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Abstract:  Receiver operating characteristic (ROC) curve is an effective and
widely used method for evaluating the discriminating power of a diagnostic
test or statistical model. As a useful statistical method, a wealth of lit-
erature about its theories and computation methods has been established.
The research on ROC curves, however, has focused mainly on cross-sectional
design. Very little research on estimating ROC curves and their summary
statistics, especially significance testing, has been conducted for repeated
measures design. Due to the complexity of estimating the standard error of
a ROC curve, there is no currently established statistical method for testing
the significance of ROC curves under a repeated measures design. In this
paper, we estimate the area of a ROC curve under a repeated measures de-
sign through generalized linear mixed model (GLMM) using the predicted
probability of a disease or positivity of a condition and propose a bootstrap
method to estimate the standard error of the area under a ROC curve for
such designs. Statistical significance testing of the area under a ROC curve
is then conducted using the bootstrapped standard error. The validity of
bootstrap approach and the statistical testing of the area under the ROC
curve was validated through simulation analyses. A special statistical soft-
ware written in SAS/IML/MACRO v8 was also created for implementing the
bootstrapping algorithm, conducting the calculations and statistical testing.

Key words: Area under ROC Curve, bootstrapping, generalized linear mixed
model (GLMM), standard error, simulation.

1. Introduction

Receiver operating characteristic (ROC) curves display the relationship be-
tween sensitivity (true-positive rate) and 1-specificity (false-positive rate) across
all possible threshold values that define a disease or positivity of a condition.
ROC curves show the full picture of trade-off between true-positive rate and
false-positive rate at different levels of positivity for the specific question we are
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studying. ROC originated from signal detection theory and psychophysics (Green
and Swets, 1966) and later found its wide range of extensive applications in dif-
ferent fields such as biology, psychology and radiology and medicine (Metz, 1986;
Pepe, 1998; Zou, 2001). It is a very useful diagnostic tool, particularly in medical
and image research. Now, ROC curves have been widely used for evaluating the
accuracy and discriminating power of a diagnostic test/bio-marker or statistical
model/methods. For example, the accuracy of a medical diagnostic test can be
typically described by a ROC curve through sensitivity and specificity. Summary
measures of ROC curves, such as the area under a curve (AUC) or the projected
length of a ROC curve (PLC) and the area swept out of a ROC curve (ASC), can
summarize the inherent capacity of a test or a statistical model for distinguishing
a diseased from a non-diseased subject across all possible levels of positive cut
points into a single statistic. (Hanley and McNeil 1982; Begg, 1991; Lee and
Hsiao 1996) These summarized statistics of ROC curves can be used to make in-
ferences about the strength of the tests or statistical models. Among the different
summary statistics of ROC curves, the area under a ROC curve (often referred as
ROC statistics) is the most popular and widely used summary statistic for ROC
curves. AUC statistics depict the probability that the value of the test result or
biomarker of a randomly selected diseased subject will exceed that of a randomly
selected non-diseased subject.

A considerable amount of literature has been established on the statistical
methods for estimating ROC curves, calculating the area under a ROC curve
and testing the significance of the area under a ROC curve (though less on this
topic) for cross sectional data. (Hanley and McNeil 1983; Swets 1997; Wieand
et al., 1989; Tosteson and Begg 1988; Li et al., 1999). Most of the major statis-
tical software packages, such as SAS, STATA, and SPSS, have procedures that
can directly generate a single ROC curve and calculate the area under a ROC
curve for a cross-sectional design. However, limited research has been done on
estimating and testing the area under a ROC curve for longitudinal repeated
measures design, especially significance testing of the area under a ROC curve
that is estimated from a repeated measures regression model (Liu and Wu, 2003).
Model-based estimates of ROC curves are very useful since these methods pro-
vide the opportunities for evaluating the impact of surrounding covariates on the
accuracy and potency of a test or statistical model for discrimination. However,
because model-based ROC curves are constructed from correlated measurements,
traditional methods for testing or comparing ROC curves are no longer valid. Us-
ing a bootstrapping re-sampling approach, this paper estimates the standard er-
ror of the area under a ROC curve estimated by generalized linear mixed model
with the Wilcoxon non-parametric approach (Bamber 1975) under a repeated
measures design and provides a method for conducting significance testing of the
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area under a ROC curve with repeated measures design.

