, d12

and d22 are the distinct elements of the matrix D1/2

Model 1 Model 2 Model 3
Parameter Estimate SE Estimate SE Estimate SE

βo 1.3755 0.1418 1.5955 0.1568 1.5968 0.1543
β1 −0.0591 0.0534 −0.0630 0.0554 −0.0630 0.0568
β2 0.0136 0.0034 0.0184 0.0035 0.0184 0.0037
β3 0.2281 0.0511 0.2817 0.0240 0.2817 0.0242
σ2

e 0.0434 0.0025 0.0434 0.0024 0.0434 0.0024
d11 0.5600 0.0418 0.3716 0.0199 0.3715 0.0201
d12 0.0700 0.0317 0.0563 0.0173 0.0563 0.0179
d22 0.1924 0.0311 0.1868 0.0308 0.1868 0.0329
λb1 2.9947 0.7789 - - - -
λb2 0.0000 0.4814 - - - -
λe - - 0.0140 0.9890 - -

−log-likelihood −666.1717 −659.7560 −659.7560
AIC −0.6285 −0.6233 −0.6243
BIC −0.6057 −0.6020 −0.6053
HQ −0.6195 −0.6152 −0.6171

7. Final Conclusion

In this paper we developed a skew-normal mixed models for fitting regression
model with dependent data. We believe that this is the first attempt in working
in such general distributional structure for mixed models and that the approach
used in this paper can be used in treating other multivariate models which will
be the subject of incoming papers. An analytical expression (closed form) is
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Figuree 3: (a) Histogram of cholesterol levels for 200 subjects of Framingham
cholesterol study. (b) Contour plot of estimated density of bj . (c) and (d)
Corresponding estimated marginal densities for components of bj (solid) with
estimated normal density (dotted) superimposed.

obtained for the marginal distribution of the observed response vector which
allows carrying out inferences using standard optimization techniques and
existing statistical softwares. For evaluation of the MLE, an EM-type algorithm
is developed by exploring statistical properties of the model considered, and as is
typical for the EM algorithm, reliability rather than speed is its best feature. An
small simulation study is also presented where as observed in other contexts and
approaches (e.g., Zhang and Davidian, 2001), there is potencial to gain efficiency
in estimating certain parameters when the normality assumption does not hold,
with only a small price to pay for the extra complications in the assumptions. An
additional major advantage of all approaches that relax the assumptions on the
random effects and the model errors densities is the insight the estimates provide.
We have implemented the approach using MATLAB with the fmincon optimizer
routine; code is available from the authors upon request.
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Appendix: Proofs

Before proving the results we consider the following lemmas. The notation
used is that of Section 2.

Lemma 1. Let Y ∼ Nn(µ,Σ). Then for any fixed k-dimensional vector a and
k × n matrix B,

E[Φk(a + BY|η,Ω)] = Φk(a|η − Bµ,Ω + BΣBT ).

Proof. The proof follows by noticing that

E[Φk(a + BY|η,Ω)] = E[P (U ≤ a|Y)] = P (U ≤ a),

where U|Y = y ∼ Nk(η − By,Ω), so that U ∼ Nk(η − Bµ,Ω + BΣBT ).

Lemma 2. Let Y ∼ Np(µ,Σ) and X ∼ Nq(η,Ω). Then,

φp(y|µ + Ax,Σ)φq(x|η,Ω) = φp(y|µ + Aη,Σ + AΩAT )
× φq(x|η + ΛATΣ−1(y − µ− Aη),Λ),

where Λ = (Ω−1 + ATΣ−1A)−1.

Proof. By letting z = y−µ−Aη and w = x−η, we have after some standard
algebraic operations that

(z − Aw)TΣ−1(z − Aw) + wTΩ−1w =
z(Σ + AΩAT )−1z + (w − ΛATΣ−1z)T Λ−1(w − ΛATΣ−1z),

and the proof follows by noting also that |Σ + AΩAT ||Λ| = |Σ||Ω|.
Proof of Preposition 1:

Let U = δ|X0|+(In−δδT )1/2X1. Since U||X0| = t ∼ Nn(δt, In−δδT ), where
|X0| ∼ HN(0, 1), then by Lemma ?? it follows that

fU(w) =
∫ ∞

0
φn(w|δt, In − δδT )2φ(t)dt =

∫ ∞

0
φn(w|0, In)2φ(t|δTw, 1 − δTδ)dt

= 2φn(w)Φ1

(
δTw√
1 − δTδ

)
,

i.e., U d= W ∼ SNn(λ), with λ = δ√
1−δTδ

, which concludes the proof.
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Proof of Theorem 1:

To obtain the marginal distribution of Yj , we drop the subscript j. From
(2.3), (2.4) and the definition in (2.2), it follows that the marginal density of Y
is obtained by computing the following integral:

fY(y|θ,λ) =
∫

Rq

f(y|b,β,γ,λe)f(b|α,λb)db

=
∫

Rq

22φn(y|Xβ + Zb,ψ)Φ1(λT
e ψ

−1/2(y − Xβ − Zb))

