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Before presenting the proofs of the theorems, we first state some regularity conditions,
which mostly follow Fan and peng (2004). The reparameterized multinomial log-likelihood

£ and its associated true parameter vector 3* are defined in (7) and (8).

1 Regularity Conditions

1. The observations (x;,v;), @ = 1,...,n, are i.i.d. with multinomial distribution

(7T1,...,7TK), 1 >7Tk>0,2£<:171'k:1.

2. The Fisher information matrix I(3) = E{(g—g)(%)T} is finite and positive definite

at 3 = B* for all n observations. For j,k =1,2,...,d,

and )
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3. There is a sufficient large enough open set w that contains 3* such that for almost

all n observations the density admits all third deravatives % for all 8 € w, and
oL’
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’aﬁkjaﬁkm@ﬁkml (x)



and

Eg [M(x)] < 00

for all n, k, 7, k1, J1, ko, Jo.

4. Let the first s values of B be nonzero, an the rest of d,, — s,, values be zero. Then the

B, B2, ..., Bs satisfy

 in. |Bi|/A — 00 as n — 0.

2 Proof of Theorem 1

To prove Theorem 1, it is enough to show that for any given £ > 0, there exists a large
enough constant C' such that

P{ inf R(B*+u\/d/n)> R(B*)} >1—c¢, (%)

|luf[=C

which implies that with probability at least 1 — ¢ there exists a local minimum in the ball
{B*+u\/d/n : ||u|| < C}. This in turn implies that there exists a local minimizer such

that |3 — B*|| = O,(+/d/n), which is exactly what we want to show.



Notice that

R(B* +uy/dy/n) = R(B") = —(L(B" +uv/d,/n) — L(B"))
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follow the proof in Fan and Peng (2004)
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Note that £'(8*)" = O,(v/d,n), thus D, is asymptotic positive and dominates D; by choos-
ing a sufficiently large C'. Since the supSCAD penalty is flat for coefficients of magnitude

larger than a), as n — oo,
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Based on the above, R(8* + uy/d,/n) — R(B*) is dominated by D,. Hence, by choosing a
sufficient large C' (%) holds.



3 Proof of Lemma 1

As long as the max{|5;l, |52l - - -, [Br—1,], |Z ! Bumjl} is zero, then each component in

K—1 .
B, 182l -5 1B 1,41, [ 2o =1 B} 18 zero.
It is sufficient to show that with probability tending to 1 as n — oo, for any 3, satisfying

18, — B%|| = Op(y/dn/n) and any constant C, for j = s, +1,...,4d,
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where aﬁk and d /3 denote the right and left hand partial derivative respectively.
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In both cases, the second term dominates the first term.



If ] = | o821 Bl = max{|Bu, B2l - - - 1Bre—15s | i —] Byl }, then
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The second term still dominates the first term. Thus the result of Lemma 1 follows.

4 Proof of Theorem 2

Proof: Part 1 holds by lemma 1. For Part 2
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Therefore arg min R(3) = arg min —£(8). The desired result follows.



5 Algorithm 1 for supSCAD multinomial logistic re-

gression

Algorithm 1

Initialize 3.

for (t = 0 to MaxIteration)

Compute Q(B") in (9).

Use DCA/LLA to solve the problem (10); denote the solution by g+,
Evaluate the objective function given in (7) at "+Y,

if (the stopping criterion is satisfied), Break;

end

end

6 Algorithm 2 for supSCAD Multicategory Support

Vector Machine

First we introduce a set of slack variables

O = I(y; # k) and & = [Bro + BExs + 14, fori=1,...,n, k=1,..., K,

ny = Hﬁ(j)Hoo = kirllf.l.iil{‘ﬂkj" forj=1,...,d,

and new constraints |fg;| < n;, for k =1,...,K,j = 1,...,d. Then applying DCA and

LLA, the non-convex minimization supSCAD MSVM can be solved via a sequence of LP



problems;,
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e > Bro+Bixi +1,6,>0,i=1,...,nand k=1,..., K
By < nilk, =By <milk,j=1,...,d.

Algorithm 2:

1. Initialization: 8" = 0,8 =0,6® =0,7® =0,t = 0.

2. Repeat: solve ﬂét+1),,8(t+1),£(t+1), and n*Y) from (1),t=1t+1.

3. Stop: ,Bgﬂ) and ,B(tH) meet the rule of convergence.

7 Algorithm for supSCAD MPSVM

Similarly, we can use DCA/LLA to supSCAD MPSVM by solving a series of QP problems:
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k=1
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B(j) < njlg, _/B(j) <nilg,j=1,....d
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