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Abstract: We compare two linear dimension-reduction methods for statisti-
cal discrimination in terms of average probabilities of misclassification in re-
duced dimensions. Using Monte Carlo simulation we compare the dimension-
reduction methods over several different parameter configurations of multi-
variate normal populations and find that the two methods yield very different
results. We also apply the two dimension-reduction methods examined here
to data from a study on football helmet design and neck injuries.
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1. Introduction

Statistical classification involves assigning a given observation x to one of
k possible classes (or populations) based on p measured variables, also known
as features. As the dimension of the feature space p increases, the computa-
tional complexity for the classification task can become cumbersome and time
consuming. In addition, more training samples are needed to design appropriate
classification rules. Therefore, one often desires to reduce the dimension of the
original feature vector if possible.

In this paper we consider the topic of linear feature reduction for statistical
classification. Specifically, we compare and contrast the efficacies of two lin-
ear feature-reduction methods formulated by Brunzell and Eriksson (2000) and
Tubbs, Coberly, and Young (1982) using a Monte Carlo simulation. The two
linear dimension-reduction methods considered resemble each other but do not,
in general, give equivalent results in terms of expected probabilities of misclassifi-
cation. In this paper we clarify some differences and similarities between the two
methods by addressing the following questions. When and why do the methods
give different or similar results? For which data characteristics is one method bet-
ter than the other? Can either method improve the probability of classification
compared to using the full dimension of the feature vector?
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To address these questions, we perform a Monte Carlo simulation study to
compare classification performance in the full feature space versus classification
in a reduced space determined via the methods developed by Tubbs, Coberly, and
Young (TCY) and Brunzell and Eriksson (BE). We note that BE have contrasted
their linear dimension-reduction approach to that of TCY, and to other meth-
ods such as the Mahalanobis-based linear transformation, canonical variables,
principal components analysis, and four variations of Fisher’s discriminant. For
more comparisons of pattern recognition methods in high-dimensional settings,
see Aeberhard, de Vel, and Coomans (1994).

On the data sets considered in BE, BE’s dimension reduction method is uni-
formly superior to that of TCY in terms of yielding smaller expected error rates
in a reduced dimension. Our goal is to analyze the performance of these two lin-
ear feature-selection matrices over classification problems with diverse parameter
configurations.

2. Linear Dimension-Reduction Matrices

In pattern recognition and statistical discriminant classification problems, one
often desires to reduce the dimension of the feature space before classification.
A reduced dimension can result in fewer computations, a reduction in cost and
time, and even improved classification accuracy. Additionally, one typically needs
fewer training observations to estimate population parameters because the nec-
essary training sample size is directly related to the feature dimension. If the
number of training observations can be reduced without a significant increase in
the probability of misclassification (PMC), the classification task becomes more
efficient in terms of time and cost.

Many different competing feature-reduction methods exists. The two methods
we discuss are linear transformations of the feature vector x ∈ Rp×1, which are
of the form

x → y = Ttx (2.1)

with T ∈ Rp×q, where p is the original full dimension and q is the transformed
reduced dimension. The matrix T is known as a linear feature-selection or linear
dimension-reduction matrix. We desire that 1 ≤ q � p and that the PMC
remains essentially the same as in the full-dimension case.

Dimension-reduction methods are beneficial in the case when the ratio of the
training sample size n to the dimension of the feature vector p is small (n/p < 4).
If 1 ≤ n/p < 4, then one can encounter a problem with accurately inverting the
covariance matrices due to extreme bias from small eigenvalues of the covariance
matrices. Reducing the feature dimension gives a more stable estimated covari-
ance matrix and estimated inverse covariance matrix by decreasing the number
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of parameters to be estimated.
In the next two subsections, we review two linear feature-selection methods

for the case of unequal covariance matrices.

2.1 Tubbs, Coberly, and Young’s linear feature-selection method (TCY)

The objective of TCY is to determine a matrix to perform a linear trans-
formation such that the PMC in the reduced q-dimensional transformed feature
space is approximately the same as in the original p-dimensional feature space, or
PMC(p) ≈ PMC(q). The following theorem describes the motivation for TCY.