It is worth noting that one has to be very careful when using bootstrap for
non-i.i.d. settings. Efron’s (1979) “resampling with replacement” method was
originally proposed for the i.i.d case. For complex models with dependent data,
bootstrap would work only if resampling is done in an appropriate manner con-
sistent with the model. For example, in a simple linear regression model where
the errors are “homoscedastic”, the bootstrap could be done by resampling the
residuals with replacement. However, in a correlation model where the errors are
“heteroscedastic”, resampling the residuals with replacement is no longer appro-
priate. Instead, one should resample the vectors (X;,Y;), i = 1,...,n, where
X, and Y; are the covariate and response variables for subject i; see Freedman
(1981). For the repeated measures design, bootstrap would not work if one re-
samples the observations within a subject since the within-subject dependence
structure would be obliterated. In this paper, we propose to resample the vectors
as done in the correlation model (Freedman, 1981) so that the within-subject
dependence is preserved. For a balanced design in which there are no missing
values within each subject, the vectors from the n subjects are a random sample
and thus sampling the vectors with replacement is expected to work, as shown by
our simulation study. When there are missing values, we anticipate that the same
resample procedure would still work under the “completely missing at random”
assumption. A rigorous justification is beyond the scope of this paper since a
theoretical proof of the consistency of bootstrap can be extremely technical even
for the simple i.i.d. cases (see, e.g., Bickel and Freedman, 1981; Freedman, 1981;
Li and Datta, 2001). We conducted a simulation study to investigate the per-
formance of the proposed bootstrap approach for repeated measures design. We
also performed an empirical study to illustrate the asymptotic normality of the
estimated area under the ROC curve in repeated measures design. Details of the
simulation studies are described in section 5. We have also created an ad hoc
computer software that implements the algorithm, calculates and tests the area
under a ROC curve for repeated measures designs.

2. ROC Curve and Its Standard Error for Cross Sectional Data

A ROC curve is a plot of sensitivity versus 1-specificity, where the sensitivity
is defined as the probability that a test result is positive given the subject is
truly diseased and specificity is defined as the probability that the test result
is negative given the subject is truly non-diseased. Let y € (—o00,00) denote
the result of a test for a continuous outcome measure, D be an indicator of
diseased /positive (D = 1) or non-diseased /negative (D = 0) status of a subject.
Let ¢ be a threshold value that any test result y > ¢ is considered to be diseased
(positive), otherwise it is non-diseased (negative). Let Fp(c) = Pr(y <c|D =1)
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and Fp(c) = Pr(Y < c¢|D = 0) be the cumulative distribution function of y for
diseased and non-diseased groups, then 1—Fp(c) and Fj(c) will be the sensitivity
and specificity, respectively. Let Sp(-) = 1 — Fp(-) and Sp(-) = 1 — Fp(-) be
the survival function of y for the two groups and t € (0,1) be the false positive
rate (1— specificity), then we can then write a ROC curve in a succinct form:
ROC(t) = Sp{Sp'(t)}, where varies from 0 to 1 as the corresponding threshold
¢ varies from oo to —oo. (Pepe 1997) Let yp and yp be the test results of a
diseased /positive and non-diseased/negative subject, respectively. It has been
shown that the area under a ROC curve equals the unconditional probability of
correct ordering of a outcome measures between two populations, say positive
and negative, (Hanley and McNeil 1982; Pepe, 2000) that is

0 = /ROC(t)dt = Pr(yp > yp)-

Regression modeling can evaluate the impact of covariates on the accuracy
of a diagnosis test or a biomarker. When a test or biomarker is continuous with
normal error, we can model it through a standard linear regression model:

y=p+e=X0B+e¢€

where 1 = E(y) is the mean of y and [ are the regression coefficients of X.
But very often, these continuous outcomes can be dichotomized according to
some critical value ¢. Based on the critical value, the outcome can be defined
as positive if y > ¢ and negative if y < ¢. To model the impact of covariates
on non-continuous measures, one can model functions of p rather than p itself;
that is to use generalized linear model (GLM) framework with link functions.
The basic form of GLM can be written as n = g(u) = X3, where 7 is a link
function of x that links E(y) to the linear predictor X /3. Through GLM, the
impact of covariates on a diagnosis test is converted into the predicted value g,
which will be used to replace the observed y in constructing ROC curves and
summary statistics of ROC such as the area under a ROC curve. The similar
idea for calculating ROC curve extends naturally to repeated measures design,
which will be discussed in details in section 3.

