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Abstract: The traditional approach by Fama and Macbeth (1973) to the
validity of an asset pricing model suffers from two drawbacks. Firstly, it
uses the ordinary least squares (OLS) method, which is sensitive to outliers,
to estimate the time-series beta. Secondly, it takes averages of the slope
coefficients from cross-sectional regressions which ignore the importance of
time-series properties. In this article, robust estimators and a longitudinal
approach are applied to avoid the problems of these two kinds. We use data
on the electronics industry in Taiwan’s stock market during the period from
September 1998 to December 2001 in order to examine whether betas from
the Capital Asset Pricing Model (CAPM) are a valid measure of risk and
whether industries to which the firms belong explain excess returns. The
methods we propose lead to more explanatory power than the traditional
OLS results.

Key words: Capital Asset Pricing Model, industrial effects, linear mixed-
effect model, longitudinal data analysis, robust estimation.

1. Introduction and Background

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner
(1965) has been widely used in measuring the relationship between the expected
return on a security and its risk in financial markets. However, it has been under
attack from all corners since its inception. The most serious assault in recent
years, arguably, was initiated by Fama and French (1992, 1993, hereafter FF),
who advocate an APT-like three-factor model to replace the CAPM.

The evidence presented by Fama and French does not convince everybody.
Competing theories have been offered to explain the cross-sectional variation of
stock returns (Lakonishok et al., 1994; Deniel and Titman, 1997) those who
support the CAPM also provide evidence to prove that it is still alive and well
(Kothari et al., 1995). In this paper we would like to offer some opinions from
two aspects to contribute to the literature.

Our main contributions firstly come from the estimation technique. Tradition-
ally, the estimation of the relationship between risk and expected return consists
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of two stages following Fama and Macbeth (1973, hereafter FM). The first is that
betas are estimated from time series regressions by ordinary least squares (OLS)
estimators, and the second stage tests the relationship between mean returns
and betas across firms or portfolios by taking time series averages of the slope
coefficients from monthly cross-sectional regressions (Shalit and Yitzhaki, 2001).

The above approach has been modified by the ways in which the variables
are defined and how the betas are estimated; see the reviews respectively by
Kothari et al. (1995) and Chou and Liu (2000). However, much of the research
maintains the structure of a two-stage estimation, which is not desirable from
statistical points of view in many ways. Specifically, Shanken (1992) proves that
the estimates in two-stage regressions are consistent if the sample length tends to
infinity and if the error terms are independently and identically distributed over
time, and the assumptions are only approximations to real-world data. In this
paper we propose another way to estimate the relationship between returns and
betas by using robust estimates to prevent potential outliers at the first stage and
by using the approach of the longitudinal research to deal with the estimation
problem at the second stage.

Although the OLS produces the optimal estimate of linear model coefficients
and provides a convenient distribution theory for inference when the errors are
Gaussian, it is well known that the OLS objective is particularly sensitive to
outliers and leverage points. The problem may partly be solved by altering some
seemingly outliers or leverage points. For example, FF (p. 439) reset the values
of the largest and smallest 0.05% of observations for some of the explanatory
variables, but this kind of approach is ad hoc to say the least. It essentially
needs robust estimators to cope with multiple outliers. We believe that by using
an appropriate technique the estimation of the beta or other variables can be
greatly improved.

We are not the first ones to apply robust statistics to conduct tests of asset
pricing. Knez and Ready (1997) extend FF’s monthly cross-sectional regressions
by applying a least trimmed squares (LTS) regression and show that the signifi-
cance of size and book-to-market ratio obtained by OLS regressions in FF (1992)
is due to positive skewness in the return distributions. However, their robust tests
on CAPM focus only on the cross-sectional averages across firms in each portfolio
and across months, whereas we apply robust estimates and employ the longitudi-
nal approach. In addition, the two-level linear mixed-effects (LME) model allows
us to formulate the industrial and company effects elegantly by treating them as
random effects. By contrast, we have to use dummy variables to represent the
effects in the OLS regressions.

FM’s approach uses independent t-tests to examine whether time series av-
erages of betas from the monthly cross-sectional regressions are a valid measure
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of risk. Nevertheless, it essentially creates the so-called repeated measurement
problem in the statistical literature: some important information might be dis-
carded when only using a cross-sectional analysis. The panel data analysis is one
of the approaches to deal with the problem of this kind, for it takes the time-series
properties of the observations into account (Hsiao, 1986). The common trait of
longitudinal research is that the entity under investigation or unit of study is
observed or measured at more than one point in time, possibly repeatedly, and
that it develops over time.

If the beta cannot fully explain the variation of excess returns, then what
can? Our second main contribution from this paper is to provide some evidence
of a possible candidate: industrial effects. It is widely believed among academics
and practitioners that the industries to which firms belong are related to their ex-
pected returns, presumably because they are proxies for different risks. However,
several studies report that industry factors are weak or imprecise (Roll, 1992;
Fama and French, 1997; Alexander and Thistle, 1999). We examine this issue by
going a step further. Those papers use the U.S. Government’s Standard Industry
Classification (SIC) codes or Goldman Sachs Classification to classify stocks into
several industries. Because they try to make their sample comprehensive, their
classification may be too crude. In contrast, we only focus on a small number of
stocks to improve the precision of classification.

