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Abstract: Although United States government planners and others outside
government had recognized the potential risk of attacks by terrorists, the
events of September 11, 2001, vividly revealed the nation’s vulnerabilities
to terrorism. Similarly, the 2004 terrorist attacks in Madrid illustrated vul-
nerabilities to terrorism extend beyond the United States. Those attacks
were obvious destructive acts with a primary purpose of massive causalities.
Let us consider a bioterrorist attack which is conducted subtly through the
release of a Chemical/Biological agent. If such an attack occurs through
release of a specific biological agent, an awareness of the potential threat of
this agent in terms of the number of infections and deaths that could occur
in a community is of paramount importance in preparing the public health
community to respond to this attack. An increase in biosurveillance and
novel approaches to biosurveillance are needed. This paper illustrates the
use of mixed effects model for biosurveillance based on commuter size for
regional rail lines. With mixed effects model we can estimate for any station
on a given rail system the expected daily number of commuters and establish
an acceptability criterion around this expected size. If the actual commuter
size is significantly smaller than the estimate, then this could be an indicator
of a possible attack. We illustrate this method through an example based
on the 2001 daily totals for the Port Authority Transportation Company
(PATCO) rail system, which serves residents of southern New Jersey and
Philadelphia region in the United States. In addition, we discuss ways to
put this application in a real time setting for continuous biosurveillance.

Key words: Best linear unbiased prediction (BLUP) estimates, biosurveil-
lance, bioterrorism, effect size, mixed-effects models.

1. Introduction

The primary goal of biosurveillance is to minimize the effect of a bioterror-
ist attack. While most communities have disaster response systems, a major
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bioterrorism attack will produce a catastrophe primarily affecting the commu-
nity health care system (Flowers et al., 2002). Bioterrorism response requires
precise distribution of available personnel and resources. This distribution of
personnel and resources must be based on the expected severity of the attack
for a given community. Poor distribution of personnel and resources could result
in an increase in infections and mortality; therefore, reliable prediction of the
expected severity is crucial.

A key location for a bioterrorist attack is a large transportation hub such as
Philadelphia’s 8-th Street and Market Street station. This station is popular not
only for the large number of businesses in the neighboring vicinity but also for
the large number of tourist attractions. Comparable stations are easily identified
for any major city in the United States such as Penn Station in New York and the
Metro Center in Washington, D.C. There are various types of biological pathogens
that potential enemies may employ, which could be released in a large crowd,
released in a food or water supply, or released through ventilation systems of a
targeted hub. One concern is the incubation time before infection is recognized.
For example, if the agent was anthrax, infection is not immediately apparent. A
person may be infected but not symptomatic. Upon presentation, infection may
appear as cutaneous anthrax, inhalational anthrax, or gastrointestinal anthrax.
Depending on how the anthrax infection appears, determines the severity of the
infection as well as the urgency of immediate medical response. Death due to
non-treated inhalational and gastrointestinal anthrax is much more rapid than
cutaneous anthrax (Bartlett et al., 2002).

The majority of the people in the transportation hub are using one of the
available commuter services such as the regional rail lines available at Philadel-
phia’s 8-th Street and Market Street station to go to and from work. During the
work week, the same commuters will consistently use the same transportation
service. If anthrax was released in the ventilation system, then upon presenta-
tion of the infection as inhalational anthrax, many commuters may be too sick to
go to work; therefore, the number of commuters, which we’ll refer to as passen-
ger loads, on any specific rail line would be lower than expected. Many infected
individuals will not attribute the infection to bioterrorism. They are more likely
to attribute the symptoms to a cold or flu. While we do expect some variabil-
ity from day to day, if the number of commuters was substantially lower than
the expected value, indicating a large number of people potentially experiencing
infection symptoms, would raise some level of suspicion.

As discussed by Evans et al. (2002), one approach to biosurveillance is the use
of mixed effects models, treating census tracts as the repeated observations over
time for a given cluster where the cluster is the unit of analysis. Using historical
data, the model estimates month, day of the week, and holiday fixed effects, in ad-
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dition to random effects for each census tract. These random effects will account
for the within correlation for a given unit as it is measured over time. Evans et al.
(2002) described using the estimated random effects to get different estimates for
each tract on each day, which may be compared to observed counts. In response
to the need for increased biosurveillance, we consider monitoring the passenger
loads for regional rail systems through this mixed effects model approach. This
mixed effects model approach will allows us to forecast the expected number of
commuters on a regional rail system. This forecast will be adjusted for day of
the week differences as well as stations on the rail system. If the forecast is not
within an established criterion, then it provides a reason for concern, which will
require further investigation of possible causes for the decreased passenger load.