The precision of an estimate of the area under a ROC curve needs to be cal-
culated to conduct a statistical significance test of the area under the ROC curve
and to construct the confidence intervals of the area under a ROC curve. Due to
the complexity of estimating the area under a ROC curve, it is very hard to get
a closed-form solution of the area under a ROC curve. As a result, there is no

~

available close-form solution of the standard error y/var(f) of the area under a
ROC curve. In the situation where the observations used to estimate the ROC
curve are independent, Dorfman (1969) and Wieand et al. (1989) derived a for-
mula for calculating the standard error of the area under a ROC curve that is
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related to Wilcoxon non-parametric estimate. This method has been used for es-
timating the standard error of the area under a ROC curve and is implemented in
different statistical software such as SPSS and EPISTAT. Unfortunately, model-
based estimate of the area under a ROC curve is calculated from the predicted
values that are no longer independent regardless of the independent or dependent
status of the original observations, and the Dorfman method is no longer valid.
The dependence among the predicted values complicates the calculation of the
standard error of the area under a ROC curve and needs to be taken into account
in the estimation.

3. Estimating ROC Curve under a Repeated Measures Design

Data collected from a repeated measures design have several advantages over
data from a cross-sectional design. First, repeated measures design can reduce
the possible bias from one snapshot of data collection from each subject and
increase the reliability of the data collected. Second, repeated measures design
costs less to collect the same amount of data (number of observations) with fewer
number of subjects compared to cross-sectional design that each observation is a
different subject (collecting additional data points from an existing subject likely
costs less compared to collecting data from recruiting additional subjects.) Third,
since each patient has multiple observations, repeated measures design provides
the opportunity for us to analyze the intra-patient variation as well as the change
over time of the entire cohort. Under a repeated measures design, the observations
within a given subject will no longer be independent and intra-subject correlation
and variation are introduced. Therefore, the impact of confounding covariates on
the accuracy of a diagnostic test/bio-marker or a statistical model will come
from both global fixed effect (e.g., patient’s race/ethnicity) as well as individual
patient random effects (e.g., change over time of a time varying covariate.) To
model outcome variables that could be continuous or non-continuous, the random
effects can be taken into account through the extension of generalized linear model
(GLM) to the generalized linear mixed model (GLMM) (Bresloe and Clayton
1993), in which the linear predictor is composed of two parts of fixed and random
effects. Define p; = E(y;|~i) as the conditional mean of an outcome variable y;
and let 7; = g(u) be the link function that connects p; with the linear predictor
that consists of both fixed and random effects. We can then write GLMM as
i = XiB+ Zyy; (fori=1,...,n.) with a conditional variance Var(y; | v;), where
y; is a n x 1 vector of a test results for the ¢ th subject, n; is the number of
outcome measures for the ¢ th patient, and X; is n; X p, which contains known
covariates that are associated with the fixed effects. 3, the fixed effect parameter
vector, is p X 1, and Z; is n; X k representing known covariates that are associated
with the random part of the model. ~;, the random effect parameter vector, is
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k x 1 and is distributed as N (0, D;).

Now assume that the outcome is actually binary (diseased/non-diseased) and
let pij, (i =1,...,;5 =1,...,n;) be the probability of being diseased /positive for
the ith subject at the jth time point; 7;; be logit link function for the ith subject at
the 7 th time point between the mean and the linear predictor, then we can model
the impact of covariates on the predicted probability of being diseased/positive
through GLMM:

Nij = igB + 2%
and
nij = 9(pij) = log(pi;/ (1 + pij))
or
log(pij /(1 + pij)) = zi58 + 2i57i

Let B and 4; be the estimates through penalized quasi-likelihood (Breslow and
Clayton, 1993) or restricted pseudo-likelihood (Wolfinger and O’Connell, 1993)
and p;; be the corresponding estimate of p;;. Then we have

_exp(ziiB A+ zi)
Dij = ~ NG
1 + exp(xijﬁ + Zij’)/i)

The estimated probability p;; (i =1,...,n and j = 1,...,n), which is a function
of all the covariates, will then serve as a biomarker for constructing the ROC
curve for discriminating a diseased /positive subject from a non-diseased /negative
subject longitudinally.