The sample we choose is a group of stocks representing companies in Taiwan’s
electronics industry. This sample is selected for two reasons. Firstly, the sample
period is between 1998 and 2001, during which electronics stocks attracted most
of the attention from investors. Trading activities concentrated on those stocks
and they sometimes accounted for nearly 90% of the daily trading volumes. A
study of the behavior of electronics stocks is indeed a study of the trading of
general Taiwanese investors.

Secondly, the electronics industry in Taiwan is complete. The listed compa-
nies include those ranging from designing and producing integrated circuits to
computer retailers and distributors. We can make the classification more precise
in the industry, and if there is no industrial effect at all in the industry, then
the effect may not be found elsewhere. Specifically, we classify the companies
into upper, middle, and lower streams to examine whether their stock returns
are related to the level in which they are located. By focusing on the industrial
effects of the various levels of the electronics industry, we hope to detect a strong
relationship between returns and the industry, which is difficult to uncover under
a broad classification.

Our findings can be summarized as follows. Firstly, the betas estimated by
the LTS regressions are better able to capture the time-series variations of the
excess returns than the OLS. The LTS betas also perform well in both the cross-
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sectional regressions analysis of the FM procedure and the LME model. Secondly,
under the FM procedure, the LTS beta is significant in explaining the returns
only after interacting with the industrial dummies. Under the LME model, both
the OLS betas and the LTS betas are significant in all models. Thirdly, the
industrial effects are visible under the FM procedure as well as the LME model.
Overall, there is evidence for and against the CAPM. The robust estimate of
the beta successfully explains part of the returns under the LME model, while it
leaves a large part of the returns unexplained in which the industrial effects may
play roles.

The rest of this article is organized as follows. Section 2 gives a brief intro-
duction about robust estimators. Apart from the LTS mentioned above, we also
discuss the RDL1 estimator, which is particularly used in the linear regression
model with both continuous and discrete regressors. Section 3 provides a pre-
liminary analysis of the data. Section 4 modifies the second stage of the FM
procedure to present a cross-sectional analysis of stock returns in the presence of
industrial effects with both OLS and robust estimations. The robust estimates
yield more reasonable conclusions to the aspect of CAPM. Section 5 considers
the longitudinal data analysis to treat the estimation problem during the second
stage. Some conclusions and comments are drawn in Section 6.

2. Robust Statistics

In this section we briefly review the application of robust statistics to regres-
sion models. A linear regression model can be written as

yi = β0 +
p∑

j=1

βjxij + εi, i = 1, . . . , n, (2.1)

where there are p explanatory variables and they are usually quantitative, βj is
the jth regression coefficient, and β0 denotes the intercept term. We often make
certain idealized assumptions about the error term, εi, to be independent and
identically distributed with a normal distribution, N(0, σ2), for the purpose of
statistical inferences. A least squares analysis weights each observation equally
in achieving the parameter estimates. Therefore, it is sensitive to outlying cases.
The robust methods, however, enable the observations to be weighted unequally,
so that observations with large residuals are down-weighted.

Many robust methods have been discussed and proposed since the middle of
the 1960s (Huber, 1981). One of the desirable properties for a robust estimator
is one with a higher breakdown point. The (finite sample) breakdown point
of an estimator refers to the smallest proportion of observations which when
altered can cause the value of the estimator to be arbitrarily large or small (see
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Hampel et al., (1986)). We focus on two estimators with a high breakdown point
here. The first one is the least trimmed squares (LTS) estimator proposed by
Rousseeuw (see Rousseeuw and Leory (1987)), which Knez and Ready (1997)
apply to the CAPM. The second one is RDL1 proposed by Huber and Rousseeuw
(1997), which is particularly used in the case when the regression model consists
of binary regressors.

2.1 Least trimmed squares estimator

For the regression model (2.1), OLS finds any estimate of β = (β0, β1, . . . , βp)
to minimize the sum of the residuals, that is

min
β

n∑
i=1

e2
i , (2.2)

where ei = ei(β̂) = yi − xT
i β̂ is the residual and β̂ = (β̂0, β̂1, . . . , β̂p) is the

estimator. To obtain the LTS, we first let

e2
(1),n ≤ e2

(2),n ≤ . . . ≤ e2
(n),n

be the ordering of the residuals. The objective function of LTS is to

min
β̂

q∑
i=1

e2
(i),n, (2.3)

where q is [n/2] + [(p + 1)/2] and [·] denotes the integer part. It has the largest
breakdown point for LTS (see Rousseeuw and Leory (1987, p.132)). Atkinson and
Cheng (1999) discuss the choice of q. They show that one can get more stable
results for the detection of outliers as well as highly efficient estimates when more
data are fitted, provided q is small enough to exclude outlying cases. Zeman et al.
(2001) suggest that [0.75n] is a reasonable value for q in most empirical studies.

