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Monitoring the SARS Epidemic in China:
A Time Series Analysis
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Abstract: In this article, we studied three types of time series analysis
methods in modeling and forecasting the severe acute respiratory syndrome
(SARS) epidemic in mainland China. The first model was a Box-Jenkins
model, autoregressive model with order 1 (AR(1)). The second model was a
random walk (ARIMA(0,1,0)) model on the log transformed daily reported
SARS cases and the third one was a combination of growth curve fitting
and autoregressive moving average model, ARMA(1,1). We applied all these
three methods to monitor the dynamic of SARS in China based on the daily
probable new cases reported by the Ministry of Health of China.
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1. Introduction

Since the sudden epidemic of severe acute respiratory syndrome (SARS) in
Guangdong, China in November 2002, this infectious disease has infected more
than 8000 people worldwide by the end of May 2003 and about 2/3 of these cases
were in mainland China (WHO 2003). SARS was called atypical pneumonia in
China due to its unknown etiology initially. The name, a typical pneumonia, has
still been used in China in most publications in Chinese because of the conve-
nience and consistency although it was officially named as SARS by the World
Health Organization (WHO) in March 2003.

SARS is a highly infectious disease with relatively high mortality (about 10%)
and possible severe damage to organs in the survivors of the disease. After a
few months in Guangdong, the disease found its way to the capital, Beijing,
and other places in China. Later, it crossed the boarder of mainland China
to Guangdong’s neighbor, Hong Kong, in March 2003. Hong Kong, a special
administration region of China, has a very high population density and it is also
a highly internationalized city. Following the outbreak of the disease in Hong
Kong, SARS has infected more than 30 countries/regions worldwide according to
WHO’s report (WHO 2003) since March 2003. The virus that causes SARS was
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identified as a novel coronavirus in March 2003 and confirmed by WHO in April
by the intensive and rapid work of many scientists around the world (Drosten et
al. 2003; Ksiazek et al. 2003; Peiris et al. 2003). The papers on the genome
sequence of the SARS virus were published in Science (Rota et al. 2003; Marra et
al. 2003). The discovery of the main proteinase structure of the novel coronavirus
may be useful for developing anti-SARS drugs (Anand et al. 2003).

At present, there is no effective drug to cure the disease and the vaccine
against the disease has yet to be developed. Hence, SARS poses a great threat to
the global public health of human beings and may lead to a possible devastating
impact to world’s economic and development. Although the seriousness of the
epidemic of SARS was not initially recognized by some Chinese officials, the
World Health Organization pressured Chinese government for more information
and issued travel warning to many places in China since March 2003 (WHO
2003). In the middle of April 2003, the Chinese government removed a few high
ranking officials who failed to actively lead the efforts for curbing the spread
of SARS. Since then, various agencies in China have engaged in extraordinary
efforts to stop the spread of the disease. In so doing, large number of people were
quarantined due to possible contacts with probable or suspected SARS patients.
Quarantining a large number of people is an enormous task for any government.
It requires a large amount of resource and results a great loss of productivity
in many business sectors in addition to the abnormal life of the people under
quarantine. One important issue for the policy makers in planning the efforts in
controlling SARS would be the possible future number of SARS cases.

Using data from Hong Kong, Singapore and Canada, the epidemic and the
transmission dynamics of SARS were studied (Riley et al. 2003; Lipsitch et al.
2003; Chau and Yip 2003; Choi and Pak 2003). Mathematical dynamical models
were also used for simulating the SARS outbreak in Beijing (Wang and Ruan
2004). However, there seems a lack of statistical analysis on the data from China
in the literature. In our study, we used the data from China and compared three
popular statistical models for forecasting. The first model was a Box-Jenkins
model, autoregressive model with order 1 (AR(1)). The second model was a
random walk (ARIMA(0,1,0)) model on the log transformed daily new reported
SARS cases and the third one was a combination of growth curve fitting and
autoregressive moving average model, ARMA(1,1). Due to limited number and
nonstationarity of the data, a direct use of ARMA seems not appropriated. These
validity issues of the models are discussed in the last section of this article.

We tried all three models on the officially reported SARS cases in mainland
China since day 22 (May 12) after April 21. For an illustration, we presented
the results up to day 30 (May 20) in this article. For a comparison, we also
tabulated the one day ahead forecasts, their 95% confidence intervals and the
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actual observations in Tables 1, 2 and 3 by these three models, respectively.
Figures 1, 3 and 5 showed the forecasting values.

