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Abstract: The problem of detecting differential gene expression with mi-
croarray data has led to further innovative approaches to controlling false
positives in multiple testing. False discovery rate (FDR) has been widely
used as a measure of error in this multiple testing context. Direct estima-
tion of FDR was recently proposed by Storey (2002, Journal of the Royal
Statistical Society, Series B 64, 479-498) as a substantially more powerful al-
ternative to the traditional sequential FDR controlling procedure, pioneered
by Benjamini and Hochberg (1995, Journal of the Royal Statistical Society,
Series B 57, 289-300). Direct estimation to FDR requires fixing a rejection
region of interest and then conservatively estimating the associated FDR.
On the other hand, sequential FDR procedure requires fixing a FDR control
level and then estimating the rejection region. Thus, sequential and direct
approaches to FDR control appear very different. In this paper, we intro-
duce a unified computational framework for sequential FDR methods and
propose a class of more powerful sequential FDR algorithms, that link the
direct and sequential approaches. Under the proposed unified compuational
framework, both approaches simply approximate the least conservative (op-
timal) sequential FDR procedure. We illustrate the FDR algorithms and
concepts with some numerical studies (simulations) and with two real ex-
ploratory DNA microarray studies, one on the detection of molecular signa-
tures in BRCA-mutation breast cancer patients and another on the detection
of genetic signatures during colon cancer initiation and progression in the
rat.
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1. Introduction and Background

Since the introduction of DNA microarray technology, microarray applica-
tions in research have flourished, especiallly in biomedical research. See Nguyen
et al. (2002) for a more thorough description of DNA microarrays and their
applications. One common application in microarray studies involves identify-
ing differentially expressed genes between two or more biological conditions. An
example, which we will consider in this paper, involves identifying differentially
expressed genes in hereditary breast cancer patients with mutation in the BRCA1
gene relative to patients with BRCA2-mutation. In this context, the null hypoth-
esis of no differential expression is tested for each gene. Because the number of
genes (or gene probes) are in the thousands, controlling for errors in this multi-
ple testing situation is very important. Thus, methods that are able to identify
truly alternative hypotheses (i.e., differentially expressed genes under a defined
experimental condition) with few false positives are highly desirable. The ap-
plication of such methods can result in a substantial reduction in research costs
and efforts during the post-analysis and follow-up validation phase of microarray
experiments (Chuaqui et al., 2002).

Table 1: Notations for the possible outcomes of testing m hypotheses (Ben-
jamini and Hochberg 1995). The proportion of true null hypotheses is π0 ≡
m0/m and FDR = E(V

R I{R>0}).

Accept Reject Total

Null true U V m0

Alternative true T S m1

Total W R m

A particularly promising measure of error in multiple testing is the false dis-
covery rate (FDR), the expected proportion of false discoveries among R discover-
ies or rejections, introduced by Benjamini and Hochberg (1995). More precisely,
FDR is defined as

FDR = E

(
V

R
I{R>0}

)
= E

(
V

R

∣∣∣∣ R > 0
)

Pr(R > 0), (1.1)

where V is the number of erroneous rejections (Type I errors), R is the total
number of rejections and I{A} denotes the indicator function for event A. Please
refer to Table 1, where the outcomes for testing m hypotheses are summarized.
Note in Table 1 that only R, W , and m are observable and all other quantities
in the table are not observable. Also note that the well-known familywise error
rate (FWER), the probability of rejecting any null hypothesis erroneously, is



A Unified FDR Computational Framework 333

Pr(V > 0). Thus, FDR provides a much less strict criterion for control than
the FWER in multiple testing. Hence, an obvious substantial gain in power is
expected when controlling FDR compared to controlling FWER (Benjamini and
Hochberg, 1995). The FWER is inappropriately strict for exploratory microarray
studies, where m is in the thousands.

The traditional sequential approach to FDR, introduced by Benjamini and
Hochberg (1995) (herein BH), requires fixing a FDR level of control, say α (0 <
α < 1). Denote the ordered observed p-values as p(1), . . . , p(m). The Benjamini
and Hochberg FDR (BH-FDR) controlling procedure is to find

k̂BH = max
{

j : p(j) ≤
j

m
α

}
(1.2)

and reject p(1), . . . , p(k̂BH), where α ∈ (0, 1) is the pre-specified target control

level. BH proved that procedure (1.2) results in FDR ≤ π0α for 0 ≤ m0 ≤ m,
where π0 = m0/m is the proportion of true null hypotheses. (It was later shown
by Finner and Roters (2001) that the procedure (1.2) gives precisely FDR = π0α.)
Since 0 ≤ π0 ≤ 1, it follows that FDR is controlled at level α for all configuration
of m0. However, note that the level of control is actually π0α, which is less than
or equal to α. Thus, the BH-FDR controlling procedure (1.2) is increasingly
conservative as π0 approaches zero. This leads to a loss in power to detect true
alternative hypotheses. Therefore, incorporating a less conservative, hence, more
precise estimate of π0 into the FDR controlling procedure (1.2) can improve
power, as was done in Benjamini, Krieger, and Yekutieli (2001) and Benjamini
and Hochberg (2000).