In contrast to OLS, the LTS estimator has a high breakdown point which
ensures it is robust enough to resist multiple outliers. The LTS fits only those
q observations with the smallest residuals and trims the rest where q ≤ n. Note
that since the LTS depends only on the residuals, it generally will not trim the
same number of observations from the upper and lower tails of the distribution.
A more detailed concept about LTS can be referred to that in Rousseeuw and
Leroy (1987).
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2.2 RDL1 estimator

If there are qualitative explanatory variables, then it is conventional in prac-
tice to encode such regressors by binary dummy variables. Extending model (2.1)
to a model with continuous and discrete regressors, the model is expressed in the
following form

yi = β0 +
p∑

j=1

βjxij +
k∑

l=1

γlIil + εi, (2.4)

where Il denotes the dummy variable with elements either zero or one. Huber
and Rousseeuw (1997) point out that we cannot simply run the robust regression,
such as LTS, by treating the dummy variable in the same way as the continuous
regressors as normally done when using OLS in model (2.1), since this may lead
to a problem of singular matrices. Therefore, they propose the RDL1 estimator
which can withstand contaminations in the data for model (2.4). Here, RD
stands for robust distance, and L1 indicates the least absolute values method in
the estimates of the regression coefficients.

The RDL1 consists of three stages: identifying leverage points, downweighting
the leverage points when estimating the parameters, and estimating the resid-
ual scale. In the first stage we look for leverage points, i.e., outliers in set
X = {x1, . . . ,xn} where the components of xi = (xi1, . . . , xip) are the contin-
uous regressors and X has the dimension of p. The minimum volume ellipsoid
estimator (MVE) of Rosseeuw (1985) is used to obtain the robust Mahalanobis
distances. The MVE consists of a robust location estimator T (X) defined as the
center of the small ellipsoid containing half the points of X, as well as a scat-
ter matrix C(X) given by the shape of that ellipsoid. The robust distances are
defined as

RD(xi) =
√

(xi − T (X))C(X)−1(xi − T (X))T , i = 1, 2, . . . , n.

If the regressors xi are observational (rather than designed) with a multi-
variate normal distribution, then the T (X) and C(X) are consistent for the
underlying parameters (Davies, 1992). For large n, the (RD(xi))2 would thus
approximate χ2 distributed with degrees of freedom p (Rousseeuw and Leroy,
1987). Consequently, observations with larger values of RD(xi) can be identified
as leverage points.

Based on the robust distances, the second step is to compute weights wi by

wi = min
{

1,
p

(RD(xi))2

}
, i = 1, . . . , n.
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The parameters β,γ) of model (2.4) are then estimated by a weighted L1 proce-
dure

min
n∑

i=1

wi | ei |,

where ei denotes the ith residual in the fitting. In the final step the scale of the
residuals is estimated by

σ̂ = 1.4826mediani | ei |,
where the constant 1.4826 makes the estimator consistent at normal errors.

The robust estimate (β̂, γ̂, σ̂) can now be used to detect regression outliers, by
flagging the observations whose absolute standardized residual | ei/σ̂ | exceeds
2.5. The entire three-stage procedure is called the RDL1 estimation, and its
statistical properties and its S-PLUS code can be found in Huber and Rousseeuw
(1997).

3. Preliminary Analysis

3.1 Data description

We begin our investigations by applying the FM procedure to data related to
electronics stocks in Taiwan. The data cover the period from September 1998 to
December 2001. The choice of the sample period is a compromise between the
length of the period and the availability of the data, for many of these stocks
were not listed on the Taiwan Stock Exchange until 1998. Monthly stock returns
on individual securities and the market index are obtained from the database of
the Taiwan Economic Journal, in which stock prices have been adjusted for any
ex dividend. The sample consists of 48 stocks in which there are 23 companies in
the upper stream (semiconductor and printed circuit boards), 14 in the middle
stream (motherboards and components), and 11 in the lower stream (PCs and
monitors).

We have implemented some graphical methods for the preliminary analysis.
Because the graphs are too tedious to be shown here, we only report a part of
them and summary descriptions about the data are as follows.

1. The box plots of excess returns for each month presented in Figure 1 show
that there exist outlying observations.

2. The time series plot of excess returns shows that these levels have different,
but not obvious patterns.

3. The histogram of excess returns of all companies indicates that the excess
returns are skewed to the right.
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4. The scatter plots of returns versus risk for each company show that there
exists a linear relationship between them and several obvious and potential
outliers appear.
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Figure 1: Box plots of excess returns corresponding to each company.

In sum, using cross-sectional regression analysis by OLS may be affected by
those potential outliers. Furthermore, there exist variations among the monthly
excess returns. The assumption of constant variance when applying OLS might
be violated.

