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Abstract

Multi-classification is commonly encountered in data science practice, and it has broad applica-
tions in many areas such as biology, medicine, and engineering. Variable selection in multiclass
problems is much more challenging than in binary classification or regression problems. In ad-
dition to estimating multiple discriminant functions for separating different classes, we need to
decide which variables are important for each individual discriminant function as well as for
the whole set of functions. In this paper, we address the multi-classification variable selection
problem by proposing a new form of penalty, supSCAD, which first groups all the coefficients of
the same variable associated with all the discriminant functions altogether and then imposes the
SCAD penalty on the supnorm of each group. We apply the new penalty to both soft and hard
classification and develop two new procedures: the supSCAD multinomial logistic regression
and the supSCAD multi-category support vector machine. Our theoretical results show that,
with a proper choice of the tuning parameter, the supSCAD multinomial logistic regression can
identify the underlying sparse model consistently and enjoys oracle properties even when the
dimension of predictors goes to infinity. Based on the local linear and quadratic approximation
to the non-concave SCAD and nonlinear multinomial log-likelihood function, we show that the
new procedures can be implemented efficiently by solving a series of linear or quadratic pro-
gramming problems. Performance of the new methods is illustrated by simulation studies and
real data analysis of the Small Round Blue Cell Tumors and the Semeion Handwritten Digit
data sets.
Keywords logistic regression; SCAD; supnorm; SVM; variable selection

1 Introduction
Multiclass classification is an important topic in statistical machine learning and has broad
applications in practice such as handwritten zip code digit recognition and cancer classification
based on DNA microarray data (Hastie et al., 2009). In practice, a large number of variables are
usually collected but some of them are uninformative in prediction. For example, in biological
or medical data sets, the overwhelming number of variables far exceeds the sample size, but the
underlying model is sparse and depends only on a small subset of predictors. Including all the
predictors in a classifier may lead to poor generalization performance and interpretability (Fan
and Li, 2001). Therefore, it is essential to identify important variables in order to increase both
classification accuracy and model interpretability.

This paper is motivated by precision medicine in cancer research where one goal is to ex-
tract important information from omics data, such as genomics, transcriptomics, metabolomics,
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and proteomics and classify tumors into different cancer subtypes in order to provide optimal
treatment. Microarray and RNA-Seq data are typically analyzed to identify genes with differen-
tial expressions across different subtypes of cancer. Since the number of genes is usually much
larger than the sample size, it is critical to select “signature” genes which can characterize cancer
subtypes and have strong prediction power. This work is motivated by the classification of small
round blue cell tumors in childhood (Khan et al., 2001) using a small set of important genes. We
propose and study a new class of learning methods for joint multiclass classification and vari-
able selection. The new tools are computationally efficient and scalable, with high discrimination
power and interpretability, and they have broad applications to cancer classification and many
areas such as biology, medicine, and engineering. In the following, we first review the problem
of multi-classification, with a focus on variable selection in classification, and then introduce the
proposed methods.

In a K-class classification problem, we are given a training data set containing n pairs of
observations {(xi , yi), i = 1, . . . , n}, where xi = (xi1, . . . , xid)

T ∈ Rd is an input vector and the
output yi ∈ A = {1, 2, . . . , K} indicates its class label. Our task is to learn a discriminant rule
φ : Rd → A which can assign a class label for any new input x. Assume that (xi , yi)’s are
independent and identically distributed (i.i.d.) samples from an unknown distribution P(x, y),
with the conditional probabilities pk(x) = P(y = k|x), k = 1, . . . , K. The prediction performance
of φ is measured by its misclassification error rate GE(φ) = E(x,y)[I (y �= φ(x))] = P(y �= φ(x)).
The optimal classifier minimizing the misclassification error rate is the Bayes classifier, i.e.

φB(x) = arg min
k=1,...,K

[
1 − pk(x)

] = arg max
k=1,...,K

pk(x).

Since pk(x)’s are generally unknown, we need to construct a decision function vector f̂ =
{f̂1, . . . , f̂K} with each f̂k representing strength of evidence that a data point x belongs to
class k. The classifier induced by f̂ assigns the label to x using the largest f̂k(x), i.e. φ̂(x) =
arg max1�k�K f̂k(x).

In literature, there are two main types of classifiers: soft classifiers and hard classifiers, for
constructing decision rules for classification problems. Soft classification rules approximate the
Bayes rule by first estimating p̂k(x) and then predicting the class label based on the maximum
probability. Among them are linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), and logistic regression (McCullagh and Nelder, 1989). In particular, logistic regression
assumes that the form of posterior log-odds is linear in x, i.e. log pk(x)

pK(x)
= βk0 + βT

k x, k =
1, . . . , K − 1, leading to

pk(x) = exp(βk0 + βT
k x)

1 + ∑K−1
l=1 exp(βl0 + βT

l x)
, k = 1, . . . , K − 1,

pK(x) = 1

1 + ∑K−1
l=1 exp(βl0 + βT

l x)
.

(1)

Logistic regression models can be fitted by maximizing the conditional log-likelihood of y given
x using the training dataset, such as maximizing the binomial or multinomial log-likelihood.

On the other hand, hard classification rules directly target on the argmax function without
estimating the conditional class probabilities, such as support vector machine (SVM, Vapnik
(1995)). Various multiclass SVMs have been proposed in the literature, including Vapnik (1998),
Weston et al. (1999), Crammer and Singer (2001), Lee et al. (2004), Liu and Shen (2006), and
Liu and Yuan (2011). For example, Lee et al. (2004) proposed the multi-category SVM (MSVM)
which solves
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min
β0,β

1

n

n∑
i=1

K∑
k=1

I (yi �= k)
[
βk0 + βT

k xi + 1
]
+ + λ

K∑
k=1

d∑
j=1

β2
kj

subject to
K∑

k=1

βk0 = 0, and
K∑

k=1

βkj = 0, j = 1, . . . , d.

(2)

where (x)+ = max(0, x). The sum-to-zero constraint in (2) is enforced to eliminate redundancy
of the parameters and guarantee the solution identifiability. Besides the hinge loss, the squared
error loss can also be incorporated with SVM, such as the least squares support vector machine
(LSSVM; Suykens and Vandewalle (1999)) and the proximal support vector machine (PSVM;
Mangasarian and Wild (2001)). Tang and Zhang (2006) extended PSVM to the multiclass PSVM
(MPSVM) by solving

min
β0,β

1

n

n∑
i=1

K∑
k=1

I (yi �= k)
[
βk0 + βT

k xi + 1
]2 + λ

K∑
k=1

d∑
j=0

β2
kj

subject to
K∑

k=1

βk0 = 0, and
K∑

k=1

βkj = 0, j = 1, . . . , d.