Let rocy .(t) be the ROC value with false-positive rate ¢ that is associated
with the fixed effect predictors x and random effects predictors z. By definition,
the area under a ROC curve 0 is:

0= /rocxyz(t)dt,

where the integration limits run from 0 to 1. The area under a ROC curve 6 can
be calculated using the Wilcoxon non-parametric method by comparing the mag-
nitude of the predicted probabilities of each discordant pair. In repeated measures
design, each subject has more than one observation and the outcome values may
vary from time to time. Therefore, the classification of a diseased/positive and
a non-diseased /negative case needs to be sorted at the observational level rather
than at the individual subject level. Let p;;p) (t=1,...,nand j=1,...,s;) be
the predicted probability of a disease/positivity for the ith subject at the j th time
point that had a diseased (positive) observed value, and let Prea D)(k =1,....n
and £ = 1,...,t;) be the predicted probability of a disease/positivity for the k
th patient at the ¢ th time point that had a non-diseased (negative) observed
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value. Let Np = > | s; and Np = >}, t be the total number of observations
with positive or negative observed values. The total number of discordant pairs
then equals N = Np = Np. The area under a ROC curve can be calculated by
comparing the predicted probabilities of each discordant pair that is defined at
observation level (Liu and Wu 2003). Let A(:) be an indicator that:

AWijp)) > Prepy = 1 i Dijo) > Bijipy
= 0 if pijp) <Dijp)
and

ADijpy = Prepy) = 1 i Dijp) = Dij(p)»
= 0 otherwise

the estimate of area under a ROC curve 6 is then estimated by the ratio:

g — > i ok 2 ol(ABijpy > Prepy)) + 3A0ii(0) = Pre(p)))
B NpNp ‘

To generate the actual ROC curve, a series of pairs of sensitivity and 1-specificity
based on predictions from the generalized linear mixed models are calculated. In
order to obtain a smooth curve, an increment of 0.005 in predicted probability for
defining positivity is used. That is, 200 pairs of sensitivity and 1-specificity will
be calculated to generate the ROC curve. Assume that cut points of positivity
are ¢(1),¢(2),...,¢(200), then for any c(i) with (1 < i < 500), the sensitivity and
specificity will be calculated and the ROC curve will be plotted.

4. Estimate Standard Errors of Area under ROC Curves through
Bootstrapping

The variance of the area under a ROC curve var(0) = var( [ roc, .(t)dt) is
essential for statistical testing of the summary statistic of a ROC curve and it
measures the reliability of an estimate of the area under a ROC curve. Given
the nature of the complexity in estimating the area under a ROC curve, it is
hard to get closed-form solution of the variance. If the area under a ROC curve
is estimated by Wilcoxon non-parametric method and the observations are inde-
pendent, one could estimate the variance of the area under a ROC curve by the
following equation (Hanley and McNeil 1982):

6(1—0) + (np — Dlar — 0%) + (np — 1) (g2 — 0%)

var(f) = )
npnp




264 Honghu Liu et al.

where ¢ is the probability that two randomly chosen positive observations will
both be ranked with greater suspicion than a randomly chosen negative observa-
tion. ¢o is the probability that one randomly chosen positive observations will be
ranked with greater suspicion than two randomly chosen negative observations.
np is the number of observations of the positive group and np is the number of
observations of the negative group.

Unfortunately, due to the common coefficients from a regression model used
for calculating predicted values, model-based estimates of predicted probabilities
are always non-independent. When the predicted probabilities are estimated
from a repeated measures model, this dependence will be even stronger since in
this case not only the common coefficients but also the intra-subject correlation
generate dependence among predicted probabilities. Therefore, the above formula
is no longer valid. The dependence among the observations or discordant pairs
cannot be ignored and needs to be taken into account in the calculation for
estimating the variance of a ROC curve. To get an estimate of the standard error
of the area under a ROC curve, we propose a bootstrapping method to estimate
the variance of the area under a ROC curve that is calculated by the Wilcoxon
non-parametric method described in section 3. (Efron 1979; Efron, Tibshirani
1986). Assume that there are a total of n subjects, the i th subject has n;
observations (for 1 <4 < n) and there are a total of N = 3 " | n; observations
in the data set. In order to preserve the original intra-patient variation and data
structure, the bootstrapping re-sampling algorithm is designed to sample data
at subject level rather than at observation level. That is from the n subject
pool, a random sample of n subjects is drawn with replacement. For any given
subject drawn from the pool, say subject k, all n; observations that belong to this
subject in the original data set will be automatically included in the bootstrapped
sample. Therefore, a bootstrapped sample will still consist of n subjects but with
only s unique subjects, where a < n (the equal sign holds if and only if when the
bootstrapped sample is identical to the original data set.) A bootstrapped data
set will consist of N observations with N = > i, s; where s; is the number of
observations of the ith subject drawn. The N usually does not equal to N, the
original number of observations.