3.2 Estimating betas

Fama and Macbeth (1973) conduct two stages of regression analysis to exam-
ine the CAPM. The theoretical form of CAPM can be expressed as

E(Ri) = Rf + βi(E(Rm) − Rf ),

where Ri is the rate of return of security i, Rf is the risk-free rate, and Rm is
the market return. Because βi is not observable, it has to be estimated from a
time-series analysis in the first stage:

(Rjt − Rft) = αj + βjRct + εjt, j = 1, 2, . . . , 48, t = 1, 2, . . . , 40, (3.1)
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where (Rjt−Rft) is j security’s excess returns at time t and the risk-free interest
rate, Rft, is the secondary market interest rate of the 10-year Treasury bond at
time t. Term Rct is the market excess returns at time t, Rmt −Rft, and the rate
of return on the Taiwan Stock Exchange Capitalization Weighted Price Index
(TAIEX) of the Exchange is used as the proxy for Rmt.

To compare the difference between the OLS and the LTS in estimating the
betas, we conduct 48 time series regressions for each company. We then take
averages of the estimated coefficients for the 48 models, which are denoted as
¯̂α =

∑48
j=1 α̂j/48 and ¯̂

β =
∑48

j=1 β̂j/48. Finally, t-statistics are used to test the
hypotheses of α = 0 and β = 0.

The results are presented in Table 1. Note that this is not the standard pro-
cedure by Fama and Macbeth (1973), who use the “rolling beta” approach, as
illustrated in the next section. The FM procedure yields multiple betas for each
security, which are difficult to summarize. Therefore, at this stage we simply
follow Fama and French (1992) who implement the full sample to estimate betas.
Terms TS1 and TS2 indicate the OLS and LTS used to estimate the coefficients,
respectively. The coefficients presented in the table are the averages of the esti-
mated time series regression coefficients of 48 companies. Both [0.7n] and [0.8n]
for the value of q used in LTS objective function (2.3) yield similar results. Here,
we report the results when q = [0.8n].

Table 1: Time series regression analysis for each company

TS1 TS2
¯̂α 3.4137∗∗ -0.6827

t(¯̂α) (6.3877) (-1.2090)
¯̂
β 1.3262∗∗ 1.1068∗∗

t(¯̂β) (26.1410) (20.7775)
Average R2 0.4810 0.4785

“∗” denotes significance at the 10 percent level, and “∗∗”
denotes significance at the 5 percent level.

When taking the average of the coefficients (as presented in Table 1) the betas
of both models have similar values, which are higher than one, meaning that the
returns of electronics stocks are very sensitive to the returns of the market. The
t-values of the betas indicate that they are significant. The estimated intercept
is not significant by the LTS, whereas it is somewhat large by the OLS. In such
a regression model, the intercept of a good pricing model should be close to
zero (Merton, 1973; Ross, 1976), and Table 1 indicates that the mispricing of
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the CAPM in TS1 is due to outliers. Without the effect of those outliers when
applying the LTS, TS2 is more in line with the CAPM.

We also examine the plots of 95% confidence interval estimates for the coeffi-
cients of each company from TS1 and TS2. To save space, we only summarize the
results. It appears that the coefficients may differ among companies and some
of them show a considerable difference from others. However, for the majority
of the stocks, zero is well in the confidence intervals of intercepts and one is in
the interval of betas. This suggests that the CAPM works well for the majority
of the stocks, and the poor performance of TS1 in Table 1 results from a few
outliers.

4. Allowing Industrial Effects

4.1 Two-stage regressions

In this section we conduct the FM procedure to include betas and the variables
of industrial effects (“stream” dummies). In the first stage the beta of model
(3.1) is estimated using the rolling method in Fama and Macbeth (1973). For
example, the first twelve months (from September 1998 until September 1999,
t =1 to 12) are used to obtain the slope estimate which leads to be the beta
of the 13th month, denoted as β̂j,13 for security j. We next use the second 12
months (from October 1998 until October 1999, t =2 to 13) to obtain the beta
of the 14th month. Iteratively, we then will get 28 months (from October 1999
until December 2001) of estimated betas to be the explanatory variables of the
cross-sectional regression analysis as follows:

⎡
⎢⎢⎢⎣

β̂1,13 β̂1,14 · · · β̂1,40

β̂2,13 β̂2,14 · · · β̂2,40
...

...
. . .

...
β̂48,13 β̂48,14 · · · β̂48,40

⎤
⎥⎥⎥⎦ . (4.1)

The 12-month period to estimate betas is called the formation period, and the
28-month period is called the testing period. The coefficient of beta is the risk
premium. Therefore, there are 28 months used in the cross-sectional regression
analysis.

For the cross-sectional regression in the second stage, we consider three dif-
ferent models. The first one includes beta as the only one explanatory variable;
that is,

Rjt − Rft = λ0j + λ1j β̂jt + εjt, j = 1, 2, . . . , 48. (4.2)
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The second model uses dummy variables to capture the stream effects:

Rjt − Rft = λ0j + λ1j β̂jt + λ2jI1 + λ3jI2 + εjt,

j = 1, 2, . . . , 48,
(4.3)

where

I1 =
{

1 if the company belongs to the lower stream
0 otherwise,

and

I2 =
{

1 if the company belongs to the middle stream
0 otherwise.