2. Data Source

It seemed that the first SARS patient was able to be traced back in November
2002 in Guangdong, China. Due to a lack of an effective public health surveillance
system in China for new diseases and a lack of understanding of the potential
threat to the general public at that time, the disease was not acknowledged as
serious as it should be by Chinese authorities. Nevertheless, the disease spread
rapidly. According to various news reports, the number of SARS cases in Guang-
dong peaked around the Spring Festival in February 2003. The government tried
to calm down the general public by not recognizing the seriousness of SARS.
Later, the disease spread to the capital, Beijing, and the neighboring region of
Hong Kong, then to other countries by air travelers. In March 2003, SARS in-
fected and killed a WHO doctor who treated a SARS patient in Vietnam. On
March 12, WHO issued an emergency travel advisory to several affected areas.
The travel advisory guidelines have been issued and modified accordingly since
then. By May 27, many places were removed from the list of considering postpon-
ing all but essential travel. These places included Guangdong and Hong Kong.
A great progress of controlling SARS have been achieved. There have been very
few new SARS cases in China since June 1, 2003. By August 16, 2003, the last
two SARS patients in the 2003 epidemic were released from the hospital in Bei-
jing. Since the end of the 2003 epidemic of SARS, there were a few SARS cases
occurred in Guangzhou in December 2003. In late March and mid April of 2004,
two researchers at the National Institute of Virology developed SARS. Because
of the effective control, the isolated SARS cases in December 2003 in Guangzhou
and in April 2004 in Beijing did not start another SARS epidemic in China.

Prior to April 21, 2003, there was no systematical publicly available daily
number of SARS cases in China. Starting from April 21, 2003, the daily reporting
of SARS was published on the official website of the Ministry of Health of China1.
Around that time, the number of newly infected cases increased dramatically
in the capital, Beijing, while new cases in Guangdong province decreased. We
followed the daily reports closely. The time series of the SARS cases modeled
in this article were extracted from the official reports of the Ministry of Health
of China up to May 31 , 2003 (MOHC 2003). The number of daily reported
new probable SARS cases in China is presented in Figure 1. From Figure 1,
one can clearly see that in the first 19 days following April 21, 2003 the daily
reported new SARS cases were all greater than 100. Most of these cases must

1See, http://www.moh.gov.cn/zhgl/yqfb/index.htm.
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have been infected before April 21 because the strict quarantine policy, the close
of schools and the ban of large public gatherings after April 21 could effectively
stop the rapid spread of SARS. Due to these strong interventions in Beijing and
across China starting in the middle of April, the daily new SARS cases decreased
dramatically from May 10 to May 15. From May 16 to May 25, the daily new
probable SARS cases remained relatively low. Since May 26, the number of new
daily SARS cases has been less than 10. In June, the number of daily SARS case
has been mostly below 5. To statistically quantify the dynamic of the infections
of SARS and forecast the new cases of infections, we used and compared three
time series models since May 12, 2003 (day 22) almost daily up to the end of
May. In this article we report our findings of our modeling on the SARS time
series.
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Figure 1: The daily new SARS cases in mainland China from April 21 to June
3, 2003 and the one-day ahead forecast and its 95% confidence interval based
on AR(1) model for the daily new SARS cases in mainland China from May
12 to May 31, 2003.

3. Box-Jenkins Modeling

Box-Jenkins methods (Box and Jenkins 1976) are well established techniques
for analyzing stationary linear time series. From Figure 1, the dynamic of the
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Table 1: The Estimates of the parameters in the Box-Jenkins model and the
forecasting of the daily new SARS cases: α̂1 the estimate of the coefficient in
AR(1), µ̂ the estimate of the mean, σ̂ the estimate of the standard deviation
of the innovation in AR(1), (a) nne-day ahead forecast, (b) the 95% confidence
interval of the one-day ahead forecast, (c) actual one-day ahead observation