Storey (2002; 2003) and Storey and Tibshirani (2003) also recognized that
estimation of π0 is critical in the context of DNA microarray applications; how-
ever, they proposed a non-sequential, direct approach to estimate the FDR for
a fixed rejection region. Storey (2002) proposed a direct estimate of FDR for a
fixed rejection region [0, γ]. More precisely, the proposed estimator of FDR is

̂FDRλ(γ) = π̂0(λ)
γ

P̂r(P ≤ γ)
, (1.3)

where P̂r(P ≤ γ) = #{pj ≤ γ}/m and π̂0(λ) is a conservatively biased estimator
of π0 and P is a random p-value from any test. Under independence, the main
case considered in this paper, P comes from the null distribution (i.e. P ∼
Uniform[0, 1]) with probability π0. P is from the alternative distribution with
probability 1 − π0. We will elaborate on the estimator π̂0(λ) in Section 2.2.
The estimator (1.3) is conservatively designed in the sense that E[̂FDRλ(γ)] ≤
FDR(γ) for all γ and π0 (Storey, 2002; Theorem 2).
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We note that the benefit of estimating π0 (or equivalently m0) in multiple
testing has previously been recognized, and dates back to at least Schweder and
Spjøvtoll (1982). More theoretical studies of the sequential FDR procedure (1.2)
and direct FDR estimation (1.3) can be found in Genovese and Wasserman (2002)
and Storey, Taylor, and Siegmund (2004) respectively.

In this paper we propose a unified computational framework for numerical
studies of sequential FDR methods for independent p-values based on estimation
of π0. We also introduce a more powerful class of sequential FDR algorithms. We
show that the BH-FDR procedure along with other sequential procedures, such
as the two stage FDR procedure (Benjamini, Krieger, and Yekutieli, 2001), fall
within this class. In addition, we illustrate that when using the same estimate
of π0, the power of sequential FDR methods are very similar to the new, direct
estimates of FDR proposed by Storey (2002).

The organization of the paper is as follows. In Section 2 we introduce a
unified computational framework for comparing the FDR procedures. Under
this framework, all sequential FDR methods approximate the least conservative
FDR procedure through estimation of π0. This provides a unified framework
for numerical comparisons of sequential and direct methods. We introduce a
new, more powerful, family of sequential FDR algorithms in Section 2.2. Next,
we illustrate these sequential FDR algorithms using two DNA microarray gene
expression data sets in Section 3. In section 4 we describe a simulation framework
for exploratory DNA microarray studies. Using this simulation, a comparison of
the power and FDR control for the proposed sequential FDR algorithms to other
sequential FDR methods is also given in Section 4. In Section 5 we compare
the power of the proposed sequential FDR algorithms to the direct estimation
of FDR and illustrate that the sequential and direct estimation procedures are
essentially “equivalent” (in terms of power).

2. A Unified Computational Framework for FDR Procedures

For the original sequential FDR controlling procedure (1.2) proposed by BH,
namely BH-FDR, we have FDR = π0α. Setting π0 to its upper bound of one
gives the desired level of FDR control, α. Thus, for the BH-FDR procedure,
we can define π̂0(BH) ≡ 1 because no information about π0 was actually uti-
lized from the distribution of observed p-values, {pj}m

j=1. Thus, the choice of
π̂0(BH) = 1 represents the most conservatice choice. The extreme opposite to
this most conservative choice would be to use π0 itself in the BH-FDR procedure.
Clearly, this is the optimal (benchmark) choice and it is the least conservative
FDR procedure. Of course, π0 is unknown in practice. However, for numerical
(or computational) studies it can be used as a benchmark. More precisely, for
numerical studies of the performance (in terms of power) of the various FDR
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procedures, the choice of π̂0(BH) = 1 and π0 itself provide the lower and upper
bound on the performance of any given FDR procedure. Thus, in this section,
we introduce a unified computational view of sequential FDR procedures based
on incorporation of more precise information on π0 from the data (Section 2.1).
Next, the direct estimation approach to FDR is casted into this framework via
estimation of π0 (Section 2.2). This is possible since both sequential and direct
approaches to FDR approximate the optimal FDR procedure.

2.1 Approximating the least conservative FDR controlling procedure

Since the original BH-FDR provides FDR = π0α ≤ α, it is conservative by
a factor of π0 = m0/m. If π0 (m0) is known, then the conservativeness can be
corrected by applying the BH-FDR procedure at level α′ = α/π0, instead of α.
This correction provides FDR control at level α, since FDR = π0α

′ = α. Thus,
we define the optimal or least conservative FDR (LC-FDR) procedure, assuming
that α is known, as finding

k̂LC = max
{

j : p(j) ≤
j

m

(
α

π0

)}
= max

{
j : p(j) ≤

j

m0
α

}
(2.1)

and then rejecting the hypotheses corresponding to the p-values p(1), . . . , p(k̂LC).

The LC-FDR procedure, although useless in practice because π0 is unknown,
provides the benchmark for studying the precision of estimating FDR and the
power to detect true positives (or true alternative hypotheses).