The third model takes account of the interaction of streams and betas:

Rjt − Rft = λ0j + λ1j β̂jt + λ2jI1 + λ3jI2 + λ4jI1β̂jt + λ5jI2β̂jt + εjt,

j = 1, 2, . . . , 48.
(4.4)

Models (4.2), (4.3), and (4.4) yield 28 regression equations for t = 13, . . . , 40.
Parts of our graphical results for the estimated betas and comments on those

figures are summarized as follows.

1. Plots (1) and (2) of Figure 2 show the box plots of the estimated betas for
each month computed by OLS and LTS approaches, respectively. There
appear outliers for several months. Similar plots for each company are not
shown here. Both OLS and LTS results show that the estimated betas for
each company are more fluctuating than those for each month.

2. The time series plots of the estimated beta by OLS and by LTS reveals that
the trends have three different types in the three streams with the OLS beta
and that the beta with OLS is smoother than the LTS method.

3. The scatter plots of security excess returns and betas show that the betas
estimated by OLS are more concentrated in the X-direction than those
estimated by LTS.

4.2 OLS

Following FM, we conduct month-by-month cross-sectional regressions of stock
excess returns on the beta and calculate the time series averages of each regres-
sion’s intercept and slope. The t-statistics are used to test whether the averages
are different from zero.



392 Tsung-Chi Cheng et al.
-1

0
1

2
3

4
5

99/09

99/10

99/11

99/12

00/01

00/02

00/03

00/04

00/05

00/06

00/07

00/08

00/09

00/10

00/11

00/12

01/01

01/02

01/03

01/04

01/05

01/06

01/07

01/08

01/09

01/10

01/11

01/12

be
ta

 o
f O

LS

(1)
-1

0
1

2
3

4
5

99/09
99/10
99/11
99/12
00/01
00/02
00/03
00/04
00/05
00/06
00/07
00/08
00/09
00/10
00/11
00/12
01/01
01/02
01/03
01/04
01/05
01/06
01/07
01/08
01/09
01/10
01/11
01/12

be
ta

 o
f L

T
S

(2)

Figure 2: Box plots of extended betas for each month: (1) by OLS and
(2) by LTS.
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We first apply the OLS to FM’s procedure. In Table 2, OLS1 to OLS3 are the
averages of the estimated month-by-month cross-sectional regressions coefficients
for models (4.2) to (4.4), respectively. The only significant variable in the three
models is the intercept, indicating neither the beta nor the stream dummy is able
to explain the cross-sectional variations of the stocks.

Table 2: The average results of cross-sectional regressions using OLS

OLS1 OLS2 OLS3

Intercept -6.1423∗∗(-2.4638) -5.5934∗∗(-2.2100) -4.0033(-1.4841)
βj,t 1.1789 (0.8880) 0.7738 (0.5710) -0.3621(-0.2827)
I1 -0.8922 (-0.6023) -2.8814(-0.8492)
I2 0.2153 (0.1886) -2.5964(-0.8974)
βj,t × I1 1.8075 (0.9385)
βj,t × I2 1.4313 (0.6744)
Average R2 0.0564 0.1227 0.1690

“∗” denotes significance at the 10 percent level, and “∗∗” denotes signif-
icance at the 5 percent level.

Examining the coefficients associated with the variables still offers some in-
sights of the excess returns. The average risk premium of beta in OLS2 is smaller
than in OLS1, indicating that stream dummies may explain part of the risk pre-
mium. Furthermore, when the interaction of the dummy variables and betas is
also concluded in OLS3, the average risk premium of beta is negative for the up-
per stream while that for the middle and lower streams it is positive. Although
the estimated coefficients are not statistically significant, it suggests that risk
premia vary greatly across different streams of stocks.

4.3 Robust results

We now apply a robust method to examine the effect of outliers and report
the results in Table 3. LTS1 denotes the results of model (4.2) obtained by LTS,
whereas RDL12 and RDL13 are those respectively of (4.3) and (4.4) used by
the RDL1 estimator. As explained in Section 2.2, LTS cannot be applied here,
because it may produce singular matrices in a regression model with dummy
variables.

Similar to Table 2, the intercept is significant in the result of LTS1 and RDL12,
but not in RDL13. Moreover, the estimated coefficients of the other variables
in LTS1 and RDL12 are not significant, but RDL13 is quite interesting. The
coefficient of β̂j,t is small and insignificant, and those of β̂j,t × I1 and β̂j,t × I2

are large and statistically significant. This implies that the risk premium is
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small for the upper stream companies and is big for the middle and lower stream
companies. The lower stream companies have the biggest risk premium. In
addition, the coefficient of I1 is negative and significant, which means that a
stream effect exists in the electronics industry that cannot be explained by the
beta. Negative I1 and I2 imply that the returns of the middle and the lower
stream companies are smaller than those of the upper stream companies.

In terms of the signs of coefficients, the results of Table 3 are not very dif-
ferent from those of Table 2, but in terms of statistical significance, those of
Table 3, especially of RDL13, are much stronger. Therefore, the outlying obser-
vations weaken the relationship between return, risk, and industrial effects, and
the relationship holds for the majority of stocks.