For each bootstrapping sample, the statistic of area under the ROC curve
is estimated using the Wilcoxon non-parametric algorithm (Liu and Wu 2003).
Suppose that r bootstrapping samples are generated, then r statistics of the
area under the ROC curves él, ég, e ,ér will be estimated through the Wilcoxon
non-parametric method. Based on the series of estimated area under the curve
values, the standard error of the originally estimated area under the curve will
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be estimated as:

where 0 = it 0;/r is the mean of the r estimated areas under the ROC curves.
The stability and accuracy of S.E. j are determined by the estimates of 6’s and
the number of repeated bootstrapping samples r. The larger the number of
bootstrapping samples is, the better estimate the standard error is. The standard
error S.E. 3 approaches stable when the number of replicate r is gets large. In
Section 7 through an example, we show the stabilization of S.F. jasa function
of number of replicate r.

5. Simulation Validation of Normality of ROC Statistics and Boot-
strap Approach under Repeated Measure Design

To evaluate the validity of the statistical test of ROC statistics with normal
approach and the bootstrapping algorithm under repeated measure design with
non-independent observations, we conducted a simulation analysis to assess two
issues: (a) how ROC statistics are distributed (b) how bootstrapped and true
parameter estimates are close to each other. Through this simulation analysis,
we empirically proved the validity of our approach in testing ROC statistics and
using bootstrap approach with repeated measures data. The simulation analysis
was performed in two steps. Step one was to show that the ROC statistics
calculated from simulated data sets follows a normal distribution and to get the
estimate of “true” standard error of ROC statistics of the simulated data sets; step
two demonstrated that the standard error of ROC statistics calculated through
bootstrap was a consistent estimate of the “true” one.

We used a balanced repeated measures design with 200 subjects and each sub-
ject had 4 repeated measures observations. For the i th subject (i = 1,...,200)
and j th observation (j =1,...,4), the repeated measures model can be written
as:

Yij = Bo + Xi1 b1 + Xiofo + Zijivin + Aijovie + €ij

where x;1 and ;5 were generated from a standard normal and Bernoulli distri-
bution, respectively. We took Gy = 10, 81 = 3, 32 = —4, and

Y11 4 3.2
( M2 > N (0’ ( 32 11.56 )) )
€;; ~ N(0,4), and cov(y,e) = 0. With the above set-up, we have generated a

simulated data set with 200 subjects and each subject had 4 repeated measure
observations. Using this simulated data set, an estimate of area under the ROC
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curve was calculated and recorded. Then another data set with the same set up
was generated and its corresponding area under the ROC curve was calculated
again. This procedure was repeated 200 times and 200 area under ROC curves
(or 200 ROC statistics) were calculated. The normality of the ROC statistics was
tested through QQ-plot (Harter, H. L., 1984; Evans, M. et al., 2000) and Shapiro-
Wilk test. To get the QQ-plot, first the 200 ROC statistics were sorted and then
a measure was calculated as function of number of non-missing observations and
the order i:
v; = [(i —0.375)/(n + 0.25)] for i=1,2...,n

The i th ordered observation is plotted against the normal quantile ®~!(v;), where
®~1(1;) is the inverse standard cumulative normal distribution. If the data are
normally distributed with mean p and standard deviation o, the points on the
plot should lie approximately on a straight line with intercept iz and slope 0. The
resulting Q-Q plot from the 200 simulated ROC statistics showed approximately
a straight line as in Figure 1.

0.78

Sample Quantiles
0.70 0.72 0.74 0.76

0.68

0.66

0.64

T T T T T T T
-3 -2 -1 0 1 2 3

Theoretical Quantiles

Figure 1: Normal QQ plot of ROC
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The normality of the 200 simulated ROC statistics was also tested using
Shapiro-Wilk test with the null hypothesis that z-statistics is distributed as
N(0,1). The test results yielded a statistic of 0.995 and a p value of 0.7906
for the null hypothesis that the ROC statistic is normally distributed.

With these 200 simulated ROC statistics, we have also estimated the ‘true’
standard error of ROC statistics, which was 0.0245381. This “true” standard
error was used as the anchor to compare with the bootstrapped standard error
in the next step.