(3)

In addition to producing the classification decision rules, MPSVM can also estimate the condi-
tional class probabilities.

For high dimensional data, a variety of penalized methods have been proposed to predict
outcomes and select variables at the same time. Modern penalized methods include LASSO
(Tibshirani, 1996), adaptive LASSO (Zou, 2006), SCAD (Fan and Li, 2001), and MCP (Zhang
et al., 2010). These methods can shrink small coefficients to exactly 0 and hence achieve sparsity
in the solution. Some of these methods have been applied to binary classification, such as L1

logistic regression (Hastie et al., 2009), L1 SVM (Bradley and Mangasarian, 1998), and SCAD
SVM (Zhang et al., 2006). In addition to selecting individual variables, various group selection
methods have also been developed, including the group LASSO (Yuan and Lin, 2006), F∞ SVM
(Zou and Yuan, 2008), and the Composite Absolute Penalties (CAP) family (Zhao et al., 2009).
Huang et al. (2012) provided a detailed review on group selection in regression settings, such as
the group LASSO, the group SCAD, and the group MCP. The extension of L1-type methods
from binary classification to multiclass problems include the L1 multinomial logistic regression,
the L1 MSVM (Wang and Shen, 2007), the grouped L1 in multinomial logistic regression (Tutz
et al., 2015), and the supnorm MSVM (Zhang et al., 2008).

In this paper, we propose a new form of penalty called the supSCAD penalty, based on the
composite of supnorm and SCAD function, to achieve group sparsity for multiclass problems.
What makes the supSCAD penalty attractive is its ability to remove noise covariates, i.e., those
covariates not contributing to discriminating different classes. One motivating example is the
multi-type cancer classification using genes. Typically, only a small subset of “important” genes
are needed to classify cancer into different subtypes, and the rest of genes are either redundant
or non-informative. The supSCAD penalty is designed to enforce group-wise parsimony in all the
coefficients associated with one variable without directly penalizing individual coefficients, and
therefore the estimated coefficients are less biased than other methods such as the group LASSO.
The new penalty demonstrates competitive performance for both multinomial logistics regression
and MSVM/MPSVM, and enjoys nice theoretical properties, even if the data dimension diverges.
An efficient algorithm is developed by combining the difference convex algorithm (DCA; Wu and
Liu (2009)) and the local linear approximation (Zou and Li, 2008).
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The rest of the article is organized as follows. Section 2 introduces the supSCAD penalty and
establishes theoretical properties of the supSCAD logistic regression. Sections 3 and 4 present
the computational algorithms for the supSCAD logistic regression and MSVM/MPSVM. Sec-
tions 5 and 6 evaluate performance of the new methods via simulations and two real examples.
Final discussions are in Section 7. Major technical derivations and proofs are delegated to the
Appendix.

2 Methodology
2.1 The supSCAD Penalty
Consider a K-class problem with the input vector x ∈ Rd and the output y ∈ {1, . . . , K}. For
linear classification rules, there are (d + 1) coefficients associated with each decision function,
including the intercept term. Altogether, all the coefficients associated with the K decision
functions can be expressed as a K × (d + 1) coefficient matrix. The jth column of the matrix,
expressed as β(j) = (β1j , . . . , βKj )

T , consists of K coefficients associated with xj , where j =
0, 1, . . . , d and x0 is the intercept. The kth row βk = (βk0, βk1, . . . , βkd) consists of (d + 1)

coefficients characterizing the decision function fk, where k = 1, . . . , K. For the variable selection
purpose, we treat the elements in β(j) as a group. Define the supnorm of β(j) as

‖β(j)‖∞ = max
k=1,...,K

|βkj |, (4)

where the importance of xj is directly controlled by its largest absolute element. If ‖β(j)‖∞ = 0,
then all the K coefficients associated with xj are set to zero. Otherwise, if xj is important with
a positive supnorm, then no penalty is imposed on the remaining elements. The SCAD penalty
(Fan and Li, 2001) is a symmetric and non-convex function to produce sparse solutions, with a
continuous first-order derivative J ′

λ(θ) = λ{I (θ � λ)+ (aλ−θ)+
(a−1)λ

I (θ > λ)} except at the origin. Our
new penalty, called supSCAD, combines the SCAD and supnorm in the following form

Jλ(‖ζ‖∞) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ‖ζ‖∞ if ‖ζ‖∞ � λ,

−(‖ζ‖2∞ − 2aλ‖ζ‖∞ + λ2)

2(a − 1)
if λ < ‖ζ‖∞ � aλ,

(a + 1)λ2

2
if ‖ζ‖∞ > aλ.

(5)

where ζ = (ζ1, . . . , ζK)T , ‖ζ‖∞ = maxi=1,...,K |ζi |, a > 2, and λ > 0 is the tuning parameter.
In contrast to some bi-level (group and individual level) variable selection methods such as the
composite MCP, the proposed supSCAD penalty focuses on group selection solely. There is only
one tuning parameter in the supSCAD penalty, which makes its implementation much easier
with low computational cost even for high dimensional problems.

2.2 supSCAD Logistic Regression & Oracle Properties
We propose the supSCAD multinomial logistic regression by solving the penalized log-likelihood

min
β

−
{ n∑

i=1

[ K∑
k=1

I (yi = k) · βT
k xi − log

( K∑
k=1

exp
(
βT

l xi

))]} + n

d∑
j=1

Jλ(‖β(j)‖∞)

subject to
K∑

k=1

βkj = 0, j = 0, 1, . . . , d,

(6)
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where the sum-to-zero constraint is required to assure the identifiability of the solution.
In the following, we study the large-sample properties of the supSCAD logistic regression

estimator. In particular, we will establish its oracle properties even when the number of predictors
d diverges to infinity with the sample size n. Theorem 1 shows that the supSCAD estimator
is root-(n/dn) consistent, where the subscript in dn is used to emphasize its dependence on n.
Theorem 2 includes two parts: the model selection consistency, and the asymptotic normality of
the estimators with the variance as if the true model were known.