Day α̂1 µ̂ σ̂ (a) (b) (c)
22 0.8238 152.1 23.88 89 (42,135) 80
23 0.8351 149.0 23.28 91 (46,137) 55
24 0.8921 145.0 23.74 65 (18,111) 52
25 0.9069 141.3 23.27 60 (15,106) 39
26 0.9323 137.4 23.08 46 (1,91) 28
27 0.9499 133.3 22.80 33 (0,78) 28
28 0.9492 129.6 22.35 33 (0,77) 12
29 0.9662 125.5 22.23 16 (0,59) 17
30 0.9584 121.9 21.80 21 (0,64) 12
31 0.9616 118.4 21.46 16 (0,58) 26
32 0.9490 115.5 21.14 31 (0,72) 20
33 0.9525 112.6 20.86 24 (0,65) 34
34 0.9434 110.3 20.57 38 (0,79) 16
35 0.9520 107.6 20.58 20 (0,61) 8
36 0.9562 104.8 20.35 12 (0,52) 9
37 0.9552 102.2 20.05 13 (0,52) 4
38 0.9574 99.6 19.80 8 (0,47) 3
39 0.9575 97.2 19.53 7 (0,45) 7
40 0.9554 94.9 19.25 11 (0,49) 1
41 0.9576 92.6 19.05 5 (0,42) 2

daily new SARS cases in China seemed not stationary. To recognize the non-
stationary features of the daily observations of the SARS cases in China, one
could create an indicator variable (deterministic trend) and fit it to the observa-
tions. In Section 5, we discuss such approach via growth curve fitting. Alterna-
tively, one may assume that the trend was due to stochasticity and use difference
to remove the trend. We discuss this approach in Section 4 on log scale. In
current section, we report the results from the plain ARMA(p, q) model:

Yt − µ =
p∑

i=1

αi(Yt−i − µ) + Zt +
q∑

j=1

βjZt−j , (3.1)

where Yt is the number of daily new SARS cases at day t, µ is the mean and Zt

is white noise with mean zero and variance σ2.
Using the first 30 observations, we computed the sample autocorrelation co-

efficients (ACF) and the sample partial autocorrelation coefficients (PACF). The
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ACF and PACF showed the process had a strong autocorrelation of lag one and
a significant partial autocorrelation of lag one. These features in ACF and PACF
indicated an ARMA(1,0) (AR(1)) may be applicable. Similar results were also
true for the number of daily new cases at different lengths. These plots are not
shown in the paper and they are available up on request from the author.

After fitting equation (3.1) by maximal likelihood method via S-plus based
on the first 30 observations, we got α̂1=0.9584 with standard deviation 0.0028,
after removing the mean from the time series. The estimate of coefficient α1

was significantly different from zero with p-value < 0.0001. A more meaningful
test would be Dickey-Fuller test on unit root (Fuller 1976), which led to models
in next section since the test showed that the estimated coefficients were not
significant different from 1 (Fuller 1976). Similar autocorrelation structure was
found for the log transformed SARS time series. Using the AR(1) model on the
SARS time series, we can forecast the number of SARS cases at k days ahead.
For example, for a one-day ahead forecasting, we obtained the mean value 21
with standard deviation 22. Hence, the 95% confidence interval would be (0, 64).
The lower bound would be negative from the computation, which was replaced
by 0. Results from models on observations with different lengths are tabulated
in Table 1. The one day ahead forecasting since day 22 are shown in Figure 1.

4. Random Walk

In Section 3, we assumed that the observed daily new SARS cases were sta-
tionary and we fitted AR(1) model to the demeaned time series. The mean value
of the one day ahead forecasting seemed reasonable. However, the standard de-
viation estimated from the process was relatively large and resulted nonpositive
lower bound for the 95% confidence intervals for many one day ahead projections
(Table 1). The large values of the estimates of the standard deviations were
mostly due to the great variation at the beginning of the daily time series of the
SARS cases. One popular way to stabilize the variation is to take log transforma-
tion of the time series. The log tranformed time series of the first 30 observations
are shown in Figure 2(a).