Thus, we can define a class of sequential FDR controlling procedures that
approximate the LC-FDR procedure as finding

k̂ = max
{

j : p(j) ≤
j

m

(
α∗

π̂0

)}
(2.2)

and then rejecting p(1), . . . , p(k̂) such that FDR ≤ α, where π̂0 is a conservative
estimate of π0, α∗ ∈ (0, 1), and α ∈ (0, 1) is the target FDR level of control.
Under this framework, the least conservative data-based estimate of π̂0 such that
FDR ≤ α is desirable.

For example, the original sequential FDR controlling procedure, namely BH-
FDR, trivially falls into class (2.2) with π̂0 given by π̂0(BH) ≡ 1 and α∗ = α:

k̂BH = max
{

j : p(j) ≤
j

m

(
α

π̂0(BH)

)}
.

As pointed out earlier, it is the most conservative FDR controlling procedure
according to (2.2).
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Recognizing that a gain in power to detect true positives would result from
estimating π0 less conservatively than π̂0(BH) ≡ 1, Benjamini, Krieger, and Yeku-
tieli (2001) (herein BKY) proposed a novel two-stage FDR (2S-FDR) controlling
procedure, where π0 is estimated from stage 1. (See also related adaptive FDR
procedures (Benjamini and Hochberg, 2000)). The procedure is as follows.

1. Let r1 be the number of rejections from applying the BH-FDR procedure
at level α′ = α/(1 + α). BKY proposed estimating π0 by π̂0(BKY) =
(m − r1)/m.

2. Next, apply the BH-FDR procedure again (using the same data as in part
1), but at level α′/π̂0(BKY):

k̂BKY = max
{

j : p(j) ≤
j

m

(
α′

π̂0(BKY)

)}
= max

{
j : p(j) ≤

j

m − r1
α′

}
(2.3)

and reject p(1), . . . , p(k̂BKY). Note that if r1 = 0 no hypothesis is rejected, and

if r1 = m then all m hypotheses are rejected. In both cases, the procedure
terminates at stage 1. Note that the 2S-FDR procedure falls into class (2.2) with
α∗ = α′ = α/(1+α) and π̂0 = π̂0(BKY). It has been proven that for the BH-FDR
and 2S-FDR procedure, FDR ≤ α for all 0 ≤ π0 ≤ 1 (Benjamini and Hochberg,
1995; Benjamini, Krieger, and Yekutieli, 2001).

Since the choice of α∗ = α′ is more strict than α∗ = α (i.e. α′ < α), BKY
also proposed the following two-stage modified FDR (2SM-FDR) procedure

k̂BKY-M = max
{

j : p(j) ≤
j

m

(
α′

π̂0(BKY-M)

)}
,

where π̂0(BKY-M) is the first stage estimate of π0 at level α instead of α′.
Note that under this unified view, given by (2.2), FDR methods, such as the

BH-FDR, 2S-FDR, and 2SM-FDR, essentially “mimic” (or approximate) the least
conservative FDR process. More precisely, they use estimates of the form α∗/π̂0(·)
as a plug-in for α/π0, where α∗ is some pre-chosen level. Thus, we can view these
FDR controlling procedures as approximations to the LC-FDR procedure. In
this setting, the least conservative data-based estimate of π0 such that FDR ≤ α
is desirable. Next, we describe a new family of sequential FDR algorithms that
provide a better approximation of the LC-FDR procedure. This procedure uses
the estimator of π0 proposed by Storey (2002) in his direct estimation approach
to FDR.
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2.2 A “new” family of sequential FDR algorithms: Linking direct FDR
estimation to sequential FDR procedures

A gain in power to detect true alternative hypotheses will require a less con-
servative estimate of π0. This gain in power was first shown by Storey (2002) for
independent p-values and illustrated with extensive simulation by Nguyen (2004),
including cases involving violation of key assumptions of the FDR framework. In
this section we propose a family of sequential “FDR algorithms” by utilizing the
estimator of π0 proposed by Storey (2002) and further implemented by Storey
and Tibshirani (2003) in their direct estimation approach to FDR.

The estimator of π0 proposed by Storey (2002) is as follows. Since it is much
more likely that very large p-values correspond to true null hypotheses, consider
the set of large p-values falling into the upper interval (λ, 1] to estimate π0 (for
some chosen 0 < λ < 1). Furthermore, note that if no genes are differentially
expressed, then the null p-values are uniformly distributed, denoted P ∼ U(0, 1).
Hence, Pr{P ∈ (λ, 1]} = Pr(P > λ) = 1−λ. It follows that the expected number
of null p-values that would fall into the interval (λ, 1] is (1−λ)m0. In addition, if
we know the number of null p-values in (λ, 1], #{Null pj > λ}, then an unbiased
estimate of π0 is

π̂0(UB) =
#{Null pj > λ}

m(1 − λ)
, (2.4)

since E[π̂0(UB)] = m0/m = π0.
The numerator of (2.4), #{Null pj > λ}, is not observable in practice. How-

ever, replacing the numerator with #{pj > λ}, an observable quantity, leads to
a conservatively biased estimate of π0:

π̂0(λ) =
#{pj > λ}
m(1 − λ)

. (2.5)

It can be seen that the estimate, π̂0(λ), is conservatively biased from the following
simple inequality

#{pj > λ} = #{Null pj > λ} + #{Alt. pj > λ} ≥ #{Null pj > λ}.
Thus, E[π̂0(λ)] ≥ E[π̂0(UB)] = π0. Note that the index parameter, λ, is actu-
ally a tuning parameter which balances bias and variance. More precisely, as λ
approaches 1, #{pj > λ} consists mostly of truly null p-values; therefore, the
bias decreases. However, the interval used to estimate π̂0(λ), specifically (λ, 1],
shrinks to zero as λ → 1; hence, the variance increases. Thus, Storey and Tib-
shirani (2003) proposed an automatic algorithm for choosing the optimal λ to
minimize the mean squared error of π̂0(λ). The optimal estimator of π0 is de-
noted as π̂0(OPT) and is reproduced in the Appendix for convenience.
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Using the estimator π̂0(λ), we propose the following family of sequential FDR
algorithms (indexed by λ) to better approximate the LC-FDR controlling proce-
dure (2.1)

k̂λ = max
{

j : p(j) ≤
j

m

(
α

π̂0(λ)

)}
. (2.6)

The proposed FDR algorithm simply replaces π̂0(BH) ≡ 1 in the ordinal BH-
FDR procedure with π̂0(λ), a less conservative estimate of π0. We emphasize
that the FDR algorithm given by (2.6) is sequential and it utilizes the exact
information (estimator) of π0 as with the direct estimation approach. Therefore,
one might expect that the power of the two approaches would be equivalent. We
will elaborate further on this in Section 5, using numerical studies.

We illustrate in the next section the proposed sequential FDR algorithms with
two exploratory DNA microarray studies involving: (1) the detection of molecular
signatures in BRCA-mutation breast cancer patients and (2) the detection of
genomic signatures during colon cancer initiation and progression in the rat.

3. Examples

3.1 Detection of molecular signatures in BRCA-mutation breast cancer
patients

One common application of DNA microarray technologies in biomedical re-
search is the detection of differentially expressed genes between two or more bio-
logical conditions (groups). For example, Hendenfalk et al. (2001) applied cDNA
microarray to the study of hereditary breast cancer. In particular, one goal of the
microarray study was to identify genes, among m = 3, 226 genes, that are differ-
entially expressed in breast cancer patients with mutations in the BRCA1 gene
relative to patients with BRCA2-mutations. There were n1 = 7 patients with
BRCA1-mutation and n2 = 8 patients with BRCA2-mutation. For each gene, we
computed the two sample t-statistic and the corresponding p-value for testing the
null hypothesis of no differential gene expression. Figure 3A displays the density
histogram of the observed p-values, {pj}m

j=1. For this distribution of p-values,
it is estimated that the proportion of true null hypotheses, π0, is π̂0(λ) = 0.678
using λ = 1/2. The optimal estimate, π̂0(OPT), gave a similar estimate of 0.668.
We applied sequential FDR methods, namely BH-FDR, 2S-FDR, 2SM-FDR, and
the proposed FDR algorithm (2.6) using π̂0(λ). For illustration, we applied the
methods to control false discoveries among the m tests at 10% (α = .10).

Note that all of the FDR sequential methods described earlier are of the
following form: (1) find k̂ = max{j : (j/m)(α∗/π̂0)} and (2) reject p(1), . . . , p(k̂).
This is equivalent to plotting the p(j) versus j/m, and finding the first time in
the (reversed) sequence of ordered p-values, {p(m), p(m−1), . . . , p(1)}, that crosses
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the line with slope α∗/π̂0 (Genovese et al. 2002). All p-values below this point
are rejected. For example, Figure 1 plots the ordered observed p-values (y-axis)
versus j/m (x-axis). Also plotted in Figure 1 are three straight lines with slopes
α/π̂0(BH), α′/π̂0(BKY), and α/π̂0(λ) corresponding to the BH-FDR, 2S-FDR,
and the proposed FDR method using π̂0(λ) respectively. For the proposed FDR
method using π̂0(λ), 281 genes were identified as differentially expressed, while
the BH-FDR identified only 162 differentially expressed genes. The two-stage
procedures, 2S-FDR and 2SM-FDR, identified the same number of differentially
expressed genes as the BH-FDR procedure in this application.
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Figure 1: Sequential FDR methods applied to the BRCA data. The cir-
cles plotted are j/m versus p(j). A sequential FDR method is equiva-
lent to finding the first time in the (reversed) sequence of ordered p-values,
{p(m), p(m−1), . . . , p(1)}, that crosses the line with slope α∗/π̂0. The right solid
vertical line indicates this crossing, at j = 281, for the proposed FDR algorithm
(dotted line). The left vertical line indicate the crossing for both the BH-FDR
and the 2S-FDR procedure, which occurred at the same location (j = 162). It
is also the same for 2SM-FDR (not shown).
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Figure 2: Sequential FDR methods applied to the colon cancer data.
(A, top) Displayed is the density histogram of the 9,685 observed p-values
comparing n-3 PUFA and n-6 PUFA enriched diets. (B, bottom) Displayed
is a graphical summary of the sequential FDR analyses. Estimate of π0, the
proportion of truly non-differentially expressed genes, is π̂0((OPT)) = 0.758.
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3.2 Detection of genomic signatures during colon cancer initiation and
progression in the rat