Assume that the training dataset consists of n i.i.d. observations {(xi , yi), i = 1, . . . , n} from
the multinomial logistic model with the true parameters β�, which consists of sn + 1 non-zero
columns and dn−sn zero columns. Without losing generality, we arrange non-zero columns before
zero columns in β� and denote them by β�

+ and β�
z.

β� =
⎛
⎜⎝

β�
10 β�

11 · · · β�
1dn

...
...

. . .
...

β�
K,0 β�

K,1 · · · β�
K,dn

⎞
⎟⎠ =

⎛
⎜⎝

β�
10 β�

11 · · · β�
1,sn

0 · · · 0
...

...
. . .

...
...

. . .
...

β�
K,0 β�

K,1 · · · β�
K,sn

0 · · · 0

⎞
⎟⎠ = (

β�
+, β�

z

)
.

Define the penalized log-likelihood function

R
({βk}K1

) = −L
({βk}K1

) + n

dn∑
j=1

Jλ(‖β(j)‖∞),

where L({βk}K1 ) = log
∏n

i=1

∏K
k=1 yikpk(xi ) = ∑n

i=1(
∑K

k=1 yik(xT
i βk) − log(

∑K
l=1 exT

i β l )). Due to
the sum-to-zero constraints, we have the relationship βKj = −∑K−1

k=1 βkj for j = 1, . . . , dn.
Therefore, all the coefficients can be completely determined by the K − 1 dimensional vectors
β(j),−K = (β1j , . . . , βK−1,j )

T , j = 1, . . . , dn. Consequently, the K × (dn + 1) coefficient matrix β

can be reduced to a (K − 1) × (dn + 1) matrix, and correspondingly, the objective function can
be reparametrized as L̃({βk}K−1

1 ) and

R̃
({βk}K−1

1

) = −L̃
({βk}K−1

1

)
+ n

dn∑
j=1

Jλ

(
max

{
|β1j |, |β2j |, . . . , |β(K−1),j |,

∣∣∣∣
K−1∑
l=1

βlj

∣∣∣∣
})

.
(7)

Using the reparametrized penalized multinomial logit model (7), we show that the proposed
supSCAD estimator possesses oracle properties with a proper choice of tuning parameter.

With a slight abuse of notation, we reformulate the matrix β and β� as vectors

β =

⎛
⎜⎜⎜⎝

β(0),−K

β(1),−K

...

β(dn),−K

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β10
...

βK−1,0
...

β1dn

...

βK−1,dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, β� =

⎛
⎜⎜⎜⎝

β�
(0),−K

β�
(1),−K

...

β�
(dn),−K

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β�
10
...

β�
K−1,0
...

β�
1dn

...

β�
K−1,dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

β�
+

β�
z

)
. (8)

Denote I (β�) as the Fisher information matrix of L̃ at β�, and I (( β�+
0 )) the Fisher information

matrix knowing β�
z = 0. Let β̂ = (

β̂+
β̂z

) be a local minimizer to (7), where β̂+ consists of the first
(K −1)× (sn +1) elements of β̂ and β̂z consists of the remaining last (K −1)× (dn − sn) elements.
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Theorem 1 (Consistency). Assume the regularity conditions in the Appendix hold. If dn
4/n → 0

as n → ∞, then there exists a local minimizer β̂ such that ‖β̂ − β�‖ = Op(
√

dn/n).

Lemma 1 (Sparsity). Assume the regularity conditions in the Appendix hold. If λn → 0,√
dn/n/λn → 0, and dn

4/n → 0 as n → ∞, then with probability tending to 1, for any given β+
satisfying ||β+ − β�

+|| = Op(
√

dn/n) and any constant C,

R̃
((

β+
0

)) = min
||βz||�C

√
dn/n

R̃
(( β+

βz

))
.

Theorem 2 (Oracle). Under the conditions of Theorem 1 and Lemma 1, with probability tending
to 1, the

√
dn/n-consistent local minimizer (

β̂+
β̂z

) in Theorem 1 satisfies:

1. (Sparsity): β̂z = 0.
2. (Asymptotic normality):

√
n(β̂+ − β�

+) → N(0, I−1( β�+
0 )).

All the regularity conditions and proofs are given in the Appendix.

3 Computational Algorithms

3.1 Quadratic Approximation for the Log-likelihood

We approximate the negative multinomial log-likelihood in (6) by its second-order Taylor expan-
sion using Newton’s method, which is essentially the iteratively reweighed least squares (IRLS).
At each step, given the current parameter estimates β̃, a quadratic approximation to the negative
log-likelihood in its neighborhood is:

Ln(β) ≈ Q(β) =Ln(β̃) + L̇n(β̃)T (β − β̃)

+ 1

2
(β − β̃)T

{
L̈n(β̃)

}
(β − β̃)

(9)

where L̇n(·) and L̈n(·) are the first- and second-order derivatives of the negative log-likelihood
function with respect to its parameters. We propose to solve the supSCAD logistic regression
using two iterative loops. First, each outer loop computes the quadratic approximation Q at the
current parameters β̃. Second, each inner loop executes optimization iterations for the supSCAD
penalized quadratic problem.
1. OUTER LOOP: Compute the quadratic approximation Q at the current estimates.
2. INNER LOOP: Solve the supSCAD problem based on the updated Q.

3.2 Optimization Algorithms for supSCAD Logistic Regression

Based on the ideas in the above section, we convert the supSCAD logistic regression optimization
to a series of quadratic programming problems. To handle the non-convex and non-differentiable
supSCAD penalty, we adopt the difference convex algorithm (DCA; Le Thi Hoai and Tao (1997))
and the local linear approximation (LLA; Zou and Li (2008)) techniques. These algorithms are
computationally efficient and assure that the supSCAD can be solved within polynomial time.
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DCA Optimization Consider a non-convex minimization problem of

min C(θ) = Cvex,1(θ) − Cvex,2(θ)

where Cvex,1(θ) and Cvex,2(θ) are both convex functions. The DCA iteratively solves min Cvex,1(θ)−
C ′

vex,2(θ̃)(θ − θ̃ ) with a current solution θ̃ , which is shown to converge to a local minimum in finite
steps. Following Wu and Liu (2009), we write the first-order derivative of the SCAD penalty
function on (0, +∞) as the difference of two convex functions, Jλ(θ) = Jλ,1(θ) − Jλ,2(θ), where
J ′

λ,1(θ) = λ and J ′
λ,2(θ) = λ(1 − (aλ−θ)+

(a−1)λ
)I (θ > λ), and then apply the DCA.