Theorem 1. (Tubbs, Coberly and Young, 1982): Let Πi be a p-dimensional
multivariate normal population with a priori probability αi, mean µi ∈ Rp×1, and
symmetric nonnegative-definite covariance Σi, i = 1, 2, . . . , k, such that Σi �= Σj

for at least one value of j, 2 ≤ j ≤ k. Let

M = [µ2 − µ1|µ3 − µ1| · · · |µk − µ1|Σ2 − Σ1|Σ3 − Σ2| · · · |Σk − Σ1|], (2.2)

1 ≤ i < j ≤ k, and let FG be a full-rank decomposition of M such that M = FG
with rank(M) = rank(F) = rank(G) = q, 1 ≤ q < p. Then the p-variate Bayes
procedure assuming equal cost loss assigns x to Πi if and only if the q-variate
Bayes procedure assuming equal cost loss assigns F+x to Πi, i = 1, 2, . . . , k,
where F+ denotes the Moore-Penrose generalized inverse of F (Harville, 1997,
pg. 493). Moreover, q is the smallest positive integer such that there exists a
q × p compression matrix preserving the Bayes assignment of x to Πi.

Theorem 1 yields a linear transformation F+ ∈ Rq×p such that PMC(p) =
PMC(q) provided rank(M) = q < p. If rank(M) = p, there exists no q×p matrix
that preserves the full-feature PMC and, thus, we seek a matrix T ∈ Rp×q such
that PMC(p) ≈ PMC(q).

The parameters µi and Σi, i = 1, 2, . . . , k, are rarely known and, therefore,
sample estimates must be obtained using the ni training samples. An estimator
of M is then

M̂ = [x̄2 − x̄1|x̄3 − x̄1| · · · |x̄k − x̄1|S2 − S1|S3 − S1| · · · |Sk − S1|].

Let ni be the sample size for estimating the parameters of the i-th population.
If ni ≥ p, then rank(M̂) = p with probability one. In this case, Theorem 1 cannot
be directly applied, so Tubbs, Coberly and Young (1982) use the singular value
decomposition (SVD) to obtain a best approximation of M̂ (under the Frobenius
norm) in a smaller dimension q < p.

Let M̂ = PDpQt be the SV D of M̂, where Dp ≡ Diag(λ1, λ2, . . . , λp) with
λi ≥ λj for 1 ≤ i ≤ j ≤ p and let F̂ = PDp. Define Dp = Diag(λ1, λ2, . . . , λq, 0q+1,
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. . . , 0p) with λi ≥ λj for 1 ≤ i ≤ j ≤ q. Then M̃q = PDqQt is a rank q ap-
proximation of M̂ and F̃q = PDq is a rank q approximation of PDp. A q × p
feature-reduction matrix to perform the linear transformation in equation (2.1)
is then F̂+

q = P̂+
q where F̃q = [Pq : 0] ∈ Rp×p.

Because TCY allows for unequal means and unequal covariance matrices,
F̂+

q should perform well when the population covariances are unequal and the
number of large singular values of M̂ is small relative to p. Also, the method
should perform well when ni is large and rank(M)= q � p because the estimators
x̄i and Si, i = 1, 2, . . . , k, are strongly consistent.

2.2 Brunzell and Eriksson’s linear feature-selection method (BE)

Tubbs, Coberly, and Young (1982) explicitly use PMC as their dimension-
reduction optimality criterion, whereas Brunzell and Eriksson implicitly consider
the PMC via a derived distance measure. This distance measure