The goal of this paper is to illustrate the use of mixed effects models as
a method of biosurveillance. The mixed effects model will be used to forecast
the expected passenger load on a given regional rail system. The mixed effects
model allows us to properly address various sources of variability. We illustrate
this method on available data from the Port Authority Transportation Com-
pany (PATCO) rail system, which serves New Jersey residents who commute to
Philadelphia and Philadelphians who commute to New Jersey. The PATCO line
is illustrated in Figure 1.

Figure 1: PATCO Regional Rail Line

We have data for each station in New Jersey and Philadelphia for 2001. The
data consists of daily total counts of the number of passengers entering each
station. Mirroring the terminology of Evans et al. (2002), the PATCO data
consists of 13 census tracts, one for each rail station on the PATCO line, consisting
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of 365 data points for each tract, corresponding to the daily total per station for
the 2001 calendar year. We will estimate the expected number of passengers for
any station and particular day through the mixed effects model.

The remainder of the paper is organized as follows. In the next section, we
review the mixed effects model. In Section 3, we discuss our Biosurveillance
application to the PATCO regional rail system. Discussions relating ways to
implement these methods to a real time setting is presented in Section 4. Some
concluding remarks are made in Section 5. The appendix contains the SAS code
for the discussed example.

2. Mixed Effects Model Applied to the PATCO Data

With the PATCO data, we expect some similarity in the daily totals for a
given station over time. To get a better understanding of the dynamics of these
station tracts over time, we consider daily totals over time for each station. Figure
2 illustrates the daily totals for the Lindenwold, 8-th Street and Market Street,
and 16-th Street and Locust Street stations for the first 60 days of 2001.
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Figure 2: Daily totals for the first 60 days of 2001

As illustrated in Figure 2, there is a rise and fall for the daily totals that
appears cyclic with a weekly periodicity. This pattern holds over the entire year,
as well as for the other stations. This cyclic behavior makes sense due to ex-
pected lower number of passengers during the weekends and the beginning of
the work week (Monday) and the end of the work week (Friday). Usually one
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expects more passengers during the middle of the week. Passengers on average
use the same station primarily due to proximity to their residence or parking
availability. In addition, days in which passengers use the rail system are usually
consistent over time. For example, some passengers may work from home on
Mondays; therefore, they will consistently use the rail system only four of the
available seven days per week, and in addition, they use the rail system on the
same four days. Focusing on the Lindenwold station’s tract in Figure 2, we see the
Monday daily total from 1/1/2001 - 2/26/2001 range from 1806-5239. Tuesday
daily totals from 1/2/2001 - 2/27/2001 range from 4613-5682. Wednesday daily
totals from 1/3/2001 - 2/28/2001 range from 5157-5842. The same period of
time was investigated for the Philadelphia 8-th Street and Market Street stations
with daily totals ranging from 3083-5434 for Mondays, 4885-5748 for Tuesdays,
and 5096-7067 for Wednesdays. These summary statistics illustrate that for a
given station there is variability within the various Monday daily totals as well
as for the other days; therefore, a within day classification per station source of
variability. Similarly, within a station, there is variability across the days of the
week. Finally there is variability across stations. This dissection of the variability
in passenger load is allocated to three sources: Error variance (Variability across
the replicates for a given day per station), variance across day of the week classi-
fication per station, and variability between stations. These sources of variability
are illustrated further in Figure 3 based on simple summary statistics from the
available data.
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Figure 3: Illustration of the sources of variablity for the Lindenwold station

Per day of the week, standard deviation estimates are acquired for the 52
weeks of the PATCO data. Means per day of the week per station are derived.
The Week column in Figure 3 is the standard deviation in these means for the
Lindenwold station over the 6 classifications for the 7 days of the week. The last
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bar is the standard deviation for the mean estimates per station over the 365
data points. From these summary statistics, we see variability within a station
for a given day of the week, which show heterogeneity per day, variability across
the Day of the Week within a station, and variability across stations. Thus, we
identified a nesting structure to the PATCO data. Now we need a statistical
model which accommodates this structure.