LLA Optimization Zou and Li (2008) suggested LLA to the SCAD penalty and showed its
ascent property for maximization and convergence (Lange et al., 2000). In particular, Jλ(|θj |) ≈
Jλ(|θ(0)

j |) + J ′
λ(|θ(0)

j |)(|θj | − |θ(0)
j |) for θj ≈ θ

(0)
j .

By applying DCA and LLA to the supSCAD penalty, we propose to iteratively solve the
following optimization problem at each step.

β(t+1) = arg min
β

(
Q(β) +

d∑
j=1

λ‖β(j)‖∞ −
d∑

j=1

J ′
λ,2

(‖β(t)

(j)‖∞
)(‖β‖∞ − ‖β(t)‖∞

))

= arg min
β

(
Q(β) + λ

d∑
j=1

‖β(j)‖∞ −
d∑

j=1

J ′
λ,2

(‖β(t)

(j)‖∞
) · ‖β‖∞

)

= arg min
β

(
Q(β) +

d∑
j=1

J ′
λ

(‖β(t)

(j)‖∞
) · ‖β(j)‖∞

)
(10)

3.3 Implementation Issues

Choice of Initial Points Since the supSCAD penalty is non-convex and both DCA and LLA
are local algorithms, the proposed algorithm is not guaranteed to produce a global minimum
in general. Therefore, choosing the initial point is critical to the quality of the solution and its
performance. Denote the sample size of each class by nk for k = 1, . . . , K, and the input vector
dimension by d. If nk � d and the standard maximum likelihood converges well, then the MLE
would be appropriate for initialization. If nk ≈ d or nk < d, then we can use the origin or the
ridge estimator as the initial point.

The Stopping Rule Similar to the traditional IRLS, our iterative quadratic approximation
method is not guaranteed to converge for logistic regression. However, we have not encountered
any divergent problems in our numerical experiments. Based on our empirical experience, the
quadratic approximation converges very quickly, usually in fewer than 10 iterations. We set
MaxIteration= 50 and use the stopping criterion based on the absolute difference between the
current estimate β(t) and the previous estimate β(t−1). In particular, we define the stopping
criterion as:

K∑
k=1

‖β(t)
k − β

(t−1)
k ‖2 < τ.

In our algorithm, τ is set at 10−4.
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4 Extensions to Multiclass Support Vector Machines
We propose two ways of extending the supSCAD penalty to multiclass support vector machines.
The first method is in the context of the MSVM framework of Lee et al. (2004), and the proposed
supSCAD MSVM solves

min
β0,β

1

n

n∑
i=1

K∑
k=1

I (yi �= k)
[
βk0 + βT

k xi + 1
]
+ +

d∑
j=1

Jλ(‖β(j)‖∞)

subject to
K∑

k=1

βk0 = 0, and
K∑

k=1

βkj = 0, j = 1, . . . , d.

(11)

Next, we adopt the multiclass proximal SVMs of Tang and Zhang (2006) and propose the
supSCAD MPSVM by solving

min
β0,β

1

n

n∑
i=1

K∑
k=1

I (yi �= k)
[
βk0 + βT

k xi + 1
]2 +

d∑
j=1

Jλ(‖β(j)‖∞)

subject to
K∑

k=1

βk0 = 0, and
K∑

k=1

βkj = 0, j = 1, . . . , d.

(12)

4.1 Computational Algorithms

We present the computational algorithms for solving the supSCAD MSVM. First, we introduce
a set of slack variables

δik = I (yi �= k) and ξik = [
βk0 + βT

k xi + 1
]
+, for i = 1, . . . , n, k = 1, . . . , K,

ηj = ‖β(j)‖∞ = max
k=1,...,K

|βkj |, for j = 1, . . . , d,

and the new constraints |βkj | � ηj , for k = 1, . . . , K and j = 1, . . . , d. Then by applying DCA
and LLA, we tackle the non-convex minimization supSCAD MSVM (11) by solving a sequence
of linear programming (LP) problems,

DCA min
β0,β,ξ ,η

1

n

n∑
i=1

K∑
k=1

δikξik + λ

d∑
j=1

ηj −
d∑

j=1

J ′
λ,2

(
η

(t)
j

)(
ηj − η

(t)
j

)

LLA min
β0,β,ξ ,η

1

n

n∑
i=1

K∑
k=1

δikξik +
d∑

j=1

J ′
λ

(
η

(t)
j

)· ηj

subject to
K∑

k=1

βk0 = 0,

K∑
k=1

βkj = 0, j = 1, . . . , d,

ξik � βk0 + βT
k xi + 1, ξik � 0, i = 1, . . . , n and k = 1, . . . , K

β(j) � ηj1K, −β(j) � ηj1K, j = 1, . . . , d.

(13)

The complete algorithm for fitting the supSCAD MSVM is described in the Appendix, and the
supSCAD MPSVM can be solved in a similar fashion.
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5 Simulation Studies
We evaluate and illustrate finite sample performance of the supSCAD estimators in terms of
their accuracy in variable selection, class prediction, and probability estimation, under three
simulation experiment settings: (1) a four-class linear classification example with two “strong”
important variables and two “weak” important variables for all the classes; (2) a four-class linear
classification example with different important variables across classes; (3) a three-class high-
dimensional example with two important variables for all the classes and 198 noise variables.

For comparison, we consider four soft classifiers and six hard classifiers. Four soft classifi-
cation methods are L1 logistic regression (L1 LR), group-L1 logistic regression (GroupL1 LR),
supSCAD logistic regression (supSCAD LR), and the composite MCP logistic regression (comp-
MCP LR). Six hard classification methods are the standard MSVM (L2 MSVM), L1 MSVM (L1
MSVM), supSCAD MSVM/MPSVM, and the composite MCP MSVM/MPSVM. The Bayes rule
is also implemented as the reference. All simulations are conducted using Matlab (MATLAB,
2014) and Tomlab (Holmström et al., 2010), an optimization environment within Matlab.

For each experiment, we generate a training data set of size n and a test data set of size n′
from the same distribution. We use the training data to train the classifiers and select the best
tuning parameter from a series of λ values, and use the test data to evaluate performance of the
estimated classifiers. A total of 100 simulations are conducted under all settings. Each classifier
is evaluated in terms of its prediction and variable selection accuracy. For a soft classifier, we
also examine its performance in estimating the conditional class probabilities.