∆ij = (µi − µj)
t(αiΣi + αjΣj)−1(µi − µj),

1 ≤ i < j ≤ k, is used to obtain an upper bound on the expected PMC denoted
by EPMC. For two multivariate populations with prior probabilities α1 and α2

with α1 + α2 = 1, we obtain EPMC ≤ (2α1α2)/(1 + α1α2∆12).
In the case of two populations with equal covariance matrices and equal prior

probabilities, ∆12 is the squared generalized Mahalanobis distance between class
means µ1 and µ2. Brunzell and Eriksson (2000) introduce a generalized sepa-
ration measure for the case of k populations with possibly unequal covariance
matrices. Assuming the prior probabilities are equal, they obtain the separation
measure ∏

1≤i≤j≤k

(µi − µj)
t(αiΣi + αjΣj)−1(µi − µj). (2.3)

The objective of BE is to determine a linear dimension-reduction matrix with
q � p such that the full-dimension separation measure is at least approximately
preserved. The following theorem provides motivation for the BE method.

Theorem 2. (Brunzell and Eriksson, 2000). Let

U = [(Σ1 + Σ2)−1(µ1 − µ2)| · · · |(Σi + Σj)−1(µi − µj)| · · ·
|(Σk−1 + Σk)−1(µk−1 − µk)] (2.4)

for 1 ≤ i < j ≤ k. The separation measure (2.3) is preserved by the transfor-
mation x → y = Ttx if T satisfies the condition R(T) ⊇ R(U), where R(·)
represents a row space.
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Consider now the case where µi and Σi, i = 1, 2, . . . , k, are unknown and
must be estimated from the ni training samples. An estimator of U is then

Û = [(S1 +S2)−1(x̄1− x̄2) · · · |(Si +Sj)−1(x̄i− x̄j) · · · |(Sk−1 +Sk)−1(x̄k−1− x̄k)|],

1 ≤ i < j ≤ k. Note that Û ∈ Rp×r, where r = k(k − 1)/2, and if r > q,
then Û does not yield a q × p linear dimension-reduction matrix. Therefore,
BE, like TCY , utilizes the SV D rank-q approximation of Û to obtain a linear
feature-reduction matrix that compresses p-dimensional observation vectors into
a q-dimensional transformed feature space where 1 ≤ q < p.

Let Ũ = RDpSt be the SV D of the matrix Û, where Dp = Diag(λ1, λ2, . . . , λp)
with λi ≥ λj for 1 ≤ i ≤ j ≤ p and let Ĥ = RDp. Further, let H̃ = RDq, where
Dq = Diag(λ1, λ2, . . . , λq, 0q+1, . . . , 0p) with λi ≥ λj for 1 ≤ i ≤ j ≤ q. Then, Ũ
is a rank q approximation of Û and H̃ is a rank q approximation of Ĥ. A q × p
feature-reduction matrix to perform the linear transformation in equation (2.1)
is then Ĥt

q = Rq, where Ĥq = Rq and Ĥt
1 = [Rq : 0] ∈ Rp×p.

The BE technique classifies the data based essentially on the rotated differ-
ence in the means rather than on the differences in the covariance structures.
Note that separation measure (2.3) uses a type of pooled covariance matrix. By
pooling the pairs of covariance matrices, Eriksson and Brunzell are not neces-
sarily using all of the information in the differences of the covariance matrices.
However, pooling is beneficial in dealing with the near singularity of Si, which
occurs when ni is small relative to p so that pooling Si and Sj gives more stable
values of (Si + Sj)−1 to estimate (Σi + Σj)−1, 1 ≤ i < j < k. Therefore, BE
should perform well relative to TCY when covariance matrices are similar, when
essentially all of the discrimination information is in the means, and when ni/p
is small. However, BE may lose classificatory information by pooling acutely
dissimilar pairs of covariance matrices.