Data that have a nested or hierarchical structure are common in a wide vari-
ety of disciplines, and similar methods for analyzing such data are found in these
disciplines under different guises. The analyses fall under the heading of random
coefficient models (RCM), hierarchical linear models (HLM), and multilevel lin-
ear models (MLM) (Littell et al., 1996;Goldstein, 1987; Bryk and Raudenbusch,
1996). Laird and Ware (1982) and Strenio, Weisberg, and Bryk (1983), working
independently, proposed essentially identical approaches to the analysis of hierar-
chical data, both using the EM algorithm. Despite the prevalence of hierarchical
data structures, classical analysis ignored such structures for many years, partly
due to the underdevelopment of statistical models as well as statistical packages
to model such data (Plewis, 1997; Singer, 1998; Suzuki and Sheu, 1998). With
software such as PROC MIXED in SAS, HLM, MLWin, and SPSS Mixed Models,
implementation of mixed effects models in a variety of fields has become more
common. Recently, we’ve seen mixed effects models used in the transportation
field (Deaton and Winebrake, 2000). The mixed effects model offers investigators
a model to accommodate the hierarchy of the data. The main advantage of this
approach is the variability can be partitioned at each level through the inclusion
of random effects (Raudenbush, 1993). Ignoring the hierarchical structure by
fitting a fixed effects model would result in an underestimation of the variance of
the outcome, which results in underestimation of standard errors and ”smaller”
levels of statistical significance.

For the PATCO data, the hierarchy of the data consists of three levels:

• Reported observation for each day of the week and station combination
• Day of the week classification within station
• Station.

Days of the week are classified into six classifications: Monday - Friday, and
Weekend/Holiday. Holidays will consist of major national and religious holidays.
The three level mixed effects model is:

Yijk = β(grand average) + εk + εj(k) + εi(j(k)) (2.1)

where Yijk is the i-th observation for the j-th day classification of the k-th station,
εi(j(k)) accounts for the random variance within a day classification, εj(k) accounts
for the random day classification variance nested within station, and εk accounts
for the random station variance.
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Note for Yijk, i = 1, 2, . . . , 52 corresponding to the 52 weeks of the year, j =
1, 2, . . . , 6 corresponding to the day of the week classifications, and k = 1, 2, . . . , 13
corresponding to the 13 rail stations on the PATCO line.

The assumptions for the random elements are:

εi(j(k)) ∼ NIID(0, σ2
e),

εj(k) ∼ NIID(0, σ2
DS),

εk ∼ NIID(0, σ2
S). (2.2)

The variance of Yijk is:

V ar(Yijk) = σ2
S + σ2

DS + σ2
e . (2.3)

In this approach, each station’s passenger load is characterized by a set of
station and day classification random effects. These estimates are termed Best
Linear Unbiased Prediction (BLUP) estimates. BLUP estimates are linear in
the sense that they are linear functions of the data; unbiased in the sense that
the average value of the estimates is equal to the average value of the quantity
being estimated; best in the sense that they have the minimum mean squared
error within the class of linear unbiased estimators; and prediction estimates
to distinguish them from estimation of the random effects (Robinson, 1991).
The station by day classification estimates will be used as the “expected values
of passenger loads” for a given station on a specific day classification. BLUP
Estimates are derived as follows:

û = ĜZT V̂−1(Y − β) (2.4)

where Y is the vector of passenger loads. The dimensions of Y is 4745×1, which
corresponds to the 365 daily totals for each of the 13 stations. The vector β
is also 4745 × 1 with each entry equal to the grand average. The mixed model
produces an overall grand average of 2841.38 passengers. The matrix V is the
covariance matrix of the outcome and has dimensions 4745× 4745. The diagonal
entries for V is the variance of the outcome for any time and station combination,
which is equal to the right-hand side of equation 3 above. The matrix Ĝ is
block diagonal with 13 blocks corresponding to the 13 stations, where G11 =
diag(σ2