20 25 30

Frequency

15

10

0.020 0.025 0.030

se

Figure 2: Histogram of se

To show that the bootstrapped standard deviation is a consistent estimator of
the true one (0.0245381), we performed bootstrap with 200 replicates for a given
simulated data set. The bootstrapping draw was with replacement at subject
level. Once a subject was drawn, all 4 repeated measures of the subject were
automatically included in the bootstrapped data set. Each bootstrapped sample
had 200 subjects and each subject had 4 repeated measures observations. With
the 200 bootstrapped samples from a simulated data set, 200 bootstrapped ROC
statistics were calculated and an estimate of bootstrapped standard error of the
ROC statistics was obtained. This whole procedure was repeated on 100 out of the
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200 simulated data sets in step one. Thus, we have generated 100 bootstrapped
standard errors of ROC statistics. Figure 2 is the histogram of these 100 standard
errors of ROC statistics. We can see that they are distributed surrounding the
“true” standard error of 0.0245381 with a standard error of 0.00252109. The
mean of the 100 bootstrapped standard error is 0.0261701, which is very closed
to the true one with a difference as small as 0.001632. We have also conducted the
simulation analysis with a unbalanced design with number of repeated measures
varying from 3 to 6 and obtained very similar results.

6. Statistical Significant Test and Confidence Intervals

To test the area under a ROC curve 0 equal to a specific value ¢ (e.g., ¢ = 0.5),
one can base the test on the asymptotic distribution of 6. According to large sam-
ple asymptotic distribution theory (Furguson 1967), when r, the number of repli-
cates goes to infinity, we have the following statistic distributed approximately
as a standard normal distribution with a mean of 0 and variance of 1:

0—c
25 =
€ X
S.E>ﬁ

~ N(0,1).

The null hypothesis Hy : 6 = ¢ will be accepted if 5 < Zl—aj2 OF rejected if
5> Z1-a/2 at the type I error level of a. The (1—k)% (with 0 < k < 1) level of

confidence interval of the estimated area under the ROC curve 6 can be calculated

by normal approximation:
0+ Zl*k/Q SEB

%r_roc Software

In this section, we introduce a newly created ad hoc statistical software
%rm_roc (standards for repeated measures ROC) that can automatically conduct
bootstrapping, calculating the standard error of the area under a ROC curve and
other statistics. The functionality of the software, the algorithm used, the input
parameters, the output contents and the usage will be described. The function of
this software is to conduct ROC curve analysis for repeated measures data. Tak-
ing input data with a repeated measures design, this software can automatically
fit a ROC curve based on Wilcoxon non-parametric approach, calculate the
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Define a submacro (%roc) from %glimmroc to
calculate the area of a ROC without
outputting the ROC curve

v

Define a bootstrapping macro (%bootstrp) that
can randomly draw sample with different sizes

.

Get the working data set ready and set all the
necessary parameters

No

Invoke %bootstrp and randomly draw a
sample from the patients” ID

v

Using SQL and other data management
procedure to create working data set using the
bootstrapping sample (one subject could
appear multiple times in the sample)

v

Invoke %roc to calculate the area under the
ROC curve of the bootstrapped sample and
save the results

.

Invoke %glimmix macro procedure to fit the
ROC curve and calculate the area of the ROC
curve from the original data

s

Calculate standard error of the area under the
ROC curve

v

Calculate other statistics, conduct significant
testing and construct the confidence intervals
of the area under the ROC curve

Figure 3: Foow chart of algorithm.
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area under the ROC curve, conduct bootstrapping sampling and estimate the
standard error of the area under the ROC curve, perform a significance test of
the area under the curve and construct a confidence interval of the area under
the curve.

Y%rm_roc is written in SAS/Macro (SAS Institute Inc. 2001) and SAS//IML
(SAS Institute Inc. 2001). It is created based on two previously existing macro
procedures %glimm from SAS (http://ftp.sas.com/techsup/download/stat/) and
%glimmroc (Liu and Wu 2003). The bold steps of the algorithm are: (a) draw
a bootstrapping sample from the original data pool. (b) with the bootstrapped
data, fit a generalized linear mixed model and calculate the area under the ROC
curve. (c) repeat (a) and (b) until the desired number of estimates of the area
under the curves have all been calculated. (d) using the original data, fit the ROC
curve and estimate the area under the ROC curve (e) using the estimated areas
under the ROC curves from bootstrapping samples to estimate the standard error
of the area under the curve of the original data. (f) conduct statistical significant
testing and construct the confidence interval of the area under the curve (see
Figure 3: Flowchart of the Algorithm.)

The macro software has been designed with an easy and user-friendly syntax
so that those with basic SAS software literacy can understand and use the soft-
ware. There are total of 12 parameters that need to be entered (some can be left
as default) in the input statement. For those parameters that one wants to leave
as the default value, these parameters should be left out from the list of input
statement. The input parameters include:

e the dependent variable

e the list of the independent variables that are associated with the
fixed effect

e the independent variables that are associated with the random
effects

e the subject identifier, the type of the covariance structure for the
random part

e the type of the covariance structure for the error part, weight
option

e the test value of the area under the curve

e the number of subjects sampled for each bootstrapped sample

e the number of replicates, the level of confidence intervals

e the name of the data set you are going to use for the analysis.