We note that BE is limited to a feature-reduction dimension that depends
on the number of classes k. For k = 2, BE allows one to reduce the data to only
one dimension regardless of the full-feature vector dimension. When k = 2, Ĥ
reduces observations to a one-dimensional reduced feature space and, therefore,
one may lose discriminatory information. In general, if we have k classes, BE
can reduce the feature vector to at most q = k(k − 1)/2 dimensions because U,
given in (2.4), has k(k − 1)/2 columns. This restriction is potentially a major
disadvantage, especially in the case when k/p is small. A larger reduced dimension
may be more beneficial in preserving or improving the full-dimension error rate.
On the other hand, TCY allows one to reduce the original feature vector to any
dimension q, 1 ≤ q < p, for any k populations.
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3. A Simulation Study

We conducted a Monte Carlo simulation to compare the performance of TCY
and BE using six different population configurations. We generated 1000 training
and test sets from each multivariate normal distribution for each parametric
configuration. We obtained estimates of the configuration parameters using the
training data, and the test data were classified using the quadratic discriminant
function (QDF ). We computed F̂+

q and Ĥ+
q , and found the estimated expected

error rates by averaging the estimated conditional error rate over all training
samples. We compared TCY and BE in terms of their estimated EPMC and
contrasted this with estimated EPMC for the full-feature dimension. Also, we
used ni = 2p and ni = 10p to determine the effect of training-sample size on the
two methods.

Table 1: Description of simulation configurations

Covariance Rank Non-zero singular values
Means Matrice p k M U M U AGMD

Unequal Unequal 7 2 2 1 29.01, 2.13 Rank(U) 2.19
=1

Unequal but
relatively Uqual 7 2 2 1 28.04, 1.92 Rank(U) 0.51
close = 1

Unequal Unequal 6 3 2 2 9.65, 5.82 .77, 0.01 1.52

Equal Unequal 6 3 6 2 4.24, 3.31, 1.41 1.53, 0.92 4.52
Spherical 1.41, 1.41,1.41

Differ in First Equal 6 3 2 2 12.27, 12.13 3.15, 0.53 10.85
p − 1 Features Elliptical

Differ in Last Equal 6 3 2 2 38.7, 24.58 0.41, 0.28 8.25
p − 1 Features Elliptical

For each configuration we calculated the ranks of M and U, along with
SV (M) and SV (U), where SV (A) represents the set of singular values of some
matrix A. For TCY , the number and values of the non-zero elements of SV (M)
indicate the appropriate reduced dimension q for which little classificatory infor-
mation is lost. To predict the performance of BE, we calculated rank(U) and the
average generalized Mahalanobis distance (AGMD) among the means, defined as

∆̄ =
∑

1<i<j<n

2(µi − µj)t(Σi + Σj)−1(µi − µj)
n(n − 1)

. (3.1)
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A relatively large value of AGMD (AGMD > 3) indicates that most of the
classificatory information lies in the means, and thus BE is more likely to perform
well. In Table 1 we summarize the values of these descriptive measures for each
parameter configuration.

In the following sections, we discuss the simulation results for the six config-
urations considered.

3.1 Rank(Σ2 − Σ1) = 1, unequal means, k = 2

This configuration is composed of two multivariate normal populations with
unequal population means and unequal population covariance matrices. The
population parameters are µ1 = 0, µ2 = [3, 4, 4, 2, 2, 3, 2]t ,

Σ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 4 5 4 3 4 4
4 10 5 2 4 3 3
5 5 7 5 5 3 4
4 2 5 12 3 4 2
3 4 5 3 8 3 4
4 3 3 4 3 9 3
4 3 4 2 4 3 14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Σ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 1 0 −1 0 0
0 6 1 −2 0 −1 −1
1 1 3 1 1 −1 0
0 −2 1 8 −1 0 −2
−1 0 1 −1 4 −1 0
0 −1 −1 0 −1 5 −1
0 −1 0 −2 0 −1 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Table 2: Rank(Σ2 − Σ1) = 1 with unequal means (k = 2)

EPMC (standard errors)

dim n = 14 n = 70

Full Dimension 7 0.232 (0.001) 0.126 (0.0003)
TCY 3 0.183 (0.001) 0.130 (0.0003)
TCY 2 0.168 (0.002) 0.131 (0.0003)
TCY 1 0.160 (0.002) 0.130 (0.0003)
BE 1 0.195 (0.001) 0.143 (0.0004)

Here, rank(Σ2 − Σ1) = 1, which implies rank(M) = 2 because µ2 − µ1 is
not contained in span(Σ2 −Σ1). The SV (M) indicate that almost all classifica-
tory information can be captured when q = 1 since the second singular value is
small relative to the first. We expect TCY to perform well because M has unit
rank. Due to the relatively small value of AGMD = 2.19, one might expect the
performance of BE to be inferior to TCY .