S , σ2
DS , . . . , σ2

DS) is the form of the block. The dimensions of G11 is 7 × 7;
therefore the dimensions of Ĝ is 91×91. The matrix Z is the design matrix for the
random effects which indicates the random station and random day classification
nested in station. The dimensions of Z is 4795 × 91. The number of rows for Z
corresponds to the daily observations for the 13 stations. The first 13 columns of Z
corresponds to respective station for the observed value with column designation
based on alphabetical ordering of the stations. The last 78 columns corresponds to
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the 6 day classifications ordered Monday through Friday and Weekend/Holidays
for each of the 13 station, with the station grouping again ordered alphabetically
by station name. The superscript T indicates the transpose of Z and V̂−1 is the
inverse of the estimate of V. Hence the dimension of û is 91×1. These estimates
indicate deviations for each station from the grand average and day classification
within station from the grand average.

To establish a threshold for concern, we focus on an effect size for the reduction
of the grand average in equation (2.1). Effect sizes are unitless measures, which
are usually applied to measure the magnitude of a treatment effect (Rosnow and
Rosenthal, 1996). These effect sizes are standardized values centered with respect
to a specified mean and standard deviation. The particular effect size used here
was defined by Cohen (1988) and is commonly referred to as Cohen’s d. The
formula is:

d =
M1 − M0

s
(2.5)

where M1 is current passenger load, M0 is the BLUP estimate of the passenger
load. The standard deviation, s, is estimated by equation (2.3) evaluated at the
estimates for each variance component. For the PATCO data we have: variability
from station to station is 3,801,074; variability across days within a station is
12,987; and, the within station and day classification with station variability is
47,880. Each estimate is inserted in equation (2.3) to derive an estimate for the
variability. The standard deviation estimate is acquired by taking the square-root
of the variance estimate.

The main benefit of an effect size is the unitless property which allows for
comparison to other studies regardless of outcome, design, or analysis. In our
application, the effect size provides a unitless measure for the magnitude of change
from the best linear unbiased predicted estimate. We establish an acceptable
reduction of less than 35% reduction in average estimated number of passengers
for a station on a given day. If an observed passenger load reduces by more than
35%, then we have rise for concern. This 35% reduction threshold is based on an
examination of a 35% reduction in the grand average, which corresponds to an
effect size of 0.5 as illustrated below:

d =
M1 − M0

s
=

0.35 × 2841.38√
3801074 + 12987 + 47880

≈ 0.50. (2.6)

Cohen defined an effect size of 0.5 as a “medium” effect size, which corre-
sponds to the expected number of passengers is at the 69-th percentile of the
observed number of passengers. While the effect size estimate per station and
day within station based on the 35% threshold deviates around this 0.50 estimate
for the grand average, using the grand average as a reference point for setting
this acceptability threshold seems reasonable.
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3. Biosurveillance Application

We split the 2001 PATCO data in two halves. We use the first six months to
estimate expected daily totals for each station on the PATCO line. The mixed
effects model of equation (2.1) is used. Refer to the appendix to see the SAS
PROC MIXED syntax. For simplicity, the mixed effects model is implemented
on only the work week data (Monday through Friday). This reduces one level of
complexity for the limited available data. Indices for equation (2.1) in this re-
duced sample are: Yijk, i = 1, 2, . . . , 26 corresponding to the 26 weeks for the first
half of the year, j = 1, 2, . . . , 5 corresponding to the day of the week classifications
for the 5 workdays, and k = 1, 2, . . . , 13 corresponding to the 13 rail stations on
the PATCO line. The dimensions of Y is 1820× 1, which corresponds to the 140
daily totals (26 weeks with 5 days per week) for each of the 13 stations. The
vector β is also 1820× 1 with each entry equal to the grand average. The matrix
V has dimensions 1820 × 1820. The blocks of Ĝ , G11 = diag(σ2

S , σ2
DS , . . . , σ2

DS)
have dimension 6×6; therefore the dimensions of Ĝ is 78×78. The design matrix
Z for random effects has dimensions 1820 × 78. The dimension of û is 78 × 1.