In a study of the chemopreventive n-3 polyunsaturated fatty acids (PUFA) as
it relates to colon cancer initiation and progression in the rat, Davidson, Nguyen
et al. (2004) used CodeLinkTM oligonucleotide microarrays (Ramakrishnan et
al., 2002) to monitor gene expression profiles from 93 rat tissue samples. Each
microarray contains 9,685 gene probes. The study utilized a 3 × 2 × 2 facto-
rial design with three types of dietary fat (rich in n-6 PUFA, n-3 PUFA or n-9
monounsaturated fatty acid (MUFA)), two treatments (injection of carcinogen
azoxymethane (AOM) or saline) and two time points (12 hours (initiation) and
10 weeks (progression) post first injection). 93 RNA samples from 59 rats (includ-
ing 34 replicates) were randomly assigned into the three-factor combination. It
is of interest in the study to examine the molecular mechanisms by which dietary
fat composition exerts tumor enhancing or inhibiting effects. More specifically, it
is of interest to identify gene expressions that are significantly different between
n-3 PUFA and n-6 PUFA enriched diets. For illustration, Figure 2A displays
the distribution (density histogram) of the 9,685 observed p-values contrasting
n-3 PUFA and n-6 PUFA enriched diets from a linear mixed model for repeated
measures. Applying Storey and Tibshirani (2003) estimator for π0, the the pro-
portion of truly non-differentially expressed genes between n-3 PUFA and n-6
PUFA enriched diets, gives π̂0(OPT) = 0.758. Using this estimate, the proposed
FDR method results in 31 differetially expressed genes at FDR level α = 0.05.
The original BH-FDR and the two-stage FDR procedures both yield 22 genes
declared differetially expressed at the same FDR level.

4. Simulation Framework for Exploratory DNA Studies: Some Com-
putational Experiments and Results

In this section we describe the simulation framework to compare FDR al-
gorithms for exploratory DNA microarray studies. Using this framework, we
compare the power of the proposed sequential FDR algorithm (2.6) to detect
true alternative hypotheses. We illustrate via simulation the gain in power from
using the proposed sequential FDR algorithm relative to the BH-FDR, 2S-FDR,
2SM-FDR, and, more importantly, to the least conservative FDR (LC-FDR) pro-
cedure. Recall that the LC-FDR procedure has optimal power and FDR control.
We also examine the FDR control for the proposed FDR algorithm (2.6).

4.1 Simulation design considerations

The simulation was designed in the context of a two-sample comparison, anal-
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ogous to the BRCA-mutation breast cancer example in Section 3. More specifi-
cally, we generated an m × n gene expression data matrix,

X =

[
X(01)

m0×n1
X(02)

m0×n2

X(11)
m1×n1

X(12)
m1×n2

]
m×n

.

Of the total m genes, m0 are truly null and the remaining m1 = m−m0 are truly
alternative.

Under the null setting, we generated the expression value for gene j in both
groups i = 1 and 2, independently from a N(µ0, σ

2
0) distribution: xji ∼ N(µ0, σ

2
0)

for j = 1, . . . ,m0 and i = 1, 2. This is the first m0 rows of the data matrix
X above. Under the null hypothesis, there is no difference in gene expression
between groups 1 and 2 for all m0 genes.

However, there is a difference in gene expression between groups 1 and 2
under the alternative setting. Thus, expression values for gene j in group 2, xj2

(j = m0 +1, . . . ,m), were independently generated from a N(µ1, σ
2
1) distribution.

For group 1, xj1 ∼ N(µ0, σ
2
0). Rather than setting µ1 to a fixed value, the true

alternative mean expression for group 2 was allowed to vary above the null mean
value of µ0. Also, in order to more reflect the heterogeneity of variance often
encountered with microarray data in practice, we similarly allowed the alternative
variance parameter, σ2

1 to vary. Table 2 summarizes the simulation model and
parameters.

In this simulation framework, our intent is to test the null hypothesis that
there is no differential expression for each gene between groups 1 and 2. Thus,
after the data generation we computed the two sample t-statistic and the cor-
responding p-value for each gene, as was done in the BRCA-mutation breast
cancer example. Because the data was generated with heterogeneity of variance,
we examined both sets of p-values obtained from (1) erroneously assuming a t
distribution for the null distribution and (2) using a permutation method to ap-
proximate the null distribution. For (1) the p-value for gene j was computed
as pj = Pr(|t(n − 2)| > tj), where tj is the observed t-statistics and t(n − 2)
denotes the t distribution with n − 2 degrees of freedom. For (2), we obtained
B permutations of the n sample labels. For the bth permutation, denote the
re-calculated t-statistics based on the permuted data by {t0b

j }m
j=1 (b = 1, . . . , B).