To choose an appropriate λ for penalized logistic regression, we use a BIC selection criterion

BIC(λ) = −2

n

n∑
i=1

K∑
k=1

I (yi = k) log p̂k(xi ) + 1

n
log(n) × df,

where df is the number of nonzero coefficients in β̂. According to Zou (2006), the number of
nonzero coefficients is an unbiased estimate for the degrees of freedom of LASSO-type methods.
We adopt this result here as an approximated solution. For the regularized MSVM/MPSVM, we
choose the best λ by five-fold cross validation (CV). Both BIC and CV search the best tuning
parameter λ over a grid: log2(λ) = −10, −9, . . . , 10. The optimum λ is identified by the least BIC
or CV score. When ties occur, the larger λ is used for higher sparsity. For the tuning parameter a

in comp-MCP, Breheny and Huang (2009) suggested using a = 30 in logistic regression and a = 3
in linear regression. However, in our simulations, we found that a = 3 had better performance
in almost all the settings and therefore used a = 3 throughout the paper.

The true conditional class probabilities pk(x), k = 1, . . . , K are known in simulation. We
evaluate the probability estimation by three criteria using the test set:
• P 1 error: 1

n′
∑n′

i=1

∑K
k=1 |p̂k(xtest

i ) − pk(xtest
i )|

• P 2 error: 1
n′
∑n′

i=1

∑K
k=1(p̂k(xtest

i ) − pk(xtest
i ))2

• Empirical Generalized Kullback-Leibler (EGKL) loss: 1
n′
∑n′

i=1

∑K
k=1 pk(xtest

i ) log
pk(xtest

i )

p̂k(xtest
i )

.

Each classifier consists of K discriminant functions. And there are totally K ×d coefficients
in the model. To assess variable selection performance, we use the following criteria:
• Correct Zero: the number of zero estimates which are truly zero
• Incorrect Zero: the number of zero estimates which are truly nonzero
• Model Size: the number of covariates which are selected in the final model
• Correct Model: the frequency of selecting the correct model over 100 simulations
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Table 1: Summary and comparison of simulation results in Example 1.

Method Correct Incorrect Model Correct Testing
Zeros Zeros Size Model Errora

L1 LR 59.61 0.45 9.89 10 0.32
GroupL1 LR 61.04 0.08 4.73 46 0.31
supSCAD LR 61.92 0.72 4.34 70 0.32

comp-MCP LR 62.41 6.12 2.98 14 0.38

L2 MSVM 0 0 20 0 0.37
L1 MSVM 10.05 0.08 19.05 0 0.37

supSCAD MSVM 50.28 0.32 7.35 60 0.33
supSCAD MPSVM 53.10 0 6.73 45 0.30
comp-MCP MSVM 21.67 0.36 15.68 5 0.37

comp-MCP MPSVM 33.75 0.04 14.86 0 0.33

Bayes rule 64 0 4 100 0.29
aEntries in this column have standard errors in the range of 0.001 to 0.003.

Example 1 (Strong and weak signals). Assume K = 4 and d = 20. For each class k =
1, . . . , 4, we generate the first two components of x from N(μk, 3I2), where μ1 = (

√
2,

√
2)T ,

μ2 = (−√
2,

√
2)T , μ3 = (−√

2, −√
2)T , μ4 = (

√
2, −√

2)T , and I2 is a 2 × 2 identity matrix.
Then, for each class k, we generate two additionally “weak” important variables from N(νk, I2),
where ν1 = (0.5, 0.5)T , ν2 = (−0.5, 0.5)T , ν3 = (0.5, −0.5)T , ν4 = (−0.5, −0.5)T . The remaining
sixteen variables are noise and generated i.i.d. from N(0, 1). The sample size is n = 200 and the
test size is n′ = 40, 000.

Table 1 shows that, among all methods, supSCAD LR identified the true model most
frequently, 70 out of 100, while supSCAD MPSVM produced the lowest classification error
rate at 0.30. The column of “Incorrect Zeros” shows that, all of the penalized methods except
supSCAD MPSVM missed the two weak signals sometimes, and the comp-MCP LR missed
the weak signals most often having the smallest average model size of 2.98 and the largest
average Incorrect-zero of 6.12. This over-shrinkage result may be due to the double penalty of
the composite MCP, at both the group and individual levels.

The probability estimation results for all the simulations are summarized in Table 2. The
supSCAD LR was overall the best among all the procedures and it has the smallest values in
P1, P2 and EGKL.

Example 2 (Different important variables across classes). This example considers a case where
the set of important variables varies are from class to class. Let d = 20. For the input x, its
first four elements x1, x2, x3, x4 are generated uniformly from a 4-dimension ball with radius 3,
i.e. {(x1, x2, x3, x4)

T ∈ R4 :
√

x2
1 + x2

2 + x2
3 + x2

4 � 3}, and the remaining x5, . . . , x20 are generated
i.i.d. from N(0, 1). Furthermore, define the four discriminating functions as f1 = −3x1 + 3x4,
f2 = 3x1 + 3x2, f3 = −3x2 + 3x3, and f4 = −3x3 − 3x4. We set pk(x) = P(Y = k|X = x) ∝
exp(fk(x)), k = 1, 2, 3, 4 and kept n = 200 and n′ = 40, 000. Among the first 4 important
variables, x1 is non-informative for distinguishing class 3 vs class 4; x2 is non-informative for
distinguishing class 1 vs class 4; x3 is non-informative for distinguishing class 1 vs class 2; and
x4 is non-informative for distinguishing class 2 vs class 3.
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Table 2: Probability Estimation for all three simulation examples.

Example 1 Example 2 Example 3

Methodsa P1 P2 EGKL P1 P2 EGKL P1 P2 EGKL

L1 LR 0.36 0.06 0.12 0.38 0.07 0.17 0.30 0.04 0.11
GroupL1 LR 0.39 0.06 0.13 0.48 0.11 0.24 0.30 0.05 0.11
supSCAD LR 0.24 0.04 0.07 0.21 0.03 0.07 0.32 0.05 0.12
comp-MCP LR 0.44 0.10 0.19 0.20 0.03 0.07 0.32 0.05 0.12
aEntries in this column have standard errors in the range of 0.001 to 0.02.

Table 3: Summary and comparison of simulation results in Example 2.