Variance estimates for the three sources of variability were reported above.
Corresponding standard deviations are 1949 for station-to-station, 113 for the
across time within a station, and 218 for within time and station. The standard
deviation estimates for station to station variability and the within station and
day classification are consistent with the summary statistic estimates illustrated
in Figure 3. The time within station source of variability is smaller here due
to the exclusion of the weekend/holiday data points, which usually have a large
deviation from the average due to much less commuters as compared to the work-
week.

We produce BLUP estimates for the number of total passengers per station
and day classification pair. This is implemented in SAS PROC MIXED through
ESTIMATE statements as illustrated in the appendix. We use the second half
of the data to determine if any daily totals fall below the threshold values (35%
reduction in the BLUP estimates) and determine if there is some reason for the
reduced passenger load. Second half U.S. national and major religious holidays
are identified and classified with a day classification of Weekend/Holiday. These
days include July 4, Labor Day, Thanksgiving, Christmas Eve, Christmas, and
New Year’s Eve; therefore, these values are excluded from this example. This split
sample approach was used by Stern and Lightfoot (1999) in their investigation
of salmonella infection for the National Enteric Pathogen Surveillance Scheme
data, although their statistical approach differed from the methods discussed
here. BLUP estimates are generated by equation (2.4) and passenger loads per
station and day classification are produced, and illustrated in Table 1.
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Table 1: Passenger Load Estimates.

Station Monday Tuesday Wednesday Thursday Friday

New Jersey Stops

Lindenwold 5140.4 5233.5 5221.7 5197.4 5092.7
Ashland 2049.7 2142.8 2131.0 2106.7 2002.0
Woodcrest 2975.4 3068.5 3056.7 3032.4 2927.8
Haddonfield 1699.4 1792.5 1780.7 1756.3 1651.8
Westmont 1700.0 1793.1 1781.4 1757.1 1652.4
Collingswood 1640.8 1733.9 1722.2 1697.8 1593.2
Ferry Ave. 2777.7 2870.8 2859.0 2834.7 2730.1
Broadway 1785.9 1879.0 1867.3 1842.9 1738.3
City Hall 770.0 863.1 851.4 827.0 722.4

Philadelphia Stops

Phila 8-th & Market 5219.4 5312.5 5300.7 5276.4 5171.8
Phila 10th & Locust 1494.8 1587.9 1576.1 1551.8 1447.2
Phila 13th & Locust 1721.5 1814.6 1802.8 1778.5 1673.9
Phila 16th & Locust 7478.2 7571.3 7559.5 7535.2 7430.6
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Figure 4: Philadephia’s 8-th Street and Market station sizable reduction from
expected passenger load
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Focusing our attention on Philadelphia’s 8-th Street and Market street sta-
tion, there are two times when the observed passenger counts had more than a
35% reduction from the BLUP estimate for the given day classification. Figure
4 illustrates these two occurrences.

Both of these “small” passenger load estimates would raise some level of
concern. With this data being historical data, we can find causes for the large
declination of passengers for both dates. The September 11, 2001 occurrence
corresponds to the terrorist attacks on New York and Washington, D.C. The
Mayor of Philadelphia urged many workers to stay home; therefore, reduced
number of passengers is expected. Similarly, December 26, 2001 is the day after
Christmas; therefore, while this is still a “workday”, many companies were closed
and many workers did not return to work.

In both these scenarios, we were able to justify the large reduction. What if
we can not? Are passengers starting to develop symptoms due to exposure to a
biological pathogen? While the answer to this question is not known, the reduced
passenger load could provide some evidence of peculiar behavior.

4. Real-Time Setting

The PATCO regional rail line discussed in this example has integrated mag-
netic/ smart card fare system. These smart cards contain customer identification
numbers for the daily customers, as well as personal identification information
such as name, destination, and residence. Guest cards are required for infre-
quent customers or one-time commuters. Unfortunately, these guest cards will
not contain personal identification information. Daily Customers are no longer
generic market segments. PATCO has the ability to know exactly who they are,
when they typically use the PATCO facilities, and what is happening at the cur-
rent moment (Brannon, 2003). Entrances and exits are logged instantaneously in
PATCO database by swiping of the smart cards. So if a particular daily customer
is missing, we know exactly where the customer entered or exited the PATCO
line last, as well as personal information such as residence.