The permutation-based p-values can be computed as pj =
∑B

b=1 #{k : |t0b
k | ≥

|tj |, k = 1, . . . ,m}/(mB), for j = 1, . . . ,m (Storey and Tibshirani, 2003).
For example, Figure 3B displays the density histogram of the observed p-

values for a simulated data set with m = 1, 000 genes, group sample size n1 =
n2 = 8, and π0 = m0/m = 0.70. Note that the simulated data resembles closely
the BRCA-mutation hereditary breast cancer data described earlier in Section
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Figure 3: (A, top) BRCA data. Density histogram of the observed p-
values corresponding to each gene in the BRCA-mutation breast cancer data.
The solid horizontal line at one represents the U(0, 1) distribution when all
genes are not differentially expressed. The estimate of π0 for λ = 1/2 (dotted
vertical line) is π̂0(λ) = #{pi > λ}/(m(1 − λ)) = 0.678 (dashed horizontal
line). (B, bottom) Simulated data. Density histogram of the observed
p-values corresponding to each gene for a simulated data with π0 = 0.70 and
m = 1, 000 genes. The p-values correspond to two-sample t-statistics with
group sample size n1 = n2 = 8. For this simulated data, π̂0(λ = 1/2) = 0.710
and π̂0(OPT) = 0.699.
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3. The estimate of the proportion of true null hypotheses is π̂0(λ) = 0.710 for
the choice of λ = 1/2.

We summarized below some basic points of the simulation model which we
believe more accurately reflect real microarray data.

• The number of genes, m, is large.

• The range of the sample size is small to moderate and reflects the range
afforded in real microarray studies.

• The model encompasses heterogeneity of variance, often encountered with
real microarrray data. This applies to both the null and alternative settings.

• The mean expression for genes differentially expressed is allowed to vary.
Again, this applies to both the null and alternative settings.

• The above two items (alone and/or together) imply that the sampling dis-
tribution of the test statistic is not exact. Therefore, the p-values generated
are only approximations.

• Biological theory and assumptions imply dependence in gene expression,
so violation of independence should be considered in the simulation model.
This was done, for example, in Nguyen (2004) and we refer the reader there
for details.

• Measurement error are well recognized with gene expression measurements
and can be incorporated into the simulation model. (For example, see
Zien et al., 2002). Although measurement error is an important issue with
microarray data, we will not address this point further and will address it in
future work. However, the framework described in Section 2 can be applied
to any simulation model, including models with measurement errors and
dependent data.

Under these more realistic simulation conditions, it will be interesting to
examine the power and FDR control. For illustration, we will describe the results
for the model given in Table 2 with µ0 = 0, σ2

0 = 1, µ1 ∈ {µ1d}D
d=1 = {1, 2, 3, 4}

and σ2
1 ∈ {σ1l}L

l=1 = {1, 2, 4, 6}. Both µ1 and σ2
1 are randomly selected for each

iteration (data set simulated). Also, we only describe the case where ni = 8 per
group, similar to the BRCA-mutation data set. Details and the patterns of the
other cases are similar. However, some of the above cases, including violation of
independence, non-normal models for gene expression, and different configuration
of sample sizes can be found in Nguyen (2004), although not under the unified
computational framework presented here.
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Table 2: Simulation model and parameters. Data were generated such that
there is no differential expression in m0 genes from a total of m genes.

Group 1 (n1) Group 2 (n2)

True Null (m0) X(01) : x ∼ N(µ0, σ
2
0) X(02) : x ∼ N(µ0, σ

2
0)

True Alt. (m1) X(11) : x ∼ N(µ0, σ
2
0) X(12) : x ∼ N(µ1, σ

2
1)

Parameters µ0 ∈ {µ0d}D1
d=1 µ1 ∈ {µ1d}D2

d=1

σ2
0 ∈ {σ2

0l}L1
l=1 σ2

1 ∈ {σ2
1l}L2

l=1

4.2 Power

Figure 4A displays the true proportion of null hypotheses, π0, and its various
conservative estimates, namely π̂0(BH), π̂0(BKY), π̂0(BKY-M), and π̂0(λ) based
on 10,000 simulations for each π0 ∈ {0.1, 0.2, . . . , 0.9}. Thus, a total of 90,000
data sets were generated. Also, for this simulation experiment we used a sample
size of ni = 8 per group, similar to the BRCA microarray data. It is clear from
Figure 4A that π̂0(λ) is the least conservative estimate of π0; hence, much closer
to the target, π0. The resulting power, for the same simulation experiment, is
given in Figure 4B. It is evident that the proposed FDR algorithm using π̂0(λ) is
substantially more powerful than the other sequential FDR methods. In addition,
it is much closer to the optimal power, given by the LC-FDR procedure.

We note that there is little difference between the two stage procedure, 2S-
FDR, and the modified version, 2SM-FDR.