Method Correct Incorrect Model Correct Testing
Zeros Zeros Size Model Errora

L1 LR 67.75 0 7.44 5 0.13
GroupL1 LR 62.48 0 4.39 72 0.13
supSCAD LR 64.00 0 4 100 0.12

comp-MCP LR 71.71 0 4 100 0.11

L2 MSVM 0 0 20 0 0.36
L1 MSVM 22.82 0.16 17.12 4 0.32

supSCAD MSVM 27.17 0.2 13.43 4 0.33
supSCAD MPSVM 41.49 0 9.63 2 0.19
comp-MCP MSVM 36.87 0.42 12.23 15 0.32

comp-MCP MPSVM 47.77 0 11.94 24 0.19

Bayes rule 72 0 4 100 0.11
aEntries in this column have standard errors in the range of 0.001 to 0.007.

The supSCAD focuses on the group-level selection and it does not imposes penalty at the
individual level. By design, this example has important variables with zero coefficients for certain
classes, which favors the bi-level selection procedures such as the comp-MCP most. However,
supSCAD LR still gave satisfactory results. The top half of Table 3 shows that both comp-MCP
and supSCAD LR did the perfect job in model selection. Besides getting the lowest test error as
the Bayes rule, the comp-MCP LR also identified most correct zeros in the first four important
variables. In the bottom half, the comp-MCP MPSVM had the smallest test error and the largest
frequency of selecting the correct model.

Example 3 (High-dimensional classification). We consider a similar example to Example 1 in
Zhang and Liu (2014). A three-class dataset was generated with P(Y = k) = 1/3, and X|Y =
k ∼ N(μk, σ

2I2) for k = 1, 2, 3, where the first two covariates of μks were equally distributed on
the unit circle specifically are (cos(π/3), sin(π/3)), (cos(π), sin(π)), and (cos(5π/3), sin(5π/3)),
respectively, and the remaining 198 covariates were i.i.d. noise generated from N(0, 0.5). The
error variance σ 2 was chosen to have the Bayes error= 0.1. We had n = 200 and n′ = 40, 000.

Table 4 shows that all the penalized LR methods did very well in class prediction. In
particular, the supSCAD LR distinguished the two important predictors from the other 198
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Table 4: Summary and comparison of simulation results in Example 3.

Method Correct Incorrect Model Correct Testing
Zeros Zeros Size Model Errora

L1 LR 594.61 2.00 2.39 78 0.10
GroupL1 LR 591.65 0 2.79 48 0.10
supSCAD LR 594 0 2.00 100 0.10

comp-MCP LR 594.47 0 2.09 91 0.10

L2 MSVM 0 0 200 0 0.36
L1 MSVM 563.48 0 16.71 22 0.12

supSCAD MSVM 589.05 0 4.39 60 0.11
supSCAD MPSVM 569.51 0 13.7 32 0.11
comp-MCP MSVM 579.59 0 8.82 2 0.12

comp-MCP MPSVM 574.98 0 11.12 87 0.11

Bayes rule 595 0 2 100 0.10
aEntries in this column have standard errors in the range of 0.001 to 0.003.

noise variables each time. Although the comp-MCP LR selected the correct model with a slightly
lower frequency, it had larger Correct Zero numbers since it identified the zero coefficient of
the second important predictor in the second class sometimes. In this example, the L1 LR
method outperformed the GroupL1 LR in model selection, however it was the only method
that had non-zero “Incorrect Zeros”, i.e., it missed some important predictions occasionally. In
high-dimensional settings, the benefit of penalization became more obvious. Additionally, the
composite-MCP seemed to perform unstably with MSVM and MPSVM in terms of variable
selection. A possible explanation is that there are two tuning parameters involved and it is
difficult to tune these parameters precisely altogether.

6 Real Data Applications
We consider two real data examples: the Small Round Blue Cell Tumors data set and the Semeion
Handwritten Digit data set.

Small Round Blue Cell Tumors (SRBCTs) SRBCTs in childhood can be categorized into
4 classes: neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL), and
the Ewing family of tumors (EWS) (Khan et al., 2001), and Burkitt lymphoma (BL) is a subset
of NHL. The SRBCTs data set is a cDNA microarray data with 63 training samples and 20
independent test samples. The four tumor class distributions in the training and test sets are
given in Table 5. After filtering, the expression of 2308 genes out of 6567 genes are given at
http://research.nhgri.nih.gov/microarray/Supplement/.

Before applying any classification method, we first standardize the data set based on gene
expression means and standard deviations from the training set. Therefore, the gene expressions
in training have mean zero and standard deviation one. Next, we rank all the genes based
on their marginal separation power in the training set (Dudoit et al., 2002). Specifically, the
relevance measure for gene g is defined to be the ratio of the between-class sum of squares to the

http://research.nhgri.nih.gov/microarray/Supplement/
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Table 5: Class distribution of the SRBCTs data.
Dataset NB RMS BL EWS Total

Training 12 20 8 23 63
Test 6 5 3 6 20

Table 6: Classification results for two real datasets.
Method L1 LR GroupL1 LR supSCAD LR comp-MCP LR L2 MSVM

SRBCT 0 0.05 0 0 0
Semeion 0.37 0.35 0.11 0.12 0.20

Method L1 MSVM supSCAD MSVM supSCAD MPSVM comp-MCP MSVM comp-MCP MPSVM

SRBCT 0.05 0.10 0.05 0.05 0.05
Semeion 0.27 0.25 0.19 0.27 0.19

Table 7: Class distribution of Semeion Handwritten Digit data.

Dataset 0 1 2 3 4 5 6 7 8 9 Total

Training 135 135 130 130 135 130 135 130 130 130 1320
Test 26 27 29 29 26 29 26 28 25 28 273

within-class sum of squares as follows: R(g) =
∑n

i=1
∑K

k=1 I (yi=k)(x̄
(k)
.g −x̄.g)2∑n

i=1
∑K

k=1 I (yi=k)(xig−x̄
(k)
.g )2

, where n is the size of the
training set, x̄(k)

.g denotes the average expression level of gene g for class k observations, and x̄.g

is the overall mean expression level of gene g in the training set. We then select the top 100 and
bottom 100 genes as the prediction covariates according to their relevance measure R values.

We apply the four penalized logistic regression approaches and six MSVMs to the training
data of 200 genes and 63 training samples. Leave-one-out cross validation is used to select the
optimal tuning parameter, and then the trained models are used to predict the class labels for 20
test samples. Results are summarized and compared in the first row of Table 6. It is observed that
the LR-based methods have overall better classification accuracy than the SVM-based methods
for this data set, and the L1 LR, supSCAD LR, and the comp-MCP LR methods all have the
test error zero.