The results are given in Table 2 and show that TCY outperforms BE for this
configuration, but BE does surprisingly well.

The average PMC is actually reduced by both dimension-reduction methods
when n = 14. The main reason for this phenomenon is that when n is small
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relative to p, not enough data is available to estimate the p(p + 3)/2 parameters
for each population. By reducing the full-feature dimension p to the reduced
dimension q, we can increase the ratio of n to p(p+3)/2 and thus obtain improved
estimates for the reduced set of parameters.

3.2 Rank(Σ2 − Σ1) = 1, unequal but relatively close means, k = 2

In this setting the two populations have the same covariance matrices as the
configuration in 3.1, but the means are now closer together. The population
mean parameters are µ1 = 0 and µ2 = [2, 1, 0, 0, 0, 0, 0]t . Again, almost all
classificatory information can be captured with q = 1 because of the relative
sizes of the elements of SV (M). A relatively small AGMD indicates that a
majority of the classificatory information is in the covariance matrices. Thus,
BE should perform relatively poorly because it considers only the discriminatory
information in the means. The results for this configuration are shown in Table
3.

As expected, BE does not perform as well in the reduced dimension q = 1 as
TCY . For the small training-sample size, the classification results for TCY are
slightly better than the full-dimension results.

Table 3: Rank( Σ2 −Σ1) = 1 with unequal but relatively close means (k = 2)

Estimated EPMC (standard errors)

dim n = 14 n = 70

Full Dimension 7 0.338 (0.001) 0.228 (0.001)
TCY 3 0.323 (0.001) 0.257 (0.0006)
TCY 2 0.310 (0.001) 0.261 (0.0005)
TCY 1 0.295 (0.002) 0.259 (0.0003)
BE 1 0.375 (0.001) 0.323 (0.0005)

3.3 Unequal means, unequal covariance matrices

The third configuration we consider was earlier studied by Young, Marco, and
Odell (1987). We generated training data of dimension p = 6 for each of the three
classes using the following population means and population covariance matrices:
µ1 = 0,µ2 = e,µ3 = 2e, where e is a vector of ones, Σ1 = I, Σ2 = (1−ρ)I+ρete,
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where 1/(1 − p) ≤ ρ ≤ 1 and

Σ3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 1 0 1 1 1
1 2 0 1 1 1
0 0 7 0 0 0
1 1 0 2 1 1
1 1 0 1 2 1
1 1 0 1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Because rank(M) = 2, Theorem 1 guarantees that if the parameters are
known, TCY preserves the classification information in the data when q = 2.
Therefore, if the parameters are adequately estimated, the optimal reduced di-
mension should still be q = 2. The set SV (U) in Table 1 indicates that q = 1 is
the best reduced dimension for BE.

The value AGMD = 1.52 suggests that most of the classificatory information
is in the covariance matrices, which should diminish the performance of BE.
Note that the covariance matrices are relatively different: one is spherical while
the other two are elliptical. Thus, the pooled estimates of the covariance matrices
(Si +Sj) used in BE significantly differ from the individual covariance matrices,
Si, i = 1, 2, . . . , k. The simulation results are presented in Table 4.