4.3 FDR control

For the original BH-FDR controlling procedure, FDR = π0α; hence, it is
conservative because it actually controls FDR at a lower level of π0α, rather at
the target level of α. It follows that the actual level of FDR control for the BH-
FDR procedure is linearly decreasing from α, as π0 → 0. On the other extreme,
the least conservative or optimal procedure, namely LC-FDR, completely corrects
for this conservativeness by utilizing π0 itself. Thus, as expected and confirmed
by the results in Figure 5, the LC-FDR control is at the target level of α and the
BH-FDR control is lower, at precisely π0α. (For illustration, the results in Figure
5 is for a target FDR control level of α = 0.05.) Also, the two-stage procedures
control FDR below the target α; however, they are nearly as conservative as the
BH-FDR control, the most conservative case.
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Figure 4: (A, top) Conservativeness in estimating π0. Displayed are π0

values (x-axis) versus their conservative estimates π̂0, averaged over 10,000 sim-
ulation runs, for the π̂0(BH) ≡ 1 (BH-FDR), π̂0(BKY) (2S-FDR), π̂0(BKY-M)
(2SM-FDR), and π̂0(λ). Also displayed for comparison are the true π0 values
(−∗−∗−). (B, top) Power curves. Displayed are the corresponding power
curves for the same 10,000 simulation runs, given in part (A). The proposed
FDR algorithm, which uses the less conservative estimate π̂0(λ), has power
(− ◦ − ◦ −) closest to the optimal power given by the least conservative FDR
(LC-FDR) procedure (− ∗ − ∗ −). Power is the proportion of true alternative
hypotheses correctly rejected and was averaged over the 10,000 simulations for
each π0.
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As can be seen from Figure 5, our proposed FDR algorithm (2.6), which
uses Story’s less conservative estimate, π̂0(λ), also controls FDR at the target
level of α = 0.05. In other words, FDR ≤ α for the proposed FDR algorithm
(2.6). However, the FDR control is substantially less conservative than the other
procedures, thus affording a large gain in power, as was described earlier.
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Figure 5: FDR control for sequential methods. Displayed are the observed
levels of FDR control, averaged over the 10,000 simulation runs (α = 0.05).
Note that he BH-FDR control is lower, at level π0α. The proposed FDR
algorithm using π̂0(λ) is less conservative and, hence, closest to the target
control level.
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Figure 6: FDR control for sequential methods. Displayed are the observed
levels of FDR control, averaged over the 10,000 simulation runs (α = 0.05).
Note that he BH-FDR control is lower, at level π0α. The proposed FDR
algorithm using π̂0(λ) is less conservative and, hence, closest to the target
control level.
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5. A “Reconciliation” Between Sequential and Direct FDR Approaches:
Diminishing the Power Gap

Multiple testing in microarray applications often involves conducting thou-
sands of tests simultaneously to screen for differentially expressed genes, as il-
lustrated by the BRCA breast cancer data in Section 3. The widely popular
sequential method, namely BH-FDR, completely ignores important information
regarding π0. Hence, it critically lacks power to detect truly alternative hypothe-
ses, especially in microarray applications where m is extremely large. In fact,
increasing information regarding π0 becomes available when m → ∞, and this
is precisely the case in micrarray applications. However, the landmark paper in-
troducing FDR by Benjamini and Hochberg (1995) did not envision applications
with this scale. This is clearly apparent from their numerical study with m ≤ 64.
When m is extremely large, the investigator often must accept a high level of
false discovery rate (α) in order to obtain some rejections or significant genes for
follow-up studies under the BH-FDR procedure.

Storey (2002) recognizes some of the shortcomings of the BH-FDR procedure
in microarray applications. He proposed estimating π0 and FDR directly for a
fixed rejection region. For example, if the investigator decides, a priori, to reject
all genes with p-values less or equal to γ = 0.005, what is her/his expected FDR?
The direct approach provides a conservatively biased estimator, ̂FDR(γ). Thus,
the investigator fixes, before hand, the rejection; in this example, the rejection
region is [0, γ]. The direct estimation approach to FDR (Storey, 2002) is an im-
portant and fundamental departure from the tradition sequential FDR approach
in the following sense. Essentially, traditional sequential methods conservatively
estimate the rejection region for a fixed FDR level, and the direct estimation
approach conservatively estimate FDR directly for a fixed rejection region.

Thus, the interpretation and implementation of the two approaches are dif-
ferent. Differing views, advocating the practice of one approach over the other
remains (Storey, 2002). However, based on numerical studies, there is a substan-
tial gain in power from using direct estimation relative to using the sequential
BH-FDR procedure. (See Figure 1 and Table 2 of Storey (2002).) This is due to
the fact that the direct estimate of FDR uses a better estimate of π0, and not to
whether one fixes the rejection region (direct method) or the FDR level (sequen-
tial method). As we will illustrate, the key lies in utilizing a less conservative,
hence more precise, estimate of π0. More precisely, if we use exactly the same
information (estimate of π0) in both the sequential and direct FDR methods, will
the differences in power of the two approaches diminish?