Table 3: The average results of cross-sectional regressions using robust estimators

LTS1 RDL12 RDL13
Intercept −7.8958∗∗(−2.7925) −6.6353∗∗(−2.4414) −3.9678 (−1.2907)
βj,t 1.2304 (1.1082) 1.2205 (0.9902) −1.3729 (−1.1022)
I1 −0.3558 (−0.2493) −7.9242∗∗(−3.2196)
I2 0.4342 (0.2793) −4.8489 (−1.5155)
βj,t × I1 6.3859∗∗ (3.1999)
βj,t × I2 4.8679∗∗ (2.2651)
Average R2 0.1012

“∗” denotes significance at the 10 percent level, and “∗∗” denotes signif-
icance at the 5 percent level.

5. Longitudinal Data Analysis

In this section the longitudinal data analysis is applied to deal with the prob-
lem of CAPM. Two strong reasons motivate us to employ the longitudinal data
technique in the investigation of CAPM here. Firstly, the FM approach of av-
eraging coefficients of cross-sectional regressions ignores time-series properties of
the returns within the same company or the same industry, whereas the longi-
tudinal data analysis takes both time-series and cross-sectional properties into
account. Secondly, the linear mixed-effect model for longitudinal data provides
a convenient way to include the stream effect by treating it as a random effect.
Moreover, the variation among different companies is included in the model.
Other advantages of the longitudinal data analysis can be referred to that of Pin-
heiro and Bates (2000), in which applications and theoretical discussions about
this approach are given.
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The two-level linear mixed-effects model is used to analyze these data with
the form of

Yij = βijλ + Zi,jbi + Zijbij + εij i = 1, 2, 3 j = 1, 2, . . . , ni

bi ∼ N(0, σ2
1), bij ∼ N(0, σ2

2), εij ∼ MV N(0, σ2
0I),

(5.1)

where λ is a 2 × 1 parameter vector of fixed effects; βij is a 28 × 2 matrix of
betas (we omit the “hat” notation of β hereafter); bi is the first-level (stream)
random effects; and bij is the second-level (company) random effects, which refers
to company j within stream i. Therefore, n1 = 23, n2 = 14, and n3 = 11 in model
(5.1).

Note that the variance functions can be used to model the variance structure
of the within-group errors to allow heteroscedasticty in model (5.1). For example,
the variance function model for a two-level model is

V ar(εijt|bi, bij) = σ2g2(µijt, νijt, δ),
i = 1, 2, 3, j = 1, 2, . . . , ni, t = 13, 14 . . . , 40,

where µijt = E[Yijt|bi, bij], νijt is a vector of variance covariates, δ is a vector of
variance parameters, and g(·) is the variance function, assumed to be continuous
in δ. Furthermore, in the context of mixed-effect models, correlation structures
are used to model dependence among the within-group errors.

To establish a general framework for the correlation structure of model (5.1),
the within-group errors within the same innermost level of group are

cor(εijt, εijt′) = h[d(pijt, pijt′), φ],
i = 1, 2, 3, j = 1, 2, . . . , ni, t, t′ = 13, 14 . . . , 40,

where d(pijt, pijt′) denotes the distance between the corresponding positions, pijt

and pijt′ . The details of the variance (eg., the choice of g(·)) and correlation
structures of model (5.1) can be referred to Pinheiro and Bates (2000, Chapter
5) and Diggle et al. (1996, Chapter 5).

To determine the random effects, we presume that the different streams and
companies will affect the excess returns of each security in different ways. There-
fore, the first-level random effect indicates the stream and the second-level ran-
dom effect denotes the company. The random effect matrix Zi,j is a vector of
1s, which means that the first-level random effect has an equal effect on the se-
curity’s excess returns under those companies in the same stream. The random
effect matrix Zij is a vector of 1s which means that the second-level random
effect affects the security’s excess returns on an equal weight, but changes with
different streams and companies.
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5.1 LME with OLS betas

Table 4 shows the results of model (5.1) where the values of β are obtained
by the OLS approach. The four models all assume that the random effects are
“stream” and “company within stream”. The difference is in the assumption of
the within-group error εij. The error term of OLS4 is identically, independently,
and normally distributed as in (5.1). OLS5 assumes that within-group errors
are heteroscedastic; that is, the variances of εij are different for each stream and
company. OLS6 assumes that the variances are correlated with AR(1), and OLS7
assumes that the variances are both heteroscedastic and correlated with AR(1).

Table 4: The results of LME using OLS betas

OLS4 OLS5 OLS6 OLS7

Intercept -7.5753∗∗ -8.6983∗∗ -7.4185∗∗ -8.5712∗∗

(-5.7104) (-6.9143) (-4.9375) (-6.1385)
βjt 2.7165∗∗ 3.5623∗∗ 2.7327∗∗ 3.5523∗∗

(2.9697) (3.7398) (2.6425) (3.3645)
σ0 21.937 15.766 21.959 15.717
σ1 0.00214 0.00281 0.00214 0.00153
σ2 0.00391 0.00389 0.00390 0.00279
φ 0.1346 0.1171
AIC 12120.68 12031.38 12101.14 12019.23
BIC 12146.69 12301.88 12132.36 12294.93

“∗” denotes significance at the 10 percent level, and “∗∗” denotes signif-
icance at the 5 percent level.