Table 4: Unequal means and unequal covariance matrices (k = 3)

Estimated EPMC (standard errors)

dim n = 12 n = 60

Full Dimension 6 0.161 (0.001) 0.155 (0.0004)
TCY 3 0.244 (0.001) 0.195 (0.0005)
BE 3 0.295 (0.001) 0.233 (0.0007)
TCY 2 0.212 (0.002) 0.187 (0.0005)
BE 2 0.295 (0.002) 0.244 (0.0006)
TCY 1 0.243 (0.002) 0.243 (0.0005)
BE 1 0.305 (0.002) 0.258 (0.0005)

As expected, TCY performs better than BE regardless of the training-sample
size and the reduced-dimension size q. This result is mainly due to the fact that
TCY uses classificatory information in the covariance matrices that is unused
in BE. Neither dimension-reduction method performs as well as the full-feature
dimension. However, both methods perform at least as well at q = 2 dimensions
than at q = 3 dimensions. The reason for this phenomenon is that using more
dimensions as necessary results in adding “noise” or additional variability into the
dimension-reduction approximation. Thus, this additional noise yields a linear
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feature-selection matrix for q = 3 that is worse than the linear feature-selection
matrix at q = 2 in terms of the average PMC. Also, notice that the performance
of BE is fairly constant for all the reduced dimensions. The reason is that
the population means are aligned in one dimension and, therefore, BE gains no
information from additional dimensions.

3.4 Unequal means and unequal spherical covariance matrices

The next configuration we analyzed was considered by Friedman (1989).
Compared to configuration 3.3, the population means are not aligned in a one-
dimensional subspace, but the covariance matrices have a similar structure. The
population mean for class Π1 is at the origin, and the means for classes Π2 and Π3

are shifted from the zero vector in orthogonal directions. In addition, the param-
eter configurations are µ1 = 0,µ2 = [3, 0, 0, 0, 0, 0]t ,µ3 = [0, 4, 0, 0, 0, 0]t ,Σ1 =
I,Σ2 = 2I, and Σ3 = 3I, where I is the six-dimensional identity matrix.

All six elements of SV (M) are non-zero and relatively large indicating that
some classificatory information may be lost with TCY when q ≤ 5. Note that all
of the covariance matrices are spherical so BE should not lose information from
pooling because the covariance matrices span the same space. Also, note that
AGMD = 4.52, which indicates that most of the discriminatory information is
in the means and that the BE method should be superior. The results for this
configuration are shown in Table 5.

Table 5: Unequal means and unequal spherical covariance matrices (k = 3)

EPMC (standard errors)

dim n = 12 n = 60

Full Dimension 6 0.092 (0.001) 0.033 (0.0003)
TCY 3 0.154 (0.001) 0.088 (0.0003)
BE 3 0.147 (0.001) 0.090 (0.0003)
TCY 2 0.186 (0.002) 0.101 (0.0008)
BE 2 0.142 (0.001) 0.094 (0.0003)
TCY 1 0.251 (0.002) 0.271 (0.001)
BE 1 0.219 (0.002) 0.184 (0.001)

For this configuration BE performs somewhat better than TCY . One reason
is that BE gains from pooling the individual covariance matrices because they
are proportional. Thus, all of the classification information is in the differences
of the means. Therefore, TCY is actually adding noise or variability to the
reduced-dimension representation by including the differences in the covariance
matrices.
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3.5 Means differ in first p − 1 features, equal elliptical covariance ma-
trices

Three classes were generated from populations with the same highly elliptic
covariance matrix but different means. The eigenvalues of the common population
covariance matrix Σ are ei = [9(i−1)/(p−1)+1]2 , 1 ≤ i ≤ p, and the population
means are µ1 = 0,µ2i = 2.5(p − i)(

√
ei/p)/(p/2 − 1), and µ3i = (−1)iµ2i, 1 ≤

i ≤ p. This configuration was initially considered by Friedman (1989).
The first components of the feature vector are the most informative. Because

the common covariance matrix is highly ellipsoidal, the estimated group means
differ in a low-variance space but vary in a high-variance space. Note that the
elements in SV (M) indicate that q = 2 should be the optimal reduced dimension
for TCY . The BE method should perform well because the population covariance
matrices are equal and, thus, pooling the sample covariance matrices is beneficial.
Also, all of the discriminatory information is in the difference of the means as
summarized by the fact that AGMD = 10. The results for this configuration are
shown in Table 6.