SAS/IntrNet Application Dispatcher is a computer service that allows users to
pass parameter selections from a Web page to the appropriated SAS program that
executes on a server, sending the results back to the user’s Web browser. Because
the program is executed on the server, end users only need a Web browser. There
is no need for SAS on their workstations (Timbers, 2003). The Web browser can
be automated to refresh itself periodically.

So we have a database being updated instantaneously, a web-based way to
access the data, and a SAS program to perform the analysis and report the
results. Recall, for the example discussed in section 3, we were limited to only
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daily totals for the past year. With this database, we are no longer limited to
daily totals.

For each scheduled train per day, we can monitor if the passenger load is
substantially small. By accessing the database, using the scheduled trains pas-
senger load for a fixed period of time (i.e. past year), a SAS program using
PROC MIXED will fit the 3-level HLM model specified in Section 2. BLUP es-
timate will be acquired adjusting for the hierarchy of the data. Comparison of
the BLUP estimates versus the actual observed passengers will be done. Report
will be produced illustrating the estimated passenger load and actual passenger
load. With large amounts of data, additional covariates can be included such
as adjusting for seasonal trends. Thus, combining the current database with
SAS/IntrNet Application Dispatcher, reports will be generated upon a specific
scheduled train’s conclusion of its inbound or outbound commute. Any evidence
of concern is immediately known.

5. Conclusion

We have presented an application of mixed effects model for estimation of
passenger loads on the PATCO regional rail line for any day or station. This
mixed effects model has three benefits. First, it accommodates the hierarchi-
cal structure of the data, which has repeated observations per day classification
nested in station. Second, it provides best estimates of the expected number of
passengers per station for any day through the derivation of BLUP estimates.
Third, there are a vast number of statistical packages to implement this model.
We were able to establish a rule which would indicate a potential concern if the
observed passenger load fell substantially below the expected count. A more than
35% decrease was our established rule, which resulted in two days where the pas-
senger load fell below the criterion for the Philadelphia 8-th Street and Market
Street station.

Two alternate analytical methods are Cross Sectional Time Series (CSTS)
and Generalized Estimating Equations (GEE). CSTS approach was used by
Williamson and Hudson (1999) in their time-series analysis of public health
surveillance reports. The CSTS approach usually focuses on time-series obser-
vations on each of several cross-sectional units, where the cross-sectional units
are independent. The CSTS is a 2-level approach with time-series nested within
station. For a given station and day of the week classification, we expect the num-
ber of passengers to be correlated. An advantage of the mixed effects approach
is it allows for this third level of clustering and therefore, models this correlation
directly. While for the CSTS model, accounting for this might be more challeng-
ing. Under certain specifications of the mixed effects model, the model can fit
time-series type models (Verbeke and Molenberghs, 2000). So the mixed effect
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model can assess if the three-level model is a substantial improvement compared
to the two-level CSTS model. This process was done by Gmel et al. (2001) in
their assessment of Alcohol Consumption for European men. Their conclusions
were “For pooled cross-sectional time series data, control of the potential im-
pact of historical time is of the utmost importance. Hierarchical linear models
constitutes a superior alternative to analyze such complex data”. The second
alternative is GEE. The GEE approach of Liang and Zeger (1986) is extremely
popular for repeated measures designs, namely because of their consistent esti-
mates of parameters in the model. The GEE approach is commonly called a
population-averaged (PA) approach. In the PA approach, one is not concerned
with random deviations per subject. For the PATCO data we’re interested in the
random deviations per day for a given station. We need this individual deviation
which is sometimes refereed to as a subject-specific effect, which are used to pro-
duce the BLUP estimates. Hence, one limitation of the GEE approach is there
are no BLUP estimates, and these BLUP estimates are needed to establish the
threshold cutoff for each day of the week per station. These limitations of both
the CSTS and GEE approach indicate that the mixed effects approach is as good
as and possibly better than these alternate approaches.

A third approach would be to fit a fixed effects model, which ignores the within
cluster per station variability, Fitting this model to the first quarter PATCO data,
produces a variance estimate of 218.81. Compared to the solution of equation
(2.3), 1965.18. In addition, the passenger load estimates from the Fixed effects
model for the Philadelphia 8-th Street and Marker Street station for Monday
through Friday are, respectively, 5020.1, 5183.5, 5417.2, and 5246.9. These esti-
mates do not match Table 1. Therefore, we have differences in variance estimates
and the estimated average levels per station and day combination. We recognize
the fixed effects model is not capturing all sources of variability properly; there-
fore, we have more confidence in the means and variances estimated by the more
complex HLM model.