In comparison with OLS1 in Table 2, of which the average risk premium 1.1789
is insignificant, those risk premiums of the panel data analysis, OLS4, OLS5,
OLS6, and OLS7 in Table 4, are all significant. The risk premiums estimated by
the LME model are all more than twice those in Table 2, which means that the
cross-sectional analysis may ignore important information in the time series.

For all the LME models from OLS4 to OLS7, the standard deviations of
random effects σ1 and σ2 are both smaller relative to the within-group standard
deviation σ0. It seems that the random effects of stream and company can only
explain a small fraction of variations in excess returns. Finally, φ is the coefficient
of the AR(1) model and is not very large, which suggests that the self correlation
of variance is not strong.
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5.2 LME with LTS betas

We now use the betas estimated by LTS to carry out a similar analysis as in
the previous subsection. The numbers 4 to 7 affixed after “LTS” in Table 5 are
the same assumptions on model (5.1) as discussed in the results of Table 4.

Table 5 reveals that the standard deviations of random effects σ1 and σ2 are
both smaller relative to the within-group standard deviation σ0. It seems that
the random effects of stream and company are small relative to the within-group
variations.

In comparison with the average risk premium of the cross-sectional analysis
without the stream effect, whihc is LTS1 in Table 3, the average risk premium is
insignificant, while those in Table 5 are all significant. Again, it means that the
cross-sectional analysis may ignore important information in the time series for
a given company.

Table 5: The results of LME using LTS betas

LTS4 LTS5 LTS6 LTS7

Intercept -6.1223∗∗ -6.8944∗∗ -5.7270∗∗ -6.6124∗∗

(-5.3375) (-6.5311) (-4.4825) (-5.7326)
βjt 1.6856∗∗ 2.1675∗∗ 1.5098∗ 2.0170∗∗

(2.1094) (2.7064) (1.7123) (2.3208)
σ0 21.973 16.073 21.995 15.935
σ1 0.01319 0.00963 0.01276 0.00923
σ2 0.01273 0.00930 0.01223 0.00885
φ 0.1357 0.1150
AIC 12125.30 12038.18 12105.49 12025.43
BIC 12151.31 12308.68 12136.70 12301.13

“∗” denotes significance at the 10 percent level, and “∗∗” denotes signif-
icance at the 5 percent level.

In comparison with the results in Table 4, interesting patterns finally emerge.
All the intercepts and the coefficients of betas of the four models of Table 5 are
smaller than their counterparts in Table 4, while the standard deviations of the
random effects greatly multiply. Similar to the findings in Section 4, the contrast
of Table 4 and Table 5 indicates that outliers weaken the explanatory power of
beta as well as the industrial effects.
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5.3 Model comparison and diagnostics

We next consider the panel data analysis of linear mixed-effects models with a
different assumption about the within-group errors, which leads to several models
at hand. A model selection about these LME results is needed. Here, we use the
Akaike information criterion (AIC) and Bayesian information criterion (BIC); see
Pinheiro and Bates (2000). They are defined as follows:

AIC = −2 × log(likelihood) + 2 × p

BIC = −2 × log(likelihood) + p × log n,

where p represents the number of parameters in the fitted model, and n represents
the number of observations. Both criteria show that the smaller the values are,
the better the fit.

The results are shown in the bottom rows of Table 4 and Table 5. For the
AIC, model OLS7 is the best since it has the smallest values, but we can see that
the AIC of model LTS7 is larger than that of OLS7 by just 0.052%. Therefore,
for the criterion of AIC, we conclude that linear mixed-effects models OLS7 and
LTS7 are both reasonable modeling for the data.

6. Conclusions

We have applied robust estimators and panel data analysis to re-examine the
CAPM. There are more variations in the LTS betas than the OLS betas, and
the former are more successful in capturing the time-series variations of excess
returns. This implies that the inclusion of outliers undermines the relationship
between individual and market excess returns. Furthermore, the use of the LTS
betas in the second-stage analysis, no matter if the traditional FM procedure or
the LME model is employed, increases the t-values of the coefficients associated
with the betas.

The advantage of the longitudinal analysis is to take account of both the
time-series and cross-sectional properties of the observations. However, our LME
model does not give further support to the CAPM. While the betas are significant
in all of the LME models, the intercepts are bigger in those models than in the
FM procedure, which suggests that the beta fails to fully explain the returns.
Allowing for heteroscedasticity in the error terms to increase the precision of the
estimation, it also increases the t-values of both the intercept and the coefficient
of the beta. Allowing for autocorrelation in the error terms does not change the
result very much.

Does the industrial/stream effect exist in the market? Our findings suggest
that it does, especially when the LTS betas are used. In the FM procedure, the
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stream effects are not only visible in the dummies, but they are also related to
the betas. The significance of the interaction terms between betas and the stream
dummies suggests that the returns of the companies from different streams behave
differently with the betas. In the LME model, the stream and the random effects
are somewhat small, but they are larger when the LTS betas are used.