Here, BE is far superior to TCY , as expected. For TCY we see that the
estimated average PMC is very high for q ≤ 3 due to the variability of the
differences of the sample means. That is, the vector space spanned by [x̄3 −
x̄1, x̄2 − x̄1] can greatly vary. Therefore, a conditional reduced-feature space can
be drastically different from the optimal reduced-feature space.

Table 6: Means differ in first p − 1 features with equal elliptical covariance
matrices (k = 3)

EPMC (standard errors)

dim n = 12 n = 60

Full Dimension 6 0.040 (0.001) 0.013 (0.0001)
TCY 3 0.313 (0.002) 0.257 (0.002)
BE 3 0.070 (0.0008) 0.034 (0.0002)
TCY 2 0.366 (0.002) 0.346 (0.002)
BE 2 0.064 (0.0007) 0.034 (0.0001)
TCY 1 0.401 (0.003) 0.401 (0.003)
BE 1 0.107 (0.001) 0.072 (0.0003)
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3.6 Means differ in the Last p − 1 features, equal elliptical covariance
matrices

This example was also studied by Friedman (1989). We modeled the three
populations using the same elliptic covariance matrix as in Section 3.5. How-
ever, in this configuration the means differ in a high-variance space. The para-
metric configuration is µ1 = 0,µ2i = 2.5(i − 1)

√
ei/(0.5p

√
p − 1), and µ3i =

(−1)iµ2i, 1 ≤ i ≤ p.
All classificatory information can be captured with two dimensions. Again, we

expect BE to perform better than TCY since the population covariance matrices
are equal and all of the classificatory information is in the means.

For this configuration BE and TCY perform similarly (Table 7). The TCY
method performs considerably better than in configuration 3.5 because the sample
means now differ in a high-variance subspace and vary in a low-variance subspace.
For this configuration BE benefits from the pair-wise pooling of the covariance
matrices while TCY benefits from increased stability in the sample means.

Table 7: Means differ in last p − 1 features and equal elliptical covariance
matrices (k = 3)

EPMC (standard errors)

dim n = 12 n = 60

Full Dimension 6 0.049 (0.001) 0.015 (0.0001)
TCY 3 0.068 (0.0008) 0.040 (0.0002)
BE 3 0.074 (0.0008) 0.036 (0.0002)
TCY 2 0.091 (0.002) 0.055 (0.0007)
BE 2 0.079 (0.001) 0.036 (0.0003)
TCY 1 0.211 (0.003) 0.191 (0.002)
BE 1 0.206 (0.003) 0.167 (0.002)

4. A Parametric Bootstrap Simulation

In the following simulation, we use a real data set to estimate the popula-
tion means and covariance matrices. We perform our Monte Carlo simulation
with a parametric bootstrap using three populations: N(x̄1,S1), N(x̄2,S2), and
N(x̄3,S3).

The data set considered is from a preliminary study by G. R. Bryce and R.M.
Barker at Brigham Young University (Rencher, 1995) on a possible link between
football helmet design and neck injuries. Six different head measurements were
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taken on each individual, and the study included three classes with thirty subjects
in each class. The three classes are

Π1 High-school football players,
Π2 College football players,
Π3 Non-football players.

The six head measurements are

1. Head-width at widest dimension,
2. Head circumference,
3. Front-to-back measurement at eye level,
4. Eye-to-top-of-head measurement,
5. Ear-to-top-of-head measurement,
6. Jaw width.