Storey (2002) proposed a direct estimate of FDR for a fixed rejection region
[0, γ], which uses π̂0(λ). As described in the Introduction section, the direct
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estimator of FDR is

̂FDRλ(γ) = π̂0(λ)
γ

P̂r(P ≤ γ)
,

where P̂r(P ≤ γ) = #{pj ≤ γ}/m.
We compare the power curve of ̂FDRλ(γ) to the proposed sequential FDR

algorithm (2.6), which uses the same estimate of π0, namely π̂0(λ). We note that
sequential FDR methods cannot be directly compared with the direct estimation
approach (Storey, 2002). This is because, as pointed out earlier, the former esti-
mates the rejection region, whereas the later estimates FDR directly. However,
this can be circumvented by using the sequential methods to control FDR at level
α = ̂FDRλ(γ) for each iteration (simulation run). The results, based on 10,000
simulation runs and using the same setup as described in Section 4, are given in
Figure 6. Sequential methods using poor estimates of π0, namely BH-FDR, 2S-
FDR, and 2SM-FDR, have very low power; hence their power curves fall far below
the optimal power curve (LC-FDR). The power for the proposed sequential FDR
method (2.6) is close to the power for the direct estimator, ̂FDRλ(γ), because
they both use the same estimate for π0. This result is not surprising in light of
the connection between the BH-FDR procedure and ̂FDRλ(γ) shown by Storey
(2002) for independent p-values; BH-FDR is a special case of ̂FDRλ(γ) when
π̂0(λ) = 1. Similarly, it is not difficult to show analytically that the proposed
sequential FDR algorithm is equivalent to ̂FDRλ(γ) for independent p-values.

6. Discussion

We have provided a unified computational framework for comparing FDR
procedures in numerical studies, encompassing traditional sequential methods
and the new direct approach to FDR. We have demonstrated that when using
the same information regarding π0 in both sequential FDR methods and in direct
estimation of FDR, the power curves are equivalent. In particular, we introduced
a class of sequential FDR of the form k̂ = {j : p(j) ≤ (j/m)(α∗/π̂0)} and showed
that various sequential FDR methods fall within this class. In addition, when
a less conservative estimate of π0 is used, specifically π̂0 = π̂0(λ), the power is
equivalent to the direct estimator of FDR.

These conclusions also hold for other simulation configurations, in addition
to those described earlier. For example, note that in the simulation we used a
sample size of ni = 8 per group, similar to the BRCA data. In the context of two
sample comparison in microarray experiments, this is a moderate sample size.
However, the results hold for even smaller sample sizes. Of course, as ni grows
larger, the power for all methods converge to the optimal power of the LC-FDR
procedure.



350 Danh V. Nguyen

We emphasize that the family of sequential FDR algorithms given by (2.6) was
motivated and derived at by examining the estimation of π0 in the sequential FDR
procedures of Benjamimi and colleages. Thus, along this same line, utilizing the
more precise estimator π̂0(λ) of Storey’s to improve power is sensible. However, it
is important to note that the later algorithms do not guarantee the FDR control,
in the sense of Bejamini and Hochberg (1955) for the BH-FDR procedure. Thus,
one needs to take care to examine the FDR control in numerical studies (on
average) as described in Section 4.3. This is particularly true also for numerical
studies involving violation of the assumptions in the FDR framework. In these
cases, even the procedures with proven FDR control no longer hold because of the
violation of assumptions. Furthermore, it is important to note here that Storey
(2002), more or less, already recognized the link between his direct estimation
approach to the sequential approach early on. (See also Storey et al. (2004).)
However, their numerical comparisons aims to demonstrate the improvement in
power within the assumptions of the FDR framework. As described in Section
4 the statistical assumptions do not hold under the minimal conditions of real
microarray studies, including inhomogenous mean and variance, small sample
sizes, dependence in gene expression, and so on. Thus, it is important to examine
the performance of both FDR approaches under these more realistic conditions
and also gauge their performance relative the the (optimal) least conservative
FDR procedure. The unified computation framework proposed here, base on
estimation of π0 and approximating the least conservative FDR procedure, is one
way to make such comparisons.

Finally, we note that the real data analyses use the optimal choice of λ for
direct estimation, namely π0(OPT). (See also the appendix section.) However,
to reduce the computational cost in the large simulation we used the approxima-
tion π̂0(λ = 1/2). A prelimary simulation suggests that the power of the direct
estimation method using π0(OPT) has slightly higher power than the approxi-
mation π̂0(λ = 1/2), as expected. Therefore, when comparing the power of direct
estimation to sequential FDR methods, the results reported here remain valid.
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Appendix: Optimal Selection of λ to Minimize Mean Squared Error

Storey and Tibshirani (2003) proposed the following automatic algorithm for
choosing the optimal λ to minimize the mean squared error of π̂0(λ).
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1. For each λk ∈ R = {0, 0.01, 0.02, . . . , 0.95} compute π̂0(λk).

2. Fit a natural cubic spline with 3 degrees of freedom, f̂ , through the data
points {λk, π̂0(λk)}96

k=1. The data points are weighted by 1 − λk.

3. Estimate π0 by π̂0(OPT) = f̂(1).
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