From Figure 2(a), one can see that the trend persists. In this section, we
assumed the trend was resulted from nonstationary process. Differencing the time
series is an effective way to remove a stochastic trend. That is, we let Xt=log Yt-
log Yt−1. This first order difference could remove the linear trend. Figure 2(b) is
the plot of Xt. The sample autocorrelation and the sample partial autocorrelation
coefficients are plotted in Figure 2(c) and Figure 2(d), respectively. These two
plots of ACF and PACF showed that Xt was not serially correlated. Hence, we
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may use a simple ARIMA(0,1,0) (random walk) model for log Yt:

log Yt = log Yt−1 + µ + Zt, (4.1)
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Figure 2: (a) The log-transformed daily new SARS cases in mainland China
from April 21 to May 20, 2003, (b) the first order differences of the log-
transformed time series, (c) the sample autocorrelation coefficients, (d) the
Sample partial autocorrelation coefficients.

where Zt is a white noise with mean zero and variance σ2 and Xt=µ+Zt. This
random walk model has been widely used in many diversified fields such as in
modeling financial markets (Tsay 2002) and monitoring clinical trials (Lan and
Wittes 1988). Using model (4.1), we can construct a k day ahead prediction of
log Yt and its 95% confidence intervals. Equivalently, the prediction of Yt and
its 95% confidence intervals. For example, for a one day ahead forecasting for
log Yt+1 at day t + 1, the 95% confidences interval would be

(log Yt + µt − 1.96σt log Yt + µt + 1.96σt),

where σt is the sample standard deviation of Zt up to day t. From our calculation,
at day 30, µ̂30=-0.0840, σ̂30=0.2374 and the one day ahead prediction was 16 with
the 95% confidence interval (10,25). The 95% confidence intervals of the one day
ahead forecasting are shown in Figure 3 for days after May 12 (day 22). The
numerical results are tabulated in Table 2.
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Table 2: The estimates of the parameters in the log-transformed random walk
model and the forecasting of the daily new SARS cases: µ̂ the estimate of the
mean in the log scale, σ̂ the estimate of the standard deviation of the innovation
in log scale, (a) one-day ahead forecast, (b) the 95% confidence interval of the
one-day ahead forecast, (c) actual one-day ahead observation.

Day µ̂ σ̂ (a) (b) (c)

22 -0.0453 0.1673 72 (52,99) 80
23 -0.0403 0.1649 77 (56,106) 55
24 -0.0548 0.1756 52 (37,73) 52
25 -0.0548 0.1717 49 (35,69) 39
26 -0.0642 0.1744 37 (26,51) 28
27 -0.0744 0.1787 26 (18,37) 28
28 -0.0717 0.1759 26 (18,37) 12
29 -0.0993 0.2264 11 (7,17) 17
30 -0.0840 0.2374 16 (10,25) 12
31 -0.0928 0.2382 11 (7,17) 26
32 -0.0648 0.2811 24 (14,42) 20
33 -0.0710 0.2787 19 (11,32) 34
34 -0.0528 0.2937 32 (18,57) 16
35 -0.0734 0.3132 15 (8,27) 8
36 -0.0910 0.3258 7 (4,14) 9
37 -0.0852 0.3230 8 (4,16) 4
38 -0.1049 0.3401 4 (2,7) 3
39 -0.1097 0.3368 3 (1,5) 7
40 -0.0852 0.3660 6 (3,13) 1
41 -0.1317 0.4659 1 (0,2) 2
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Figure 3: The One-day Ahead Forecast and Its 95% Confidence Interval Based
on the Random Walk Model for the Daily New SARS Cases in Mainland China
from May 12 to May 31, 2003.
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5. Growth Curve

In sections 3 and 4, the dynamic of the daily SARS cases in China was assumed
to be stochastic. As it was mentioned in section 3, one would fit a deterministic
trend to the time series such as Yt = f(t) + Zt, where f(t) might be a linear or
nonlinear function. Taking into account the changing rate (daily new cases) of
infection, a growth model on the cumulative case would be a good choice. Growth
models have been used widely in many fields. (Wiorkowski 1981; Sandland and
McGilchrist 1979).
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Figure 4: (a)The Fitted Growth Curve to the Cumulative SARS Cases in Main-
land China from April 21 to May 20, 2003, (b) the Residuals of the Observed
Values to the Fitted Model, (c) the Sample Autocorrelation Coefficients of the
Residuals, (d) the Sample Partial Autocorrelation Coefficients of the Residuals.