The estimated means and covariance matrices used as parameters in our para-
metric bootstrap are

x̄1 = [15.42, 57.38, 19.80, 10.08, 13.45, 11.94]t ,
x̄2 = [15.20, 58.94, 20.11, 13.08, 14.73, 12.27]t ,
x̄3 = [15.58, 57.77, 19.81, 10.95, 13.70, 11.80]t ,

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

.545 .541 .172 .233 .176 .247

.541 4.21 1.43 .780 , 860 .720

.172 1.43 .706 .211 .414 .233

.233 .779 .211 1.09 .540 .175

.176 .860 .414 .540 .892 .082

.247 .720 .233 .175 .082 .478

⎤
⎥⎥⎥⎥⎥⎥⎦

S2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

.407 .618 .195 −.232 .113 .255

.618 2.88 .929 .195 .094 .308

.195 .929 .552 −.063 −.001 .128
−.232 .195 −.063 1.15 .087 −.157
.113 .094 −.001 .087 .570 −.008
.255 .308 .128 −.157 −.008 .377

⎤
⎥⎥⎥⎥⎥⎥⎦

S3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

.333 .575 .107 .251 .085 .182

.575 2.39 .700 .985 .066 .487

.107 .700 .380 .083 −.027 .116

.251 .985 .083 1.46 .317 .109

.085 .066 −.027 .317 .392 −.047

.182 .487 .116 .109 −.047 ∗ ∗∗ .271

⎤
⎥⎥⎥⎥⎥⎥⎦

.

For this data set, rank(M) = 6 and SV (M) = {5.05, 1.82, 0.68, 0.50, 0.280.21},
which indicates that the first two dimensions contain almost all of the dis-
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criminatory information. This observation suggests q = 2 is the best reduced-
dimension choice for TCY . Also, we have that AGMD = 2.90 and SV (U) =
{2.91, 0.95, 0.31}. Since AGMD is moderately large, BE may perform reason-
ably well for this configuration. Given that there is little information in the third
reduced dimension, it is unlikely that BE would benefit by adding a third reduced
dimension.

The results of the parametric bootstrap simulation are presented in Table 8.
The two methods perform similarly for this configuration. As predicted, TCY
performs better when q = 2, and BE performs surprisingly well, considering
the moderate value of AGMD = 2.90. However, neither method improves the
misclassification error when compared to the full dimension. The gain in the
training-sample size to parameter-dimension ratio is offset by a loss of information
in the reduced-feature space.

Table 8: Football helmet study (k = 3)

EPMC (standard errors)

dim n = 12 n = 60

Full Dimension 6 0.132 (0.001) 0.100 (0.0004)
TCY 3 0.235 (0.001) 0.198 (0.0007)

BE 3 0.224 (0.001) 0.169 (0.0006)
TCY 2 0.218 (0.001) 0.175 (0.0007)

BE 2 0.224 (0.001) 0.160 (0.0006)
TCY 1 0.251 (0.002) 0.206 (0.001)

BE 1 0.243 (0.002) 0.214 (0.001)

We first note that at q = 3 neither linear dimension-reduction technique yields
a EPMC close to the full feature EPMC. Also, in view of the moderate value
of AMGD, the BE linear feature-selection method is, somewhat surprisingly,
roughly equivalent to the TCY linear feature-selection method in terms of the
reduced-space average PMCs.

5. Concluding Remarks

We first remark that BE benefits from pooling the pairs of covariance ma-
trices when they are similar. The performance of BE is enhanced if most of the
classificatory information is contained in the means. This is achieved through the
rotation of the pairs of means by (Si − Sj)−1 into a feature space that preserves
or nearly preserves the AGMD.
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Also, TCY performs well when rank(M) is relatively small so that q � p. We
note that TCY does not depend on which population is labeled Π1. In deciding
whether to use TCY or BE as a feature-reduction method, a researcher may
choose to apply both transformations to the data and select the one that performs
the best on the specific data set in terms of yielding the smallest estimated
conditional error rate. In configurations 3.1 and 3.2, classification is actually
enhanced by feature reduction when the sample size is close to the number of
parameters to be estimated. Last, we remark that unlike the results in Brunzell
and Eriksson (2000), our results demonstrate that for certain combinations of
parameter configurations and sample sizes, TCY can be significantly superior to
BE.

Finally, we note that the simulation studies indicate that the performance of
the TCY and BE can be reasonably predicted when one considers the values of
the configuration parameters and the sets SV (M) and SV (M), and the AGMD.
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