Semeion Handwritten Digit Data This data set is available from the University of Cali-
fornia Irvine machine learning repository website. It consists of 1593 handwritten digits (0–9),
each of which was scanned and stretched in a square box 16 × 16 in a gray scale of 256 values
(i.e. 256 attributes). Then each pixel of each image was scaled into a Boolean (1/0) value of a
fixed threshold. The whole data set is roughly equally distributed among the 10 classes. We split
the data into six groups with roughly equal size and class distribution, with one group used for
testing and the remaining five groups used for training. We performed 5-fold CV to select the
best tuning parameter. The class distributions of the training and testing sets are summarized
in Table 7, and the classification results are the second row of Table 6. For this data set, the
supSCAD LR gives the lowest classification error 0.11.
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7 Discussion
In this paper, we propose and study a new class of regularization methods for variable selection
in multiclass classification problems. This new penalty, supSCAD, enhances sparse learning in
multi-classification by retaining the merits from both SCAD and supnorm penalties. It can
incorporate the natural group effects of the coefficients associated with the same covariate to
construct more parsimonious classifiers with desired oracle properties.

To tackle the numerical challenge of non-differentiability and non-convexity of the objective
function, we have proposed an efficient iterative algorithm based on the local linear approxima-
tion (LLA) and DCA. For multiclass probability estimation, supSCAD is applied to multinomial
logistic regression to conduct variable selection and conditional probability estimation simulta-
neously. An optimization procedure involving quadratic approximation to the multinomial log-
likelihood function and nested DCA/LLA for the supSCAD penalty is developed and evaluated
by numeric experiments. We further extend the penalty to the multi-category SVM framework
and develop supSCAD MSVM/MPSVM, which demonstrate competitive performance compared
to other regularized MSVM in simulated and real data examples.

The major underlying assumption of the supSCAD penalty is that the covariates across dif-
ferent classes can be naturally grouped for each predictor. Though this assumption may not hold
for very complex problems, we find that it can still achieve reasonably good results even when the
assumption is violated. For further improvement, our supSCAD penalty can be easily extended
to incorporate within-group sparsity structure by imposing additional penalty on individual coef-
ficients, such as LASSO or adaptive LASSO penalty, e.g.,

∑d
j=1 Jλ(‖β(j)‖∞)+λc

∑K
k=1

∑d
j=1 |βkj |.

However, choosing the extra tuning parameter λc may cause additional computation cost. Its
theoretical and computational properties are interesting for investigation in future work.

Supplementary Material
A zip file includes all the computation code and data for the numerical experiments is available.

Appendix
Before presenting proofs of the theorems, we first state some regularity conditions, which mostly
follow Fan et al. (2004). The reparametrized multinomial log-likelihood L̃ and its associated true
parameter vector β� are defined in (7) and (8).

Regularity Conditions

1. The observations (xi , yi), i = 1, . . . , n, are i.i.d. with multinomial distribution (π1, . . . , πK),
1 > πk > 0,

∑K
k=1 πk = 1.

2. The Fisher information matrix I (β) = E{( ∂L̃
∂β

)( ∂L̃
∂β

)T } is finite and positive definite at β = β�

for all n observations. For j, k = 1, 2, . . . , d,

E

{(
∂L̃
∂βj

)(
∂L̃
∂βk

)}2

< C1 < ∞

and

E

{(
∂L̃2

∂βj∂βk

)}2

< C2 < ∞.



70 Li, N. and Zhang, H.H.

3. There is a sufficient large enough open set w that contains β� such that for almost all n

observations the density admits all third derivatives ∂L̃
∂βj βkβl

for all β� ∈ w, and∣∣∣∣ ∂L̃3

∂βkj∂βk1j1∂βk2j2

∣∣∣∣ � M(x) < ∞

and
Eβ�

[
M(x)

]
< ∞

for all n, k, j , k1, j1, k2, j2.
4. Let the first sn values of β be nonzero, and the rest dn − sn values be zero. Then the

β1, β2, . . . , βs satisfy
min

1�j�sn
|βj |/λ → ∞ as n → ∞.

Proof of Theorem 1
Proof. To prove Theorem 1, it is enough to show that for any given ε > 0, there exists a large
enough constant C such that

P
{

inf||u||=C
R̃
(
β� + u

√
dn/n

)
> R̃

(
β�
)}

� 1 − ε, (�)

which implies that, with probability at least 1 − ε, there exists a local minimum in the ball
{β� + u

√
dn/n : ||u|| � C}. This in turn implies that there exists a local minimizer such that

‖β̂ − β�‖ = Op(
√

dn/n), which is exactly what we want to show. Notice that

R̃
(
β� + u

√
dn/n

) − R̃
(
β�
)

� −(
L̃
(
β� + u

√
dn/n

) − L̃
(
β�
))

+ n

s∑
j=1

[
Jλn

(
max

{∣∣∣∣β�
1j + u1j

√
dn√

n

∣∣∣∣,
∣∣∣∣β�

2j + u2j

√
dn√

n

∣∣∣∣, . . . ,
∣∣∣∣β�

(K−1),j + uK−1,j

√
dn√

n

∣∣∣∣,
∣∣∣∣
K−1∑
l=1

(
β�

lj + ulj

√
dn√

n

)∣∣∣∣
})

− Jλn

(
max

{∣∣β�
1j

∣∣, ∣∣β�
2j

∣∣, . . . , ∣∣β�
(K−1),j

∣∣, ∣∣∣∣
K−1∑
l=1

β�
lj

∣∣∣∣
})]

following the proof in Fan et al. (2004)

= −L̃′(
β�
)T u

√
dn√
n

+ dn

2
uT I

(
β�
)
u
{
1 + op(1)

} + D3 = D1 + D2 + D3

Note that L̃′
(β�)T = Op(

√
dnn), thus D2 is asymptotic positive and it dominates D1 by choosing

a sufficiently large C. Since the supSCAD penalty is flat for coefficients of magnitude larger than
aλn as n → ∞,

D3 = n

sn∑
j=1

[
Jλn

(
max

{∣∣∣∣β�
1j + u1j√

n

∣∣∣∣,
∣∣∣∣β�

2j + u2j√
n

∣∣∣∣, . . . ,
∣∣∣∣β�

(K−1),j + uK−1,j√
n

∣∣∣∣,
∣∣∣∣
K−1∑
l=1

(
β�

lj + ulj√
n

)∣∣∣∣
})

− Jλn

(
max

{∣∣β�
1j

∣∣, ∣∣β�
2j

∣∣, . . . , ∣∣β�
(K−1),j

∣∣, ∣∣∣∣
K−1∑
l=1

β�
lj

∣∣∣∣
})]

= 0.