Taking all the evidence together, CAPM cannot fully explain the excess re-
turns. The industrial effects may help explain part of the returns, but not all.
However, we only consider here the electronics industry in Taiwan’s stock market.
For future studies, first of all, including the other industries in the whole mar-
ket is needed. Secondly, more tests are required by considering a wide range of
explanatory variables, including macroeconomic variables such as those in Chen
et al. (1986), or risk factor variables such as in Fama and French (1993), which
have been shown to successfully explain cross-sectional stock average returns of
stocks in the U.S.

References

Alexander, D. L. and Thistle, P. D. (1999). Market power, efficiency and the dispersion
of systematic risk . Review of Industrial Organization 14, 377-390.

Atkinson, A. C. and T.-C. Cheng. T.-C. (1999). Computing the least trimmed squares
regression with the forward search. Statistics and Computing 9, 251-263.

Chen, N.-F. and Roll, R. and Ross, S. A. (1986). Economic forces and the stock market.
Journal of Business 59, 383-403.

Chou, P.-H. and Liu, Y.-F. (2000). The cross section of expected returns in Taiwan:
Characteristics, single factor, or multi factors? Review of Securities and Futures
Markets 12, 1-32.

Daniel, K. Titman, S. (1997). Evidence on the characteristics of cross sectional variation
in stock returns. Journal of Finance, 1-33.

Davies, L. (1992). The asymptotic of Rousseeuw’s minimum volume ellipsoid estimator.
Annals of Statistics 20, 1828-1843.

Diggle, P. J. and Liang, K. Y. and Zeger, S. L. (1996). Analysis of Longitudinal Data.
Clarendon Press.

Fama, E. F. and French, K. R. (1992). The cross-section of expected stock returns.
Journal of Finance 47, 427-465.

Fama, E. F. and K. R. French, K. R. (1993). Common risk factors in the returns on
stocks and bonds. Journal of Financial Economics 33, 3-56.

Fama, E. F. and French, K. R. (1997). Industry costs of equity. Journal of Financial
Economics 43, 153-193.



400 Tsung-Chi Cheng et al.

Fama, E. F. and Macbeth, J. D. (1973). Risk, return and equilibrium: Empirical tests.
Journal of Political Economy 81, 607-636.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust
Statistics: The Approach Based on Influence Functions. John Wiley.

Hsiao, C. (1986). Analysis of Panel Data. Cambridge University Press.

Huber, P. J. (1981). Robust Statistics. John Wiley.

Hubert, M. and Rousseeuw, P. J. (1997). Robust regression with both continuous and
binary regressors. Journal of Statistical Planning and Inference 57, 153-163.

Knez, P. J. and Ready, M. J. (1997). On the robustness of size and book-to-market on
cross-sectional regressions. Journal of Finance 52, 1355-1382.

Kothari, S. P. Shanken, J. and Sloan, R. G. Another look at the cross-section of expected
returns. Journal of Finance 50, 185-224.

Lakonishok, J., Shleifer, A. and Vishny, R. W. (1994). Contrarian investment, extrap-
olation, and risk. Journal of Finance 49, 1541-1578.

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments
in stock portfolios and capital budgets. Review of Economics and Statistics 47,
13-37.

Merton, R. C., (1973). An intertemporal capital asset pricing model. Econometrica 41,
867-887.

Pinheiro, J. C. and D. M. B. Bates, D. M. B. (2000). Mixed-Effects Models in S and
S-PLUS. Springer.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic
Theory 13, 341-360.

Rosseeuw, P. J. (1985). Multivariate estimation with high breakdown point. In Math-
ematical Statistics and Applications (Edited by Grossmann, W. and G. Pflug, G.
Vincze, I. and Wertz, W.) 283-297. Reidel.

Rousseeuw, P. J. and A. M. Leroy, A. M. (1987). Robust Regression and Outlier Detec-
tion. Wiley.

Shalit, H. and S. Yitzhaki, S. (2001). Estimating beta (Working Paper), Hebrew Uni-
versity of Jerusalem.

Shanken, J. (1992). On the estimation of beta-pricing models Review of Financial
Studies 5, 1-33.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under
conditions of risk. Journal of Finance 19, 425-442.

Zaman, A. and Rousseeuw, P. J. and Orhan, M. (2001). Econometric applications of
high-breakdown robust regression techniques. Econometrics Letters 71, 1-8.



Industrial Effects and the CAPM 401

Received April 11, 2004; accepted September 27, 2004.

Tsung-Chi Cheng
Department of Statistics
National Chengchi University
Taipei, Taiwan
chengt@nccu.edu.tw

Hung-Neng Lai
Department of Finance
National Central University
Taoyuan, Taiwan
hnlai@cc.ncu.edu.tw

Chien-Ju Lu
Department of Accounting
National Chengchi University
Taipei, Taiwan
chienru@alumni.nccu.edu.tw