When the trend was assumed to follow a parametric function, we can use
regression techniques to estimate the parameters in the function and establish
the model. For the number of SARS cases in China since April 21, we cumulated
the daily new cases up to June 3. The cumulative cases are plotted in Figure 5.
The data prior to April 21 and after May 31 were not included in our analysis.
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Table 3: The estimates of the parameters in the growth curve and the fore-
casting for the cumulative SARS cases: α̂, β̂ and κ̂ the estimates of the pa-
rameters in the growth curve, α̂1 and the β̂1 the estimates of the coefficients
in ARMA(1,1) of the residuals, σ̂ the estimate of the standard deviation of
the innovation in ARMA(1,1) of the residuals, (a) one-day ahead forecast, (b)
the 95% confidence interval of the one-day ahead forecast, (c) actual one-day
ahead observation.

Day α̂ β̂ κ̂ α̂1 β̂1 σ̂ (a) (b) (c)

22 3543 11.35 0.2300 0.7664 0.4983 18.01 3393 (3358,3428) 3426
23 3578 11.27 0.2270 0.7797 0.5110 18.23 3468 (3432,3504) 3481
24 3606 11.20 0.2245 0.7716 0.5155 17.49 3508 (3475,3542) 3533
25 3631 11.13 0.2222 0.7888 0.4947 17.39 3561 (3527,3595) 3572
26 3651 11.06 0.2204 0.7817 0.5017 16.81 3590 (3557,3623) 3600
27 3665 11.01 0.2189 0.7809 0.4923 16.35 3615 (3583,3647) 3628
28 3677 10.96 0.2177 0.7821 0.4939 16.02 3642 (3610,3673) 3640
29 3684 10.93 0.2169 0.7689 0.4926 15.61 3646 (3616,3677) 3657
30 3691 10.89 0.2162 0.7716 0.4832 15.37 3667 (3637,3697) 3669
31 3696 10.87 0.2157 0.7664 0.4839 15.04 3674 (3644,3703) 3695
32 3702 10.83 0.2150 0.7752 0.4675 15.19 3705 (3675,3734) 3715
33 3708 10.79 0.2142 0.7752 0.4814 14.93 3717 (3688,3746) 3749
34 3717 10.74 0.2131 0.8057 0.4599 15.58 3756 (3726,3787) 3765
35 3725 10.68 0.2120 0.8033 0.4721 15.25 3760 (3731,3790) 3773
36 3733 10.63 0.2111 0.8141 0.4571 15.05 3771 (3741,3800) 3782
37 3740 10.58 0.2102 0.8193 0.4620 14.84 3779 (3750,3808) 3786
38 3746 10.54 0.2094 0.8199 0.4598 14.58 3782 (3753,3810) 3789
39 3751 10.50 0.2088 0.8216 0.4585 14.37 3785 (3757,3814) 3796
40 3755 10.47 0.2082 0.8270 0.4576 14.22 3794 (3766,3822) 3797
41 3759 10.44 0.2077 0.8246 0.4579 14.00 3792 (3764,3819) 3799

The daily rate of increasing of new SARS cases was high from April 21 to May
10 before it decreased, which suggested an S-shaped parametric function. In our
analysis, we selected the autocatalytic (logistic) model (Seber and Wild 1976).
The growth function f satisfied the following condition:

df

dt
=

κ

α
f(α − f), (5.1)

where k > o and 0 < f < α. The growth function f can be solved as

f(t) =
α

1 + e−κ(t−γ)
. (5.2)

Or,
f(t) =

α

1 + βe−κt
, (5.3)
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where β = eκγ .
Using the data of the first 30 days after April 21 and non-linear least squares

method (nls function in S-plus), we got α̂=3691, β̂=10.89 and κ̂=0.2162 with
the standard deviations 26.62, 0.51 and 0.005, respectively. All the estimates
indicated that the parameters in the model were statistically different from zero
with p-values all less than 0.0001. The fitted curve and the actual observations
are shown in Figure 4(a). The residuals from the model are shown in Figure
4(b). As it is expected, the residuals from the model would be correlated. From
the residual plot, we can see that there were two outliers from the initial obser-
vations. After removing these two initial observations, we computed the sample
autocorrelation coefficients and the sample partial autocorrelation coefficients,
which are presented in Figure 4(c) and Figure 4(d). Based these two ACF and
PACF plots, we fitted an ARMA(1,1) model to the residuals et:

Days since April 21, 2003

C
um

ul
at

iv
e 

S
A

R
S

 C
as

es

0 10 20 30 40

0
10

00
20

00
30

00
40

00

Figure 5: The fitted growth curve to the observed values of the cumulative
SARS cases in Minland China from April 21 to May 31, 2003.