× φq(b|0,D)Φ1(λT
b D−1/2b)db,

(A.1)

which is based on the following lemma:

Lemma 3. Under the notation considered above, it follows that

φn(y|Xβ + Zb,ψ)φq(b|0,D) = φn(y|Xβ,Σ)φq(b|µ1(y − Xβ),Λ) (A.2)

and

Φ1(λT
e ψ

−1/2(y−Xβ−Zb))Φ1(λT
b D−1/2b) = Φ2(−Γb|−µ2(y−Xβ), I2), (A.3)

where

µ1 = ΛZTψ−1, Σ = ψ + ZDZT , Λ = (D−1 + ZTψ−1Z)−1, (A.4)

µ2 =
(
λT

e ψ
−1/2

0

)
and Γ =

(
λT

e ψ
−1/2Z

−λT
b D−1/2

)
. (A.5)

Proof. Result (A.2) follows from Lemma ??. Result (A.3) is proved by noting
that if U and V are i.i.d. N(0, 1) random variables, then (A.3) can be written as

P (U ≤ λT
e ψ

−1/2(y − Xβ − Zb))P (V ≤ λT
b D−1/2b) = P (T ≤ µ2(y − Xβ)),

where T = W + Γb, with W = (U, V )T ∼ N2(0, I2), and µ2, Γ defined as in
(A.5). Thus, since T ∼ N2(Γb, I2), we have that

P (T ≤ µ2(y − Xβ)) = Φ2(µ2(y − Xβ)|Γb, I2) = Φ2(−Γb| − µ2(y − Xβ), I2),

which concludes the proof.
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Proof of Theorem: From(A.1), (A.2) and (A.3), it follows that

fY(y|θ,λ) =
∫

Rq

22φn(y|Xβ,Σ)φq(b|µ1(y − Xβ),Λ)

× Φ2(−Γb| − µ2(y − Xβ), I2)db
= 22φn(y|Xβ,Σ)E[Φ2(−ΓW| − µ2(y − Xβ), I2)],

where W ∼ Nq(µ1(y − Xβ),Λ). The proof is concluded by using Lemma ??.

Proof of Corollary 2:

(µ2 − Γµ1)(y − Xβ) =
(
λT

e ψ
−1/2(ψ − ZΛZT )ψ−1(y − Xβ)
λT

b D−1/2ΛZTψ−1(y − Xβ)

)
and

I2 + ΓΛΓT =
(

1 + λT
e ψ

−1/2ZΛZTψ−1/2λe −λT
e ψ

−1/2ZΛD−1/2λb

−λT
b D−1/2ΛZTψ−1/2λe 1 + λT

b D−1/2ΛD−1/2λb

)
,

which is a diagonal matrix when λe = 0 or λb = 0. Hence, for λe = 0, the
asymmetric part of (2.5) can be computed as

Φ2(µ2 − Γµ1|0, I2 + ΓΛΓT ) = Φ2((I2 + ΓΛΓT )−1/2(µ2 − Γµ1))

=
1
2
Φ1

⎛⎝λT
b D−1/2ΛZTψ−1(y − Xβ)√

1 + λT
b D−1/2ΛD−1/2λb

⎞⎠ ,

where some algebraic manipulations yield ΛZT = DZTΣ−1ψ. Similarly, for λb =
0, we have that

Φ2(µ2 − Γµ1|0, I2 + ΓΛΓT ) =
1
2
Φ1

⎛⎝λT
e Ψ−1/2(ψ − ZΛZT )ψ−1(y − Xβ)√

1 + λT
e ψ

−1/2ZΛZTψ−1/2λe

⎞⎠ ,

and the proof concludes by noting that ψ − ZΛZT = ψΣ−1ψ.

Proof of Proposition 2:
In fact, the joint density of Y and T is

fY,T (y, t|θ,λ) = 2φn(y|µ + dt,Ψ)φ1(t)I{t > 0}.

After some simple algebraic manipulations using Lemma ??, we have that

φn(y|µ + dt,Ψ)φ1(t) = φn(y|µ,Σ)φ1(t|η, τ2), (A.6)
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concluding the proof.

Lemma 4. Let X ∼ N(η, τ2). Then, for any real constant a it follows that

E[X|X > a] = η +
φ1(a−η

τ )
1 − Φ1(a−η

τ )
τ,

E[X2|X > a] = η2 + τ2 +
φ1(a−η

τ )
1 − Φ1(a−η

τ )
(η + a)τ.

Proof: See Johnson et al. (1994), Section 10.1.

Proof of Preposition 3:
Note that we can write

E(T k|y) =
∫ ∞

−∞
tkf(t|y)dt =

1
fY(y|θ,λ)

∫ ∞

−∞
tkfY,T (y, t|θ,λ)dt.

From (4.1) and (4.3), it then follows that

E(T k|y) =
1

Φ1( η
τ )

∫ ∞

0
tkφ1(t|η, τ2)dt = E(Xk|X > 0),

where X ∼ N1(η, τ2) and Φ1( η
τ ) = P (X > 0). Thus, (4.4) and (4.5) follow from

Lemma 4 with a=0, which concludes the proof.
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