Two limitations of this application focus on limitation of the BLUP esti-
mates. Distribution theory associated with BLUP estimates is not nearly as well-
understood as it is with conventional estimable functions (Littell et al., 1996).
The variance of the BLUP estimates may experience shrinkage, since the observed
data are shrunk towards the overall average since the prior means of the random
effects is zero (Verbeke and Molenberghs, 2000). An additional limitation is the
acceptability of the derived threshold rule. While the rule is based in a statistical
framework, collaboration between statisticians, medical community, government,
and regional rail managers is needed to derive a more justified rule.

The statistical community has made strides to become integral members of the
war on Terrorism and is eager to help U.S. government respond to recent terrorist
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attacks and assist in planning for potential attacks (Banks, 2002). There are a
vast number of diverse applications of statistical models for the war on terrorism.
Recently, we’ve seen discrete event simulation models used to develop the public
health infrastructure for bioterrorism response (Hupert et al., 2002). Space-time
permutation scan statistics have been implemented for spatial disease surveillance
(Kulldorf et al., 2003). Time series analysis has been used to track over-the-
counter medication sales as an early statistical detection of anthrax outbreaks
(Goldenberg et al., 2002).

One statistical model is not going to provide us the answers to all questions
and concerns. The model we discuss, as well as the papers discussed above focus
on one area of biosurveillance. For the PATCO example, the reduced passenger
load may not be due to terrorist activities, as we saw in our illustration. For the
most part, the reduced passenger load will not be due to terrorism. Our model
serves as warning signs or one piece of the puzzle. Linking multiple warning signs
could provide the necessary evidence of bioterrorist activities.

Consider a situation where one station on the PATCO rail system on a random
day fell below the established criterion. This on its own is only one piece of evi-
dence. In addition, suppose there is an increase in the number of over the counter
medication sales in the communities surrounding the train station, as well as an
increase in patients seen by primary care physicians or patients entering emer-
gency rooms. These three pieces of evidence, could provide necessary information
to determine that a biological agent was used on the passengers at the specific
train station. This would allow immediate notification to other passengers who
have not become symptomatic or who have ignored the symptoms.

While our focus has been on regional rail lines, similar models can be used
for other transportation areas such as buses, trolleys, and bridge/tunnel entries.
With our limited data, we could only adjust for a small number of factors. With
more data, other factors such as seasonal trends, vacation periods, academic
years, holiday shutdown, etc. could be covaried. Further advances on the avail-
able data and modeling could only improve the importance and resolution of this
piece of the puzzle. With immediate access to current data, this model could be
implemented on a real time setting. Breaking the rail station down from daily
totals, to expected totals for each scheduled train during the daily service would
require substantial amount of data but is a feasible extension.

Acknowledgements

The preparation of this manuscript was funded in part by grants DOD Con-
tract Number 233-01-0065 under the guidance of CiMeRC.



Mixed Effects Model for Biosurveilliance 367

Appendix: SAS Code for Mixed Effect Model

proc mixed covtest ;
c1ass station time;
model nums1= /
solution ddfm=satterth notest;
random station time(station) /solution ;
estimate ’ASH - Fri’ intercept 1 | station 1 0 0 0 0 0 0

0 0 0 0 0 0
time(station) 1 0 0 0 0 /cl alpha=0.01 ;
quit;

The SAS code will produce three variance components to account for the
three levels of the hierarchical structure through the RANDOM Statement. The
COVTEST option will perform a naive hypothesis test of whether the variance
component is 0 or not. This test is naive because a Z-score is produced for the
test. The actual distribution of the variance components follows a mixture of
Chi-squares because the value 0 is a boundary value for the possible outcomes.
Refer to Verbeke and Molenberghs (2000) for a thorough discussion on this topic.
The ESTIMATE statement will produce the BLUP estimate for the designated
station on the specified day. The CL alpha=0.01 produces 99% confidence bounds
for the estimate. The vertical line in the ESTIMATE statement separates the
Fixed and Random effects. Similar statements were written for each station-day
combination.
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