et = α1et−1 + Zt + β1Zt−1, (5.4)

where Zt is white noise with mean zero and variance σ2. The estimate of pa-
rameters in equation (5.4) were α̂1=0.7716, β̂1=0.4832 and the σ̂30=15.37. The
diagnostic checking of equation (5.4) (not shown here) indicated a reasonable fit
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of the model to the data. From the fitted model, we can forecast the residuals of
the cumulative model and then construct the 95% confidence intervals. Combin-
ing equation (5.3) and equation (5.4) (ignoring the variability of the estimates of
the parameters in the growth curve model), we got the one day ahead forecast
of the cumulative cases at day 30 being 3667 with the 95% confidence interval
(3637,3697). The actual observation was 3669. We repeated this forecast start-
ing from day 22, the results are tabulated in Table 3. Because the large scale in
Figure 5, the 95% confidence intervals could not be shown properly in the plot.
Hence, we did not include the confidence intervals in Figure 5. The fitted growth
curve was based on the data up to day 41 (May 31).

6. Concluding Remarks

Monitoring the health of population is an important task for all countries. In
many developed countries, the use of quantitative methods have been a routine
practices for governmental agencies and academic institute. However, in many
developing countries, there is much more to be done in this field. In this article,
we applied three different methods for modeling the dynamic of the SARS cases in
mainland China. All these methods involved components of time series analysis.
The well developed ARIMA techniques were named after Box-Jenkins’ seminar
work in the late 1960 (Box and Jenkins 1976). These techniques have been used
on modeling influenza in the US (Scuffham 2003) and other infectious diseases
(Schnell, Zaidi and Reynolds 1989; Zaidi, Schnell and Reynolds 1989). From
Tables 1 to 3, we can compare the forecasting results derived from these three
methods with the actual observations. The Box-Jenkins’ AR(1) model assumes
stationarity of the daily new SARS cases. This was probably not true because
of the extraordinary interventions implemented by the Chinese government after
April 21. Hence the forecasts from the AR(1) model were usually greater than the
actual observed numbers. The random walk model on the log transformed daily
SARS cases followed the dynamic of the daily new cases reasonably well and it
used mostly the present information to predict the future. The log transformation
reduced the variability significantly. For the growth model, it fitted a parametric
function globally to the cumulative SARS cases. Although it appeared that the
model gave an extremely good fit from the plot, it was mostly due to scale effect.
From the results in Table 3, one can see that the variability remained.

The three models studied in this article may be used for different purposes.
From the AR(1) model, the differences between the observed and the forecasted
could be used as a measure of the effectiveness of the interventions. For a mainly
short term forecasting task, the random walk model seemed providing satisfactory
results. However, if one wants to assess the relative long-term effect of SARS from
a cumulative point of view, the growth curve may be more useful.
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Mathematical and statistical models can not only provide description and
understanding of the dynamics of diseases, they can also be used in forecasting
the future values. To quantify the possible number of cases in the future is
fundamental to decision making in public health, especially for highly infectious
diseases with a relatively high mortality rate such as SARS.

Prior to systematic time series analysis techniques, there were other mathe-
matical methods used in forecasting the trends of various diseases. Extrapolation
of polynomial trends and exponential smoothing were two popular methods (21).
Extrapolation a polynomial trend is very unstable because of the nature of the
polynomials. Exponential smoothing can be viewed as a special case of ARIMA
modeling (Diggle 1990). Recently, nonlinear time series models including chaos
have been applied to study the measle dynamics (Bjornstad, Finkenstadt and
Grenfell 2003; Finkenstadt and Grenfell 2000). The applicability of chaos theory
in monitoring the SARS dynamics is under investigation.

Although the rapid increasing of SARS cases in China in April and early part
of May was replaced with a much lower rate and the urgency of forecasting the
new cases seemed diminishing, it is generally agreeable that the SARS virus may
be able to survive the coming winter and may come back next spring. Hence
constant vigilance by governmental officials and academic researchers as well as
the general public is essential to keep the virus under control.

SARS is a new disease and there is much more to be learned about its cause
and its transmission among the population. The time series models used in this
article were mostly based on the history of the observations. When more risk
factors are identified from epidemiological study, one can combine these factors
in constructing better models to describe the dynamic of the disease and forecast
the future. These efforts would contribute to the ultimate goal of eradicating
SARS.
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