The syntax of the input is:

%BRM_ROC(y=,x_list=,z_list=,id=,c_s_d=,c_s_r=,
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weight=, c=,numsamp=,numloop=,ci=,dataset=);

The following explain each of the parameters in the syntax:

x_list

z_list

ID

numsamp

Numloop

CI

dataset

the variable name of the binary outcome measure

contains the list of all independent variables for the fixed
effects with space in between(e.g., age sex race)

contains the list of all independent variables for the random
effects with space in between (e.g., time)

the variable of patient ID which identifies observations within
a patient

specify the covariance structure of matrix D (the random part
and the default is simple format, e.g., diagonal matrix.)

specify the covariance structure of matrix R (the random error,
the default is compound symmetry)

weight variable (the default is 1, which means unweighted)

the constant that the area under the curve is tested against it.
The default value is 0.5.

the number of subject sampled for each bootstrapped sample
(numsamp=0 is the default, which will draw a sample with the
original number of subject).

the number bootstrapping sample replicates.

confidence interval level. The options are 90, 95 and 99.
The default value is 95.

the name of the data set on which one will run the software.

The output of the software includes the actual ROC curve, the estimate of
the area under the ROC curve, the standard error of the area under the ROC
curve, the z_statistic, the p_value of the test and the confidence interval of the
area under the ROC curve.
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The usage of the software is simple. One just needs to either copy the macro
procedure into his SAS program or use “%include” statement at the beginning of
a SAS program to load in the procedure to avoid the lengthy display of the code.
Since this macro is built on top of the other existing macros, one also needs to
load the macro procedure of %glimm and %glimmroc in their program.

The entire software package can be provided upon request from the author at
hhliu@ucla.edu.

7. Application

In this section, we show how the method and the statistical software work
in an example with a repeated measures design. Through this example, we will
also show empirically how large the number of replicates r needs to be in order
to obtain a stable estimate of the standard error of the area under a ROC curve.
To illustrate this, the standard error of the area under the ROC curve for this
example was estimated with different number of replicates r, ranging from 10 to
300 in increments of 10 to display the stability of the estimates as a function of
the number of replicates.

The data in this example concerns measurement of HIV patient adherence to
antiretroviral medications. Adherence to antiretroviral medication is critical in
suppressing viral replication and preventing drug-resistant strains. Due to the
complexity of measuring patient adherence behavior, different measurement tools
and mechanisms have been developed, each with different inherent strengths and
weaknesses. The Medication Event Monitoring system (MEMS) and Pill Count
(PC) are two popular measuring methods (**** APREX 1998****; Grymonpre,
et al. 1998). MEMS is a relatively new technique that utilizes a pill bottle
cap containing a microchip and records each instance of bottle opening. PC is a
measurement method that physically calculates the number of pills remaining in a
patient’s bottle or bottles at a visit by a person (normally a nurse). Evidence has
shown that MEMS adherence is more objective and accurate than PC. Although
not costly, PC is likely overestimates a patient’s true adherence level due to
reasons such as pill dumping. Even though MEMS is more objective, it is not
always practical to implement. To evaluate how good PC can measure adherence
over time (using MEMS as a gold standard for medication adherence), MEMS and
PC data along with patient’s baseline information of gender, age and lowest CD4
count, were collected for 140 HIV+ patients at every 4-week period (a “wave”)
for 48 weeks. A threshold of 85% is used to classify patient adherence behavior
at each of the 12 waves as either “adherent” (patient took at least 85% of the
prescribed doses for that wave), or “non-adherent” (the patient took less than
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Table 1: Estimated standard errors from bootstrapping

Number of Standard Percent CPU Time
Replicates Error Change in S.E. (minutes)
10 0.037502 - 3.268
20 0.035045 —6.6 5.724
30 0.033183 -5.3 8.107
40 0.052684 58.8 10.815
50 0.048887 —7.2 13.188
60 0.054463 11.4 15.667
70 0.059754 9.7 18.252
80 0.062297 4.3 20.782
90 0.063003 1.1 23.375
100 0.064216 1.9 26.020
110 0.064493 0.43 28.515
120 0.062196 -3.6 31.067
130 0.060695 —1.6 33.693
140 0.059361 —2.2 36.140
150 0.061163 2.6 38.657
160 0.059860 —-2.1 41.284
170 0.058438 —2.4 44.155
180 0.058688 0.44 46.694
190 0.057562 -1.9 49.297
200 0.056323 —2.2 51.931
210 0.055234 -1.9 54.328
220 0.054121 —2.0 57.419
230 0.053253 —1.6 59.965
240 0.053379 0.24 62.746
250 0.054409 2.17 64.092
260 0.053908 -0.92 66.603
270 0.053120 —1.46 69.164
280 0.052362 —1.43 71.641
290 0.053065 1.34 74.218
300 0.054544 2.79 76.799