Based on the above, R̃(β�+u
√

dn/n)−R̃(β�) is dominated by D2. Hence, by choosing a sufficient
large C (�) holds.
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Proof of Lemma 1
Proof. As long as the max{|β1j |, |β2j |, . . . , |βK−1,j |, |∑K−1

m=1 βmj |} is zero, then each component in
{|β1j |, |β2j |, . . . , |βK−1,j |, |∑K−1

m=1 βmj |} is zero.
It is sufficient to show that with probability tending to 1 as n → ∞, for any β+ satisfying

||β+ − β�
+|| = Op(

√
dn/n) and any constant C, for j = sn + 1, . . . , d,

∂R̃(β)

∂βr
kj

> 0, for 0 � βkj � C
√

dn/n and βkj = max

{
|β1j |, |β2j |, . . . , |βK−1,j |,

∣∣∣∣
K−1∑
m=1

βmj

∣∣∣∣
}

∂R̃(β)

∂βl
kj

< 0, for − C
√

dn/n � βkj � 0 and βkj = − max

{
|β1j |, |β2j |, . . . , |βK−1,j |,

∣∣∣∣
K−1∑
m=1

βmj

∣∣∣∣
}

where ∂R̃
∂βr

kj
and ∂R̃

∂βl
kj

denote the right and left hand partial derivative respectively.

∂R̃

∂βkj

= − ∂L̃
∂βkj

+ nJ ′
λn

(|βkj |)sgn(βkj ) when |βkj | = max

{
|β1j |, |β2j |, . . . , |βK−1,j |,

∣∣∣∣
K−1∑
m=1

βmj

∣∣∣∣
}

By Taylor expansion,

∂L̃(β)

∂βkj

= ∂L̃(β�)

∂βkj

+
d∑

j1=1

K−1∑
k1=1

∂2L̃(β�)

∂βkj∂βk1j1

(
βk1j1 − β�

k1j1

)

+
dn∑

j1=1

K−1∑
k1=1

dn∑
j2=1

K−1∑
k2=1

∂3L̃(β∗)
∂βkj∂βk1j1∂βk2j2

(
βk1j1 − β�

k1j1

)(
βk2j2 − β�

k2j2

)

where β∗ lies between β and β�. Note that ∂L̃(β�)

∂βkj
= Op(

√
dnn) and 1

n

∂2L̃(β�)

∂βkj ∂βk1j1
= E{ ∂2L̃(β�)

∂βkj ∂βk1j1
} +

op(1). We have

∂R̃(β)

∂βr
kj

= nλn

{
Op(

√
dn/n/λn) + J ′

λn
(|βkj |)
λn

}
if βkj > 0

∂R̃(β)

∂βl
kj

= nλn

{
Op(

√
dn/n/λn) − J ′

λn
(|βkj |)
λn

}
if βkj < 0

In both cases, the second term dominates the first term.
If |κj | = |∑K−1

m=1 βmj | = max{|β1j |, |β2j |, . . . , |βK−1,j |, |∑K−1
m=1 βmj |}, then

∂R̃

∂κj

= − ∂L̃
∂βkj

∂βkj

∂κj

+ nJ ′
λn

(|κj |)sgn(κj ) = − ∂L̃
∂κj

+ nJ ′
λn

(|κj |)sgn(κj ).

Therefore,

∂R̃(β)

∂κr
j

= nλn

{
Op(

√
dn/n/λn) + J ′

λn
(|κj |)
λn

}
if κj > 0

∂R̃(β)

∂κl
j

= nλn

{
Op(

√
dn/n/λn) − J ′

λn
(|κj |)
λn

}
if κj < 0

The second term still dominates the first term. Thus the result of Lemma 1 follows.
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Proof of Theorem 2

Proof. Part 1 holds by Lemma 1. For Part 2

λn � a−1 max
1�j�s

max

{
|β1j |, |β2j |, . . . , |βK−1,j |,

∣∣∣∣
K−1∑
m=1

βmj

∣∣∣∣
}

⇒ max
1�j�s

max

{
|β1j |, |β2j |, . . . , |βK−1,j |,

∣∣∣∣
K−1∑
m=1

βmj

∣∣∣∣
}
� aλn

⇒ Jλn

(
max

{
|β1j |, |β2j |, . . . , |βK−1,j |,

∣∣∣∣
K−1∑
m=1

βmj

∣∣∣∣
})

= Jλn
(aλn) = (a + 1)2λ2

n

2
.

Therefore arg min R̃(β) = arg min −L̃(β). The desired result follows.

Algorithm 1 for supSCAD multinomial logistic regression
Algorithm 1
Initialize β(0).
for (t = 0 to MaxIteration)
Compute Q(β(t)) in (9).
Use DCA/LLA to solve the problem (10); denote the solution by β(t+1).
Evaluate the objective function given in (7) at β(t+1).
if (the stopping criterion is satisfied), Break; end
end

Algorithm 2 for supSCAD MSVM

1. Initialization: β
(0)
0 = 0, β(0) = 0, ξ (0) = 0, η(0) = 0, t = 0.

2. Repeat: solve β
(t+1)
0 , β(t+1), ξ (t+1), and η(t+1) from (13), t = t + 1.

3. Stop: β
(t+1)
0 and β(t+1) meet the rule of convergence.

Computation formula

Similarly, we can use the DCA/LLA approximation to compute supSCAD MPSVM by solving
a series of quadratic programming (QP) problems:

DCA min
β0,β,ξ ,η

1

n

n∑
i=1

K∑
k=1

δik

[
βk0 + βT

k xi + 1
]2 + λ

d∑
j=1

ηj −
d∑

j=1

J ′
λ,2

(
η

(t)
j

)(
ηj − η

(t)
j

)

LLA min
β0,β,ξ ,η

1

n

n∑
i=1

K∑
k=1

δik

[
βk0 + βT

k xi + 1
]2 +

d∑
j=1

J ′
λ

(
η

(t)
j

)· ηj

subject to
K∑

k=1

βk0 = 0,

K∑
k=1

βkj = 0, j = 1, . . . , d,

β(j) � ηj1K, −β(j) � ηj1K, j = 1, . . . , d.
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