85% of the prescribed medication for that wave). The 140 patients have an
average of 8.76 repeated measures data points and a total of 1226 observations.
The data set is named ANAL and the variables are the following;:

bi_mems medication adherence measured by MEMS (binary measure)
gender gender of a patient
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age age of a patient

lowestcd 1lowest CD4 count at baseline

bi_p medication adherence measured by PC (binary measure)

id patient ID that identifies observations within a patient

wave time of the 4-week period (ranges 1 to 12)
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Figure 4: The fitted ROC curve.

For this data, we used 30 different sizes of the number of bootstrapping sam-
ples in estimating the standard error of the area under the curve, starting at 10
and increased by 10 up to 300. The following table shows the actual estimated
standard errors, the percent changes of the estimated standard error, the CPU
time used on a UNIX RS/6000 Cluster computer (see Table 1.) Based on the
results, we can see that when the number of replicates increases, the estimates
of the standard errors (ranging from 0.033183 to 0.064493) become stable. The
percent changes of the estimates, ranging from 0.24 to 0.588, are quite large when
the number of replicates is small. The CPU time used is a monotonous function
of the number of bootstrapping sample replicates, ranging from 3.268 to 76.799
minutes. Overall, we can see that the estimated standard errors of the area under
the curve become quite stable when the number of replicates is above 200. With
the estimates of number of replicates above 200, the percent changes range from
0.24 to 2.79 and the estimates range from 0.052362 to 0.055234.
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The fitted ROC curve is shown in Figure 4 below and the estimated area
under the curve is 0.78. Since the area under a ROC curve is the unconditional
probability of correct ordering, this statistic indicates that if we randomly select a
patient who is adherent and randomly select another patient who is not adherent,
then the probability of being adherent predicted by pill count whiling controlling
patient characteristics for the patient who is adherent is greater than that of the
patient who is not adherent will be 0.78. To test the significance of the area
under the curve from 0.5, using the estimated standard error 0.055234 from the
210 replicates, we obtain a t-statistic of 5.02, which yields a significant p value of
less than 0.0001 with a type I error of 0.05. This means that the discriminating
power of the bio-maker of the predicted probability for adherence by pill count
from the repeated measures model is significantly larger than that of chance alone.
The 95% confidence interval of the estimated area under the curve is (0.66928,
0.88580).

8. Discussion

Repeated measures model-based estimate of ROC curves provides the oppor-
tunity to evaluate the impact of both fixed effect and the random effects on a
test or bio-marker. Because of the common parameter estimates from the re-
gression model, estimates of the area under a ROC curve are calculated from
predicted values that are not independent. This is particularly true for repeated
measures design since the repeated observations within a subject themselves are
also correlated each other. Due to the involvement of both fixed and random
effects in generalized linear mixed models, the statistical equation of the areas
under a ROC curve is complicated and its standard error cannot be expressed
in simple closed-form solutions. Bootstrapping from the original data will allow
one to obtain estimates of the areas under ROC curves that reflect the sam-
pling variation of the collected data. Sampling at the subject level rather than
the observation level will enable us to preserve the within subject dependence
and the intra-subject structure of the observed data. The simulation analyses in
section 5 demonstrates that the area under ROC curves can be tested through
normal theory and the bootstrap algorithm used in the paper for repeated mea-
sures design can generate valid estimates. These simulation results could bear
important implications in other areas of research under repeated measures design.
Although the proposed approach in this paper is computationally intensive, the
dramatic advancement of computer technology with increasing high speed pro-
cessing has made statistical computation less burdensome. Based on the example
in this paper, a moderate large number of replicates (around 200) of bootstrapped
samples will yield fairly stable estimates of the standard errors. The computer
software %glimmroc, which has the special functionality that no other software
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contains, has a user-friendly syntax and can be easily applied to conduct a full
ROC analysis, ranging from fitting the ROC curve to testing the significance and
constructing the confidence intervals of the area under the curve, for data with a
repeated measures design.
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