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Abstract: In epidemiological studies where subjects are seen periodically on
follow-up visits, interval-censored data occur naturally. The exact time the
change of state (such as HIV seroconversion) occurs is not known exactly,
only that it occurred sometime within a specific time interval. This paper
considers estimation of parameters when HIV infection times are interval-
censored and correlated. It is assumed that each sexual partnership has a
specific unobservable random effect that induces association between infec-
tion times. Parameters are estimated using the expectation-maximization
algorithm and the Gibbs sampler. The results from the two methods are
compared. Both methods yield fixed effects and baseline hazard estimates
that are comparable. However, standard errors and frailty variance estimates
are underestimated in the expectation-maximization algorithm compared to
those from the Gibbs sampler. The Gibbs sampler is considered a plausible
alternative to the expectation-maximization algorithm.
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1. Introduction

Interval-censored data arise in research settings where the exact time an event
occurs is not observed directly, but only the time interval to which the observation
belongs is observed. For instance, the exact time HIV seroconversion occurs is
not observed exactly (Jewell, et al. 1994) but only the clinical examination
times between which HIV infection occurred. Estimation methods for interval-
censored data are often based on the Cox proportional hazards model (Cox, 1972).
Finkelstein (1986) generalized the Cox proportional hazards model to account for
interval-censored data. Huang and Wellner (1997) provide a rigorous theoretical
account for maximum likelihood methods for interval-censored data.

Dependency of event times further complicates estimation in interval-censored
data. Dependency may arise as a result of the sampling method used, such as
in the study of HIV seroconversion among cohorts of circular migrant men, non-
migrant men and their non-migrant sexual partners as described in Lurie et al.
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(2003a; 2003b), and is the subject of our analysis, see Section 2. This dependency
is often modelled as random effects or frailties. Frailty is the term describing com-
mon excess risk of infection among members of the same sub-group. Frailties are
considered unobserved mutually independent random variables specified by some
parametric distribution. The topic of frailty models has received considerable
attention in demography (Vaupel, et al. 1987) and statistics (Clayton, 1978;
Clayton and Cuzick, 1985). Including frailties in the interval-censored data like-
lihoods of (Finkelstein, 1986) or (Huang and Wellner, 1997) results in complex
intractable likelihood functions. The conjugate gamma frailty distribution often
assumed in standard survival frailty model (Klein, 1992) is no longer conjugate
in the interval-censored likelihood (Finkelstein, 1986; Huang and Wellner, 1997).

In this paper, both the interval-censored infection time and frailties are treated
as missing data. The primary goal of this paper is to apply and compare two
statistical methods of analysing correlated interval-censored data. The two sta-
tistical methods considered are the expectation-maximization (EM) algorithm
(Dempster, Laird and Rubin, 1977) and Bayesian analysis using Markov chain
Monte Carlo (MCMC) methods (Gilks, et al. 1996; Carlin and Louis, 1996). The
primary outcome variable is the survival time from 1990 until HIV infection, or
until the end of the study or until the subject was lost to follow-up. In South
Africa, research shows that the epidemic of HIV well established in 1990 (Gouws
and Williams, 2000 and references therein) and thus 1990 is used as the initial
time. The main focus is on full Bayesian analysis and its comparison to maxi-
mum likelihood estimation. Section 3 of this paper presents the migration data
to be analyzed. The assumed conditional survival model is presented in Section
3. Section 4 presents the likelihood formulation for the EM estimation. Full
Bayesian estimation is presented in Section 5. The application and conclusion
are presented in Sections 6 and 7, respectively.

2. The Data

A total of 631 individuals aged between 18 and 60 years were recruited into
the study. The study composed of circular migrant men, non-migrant men and
their rural based non-migrant sexual partners. Circular migration is the predom-
inant type of migration in South Africa where young men migrate to work in
urban areas leaving their rural sexual partners behind, and return home periodi-
cally. Circular migrant men were recruited from their workplaces in urban areas.
They provided details of their sexual partners residing in rural areas, who were
then located and invited to participate. In the neighbourhood of each migrant
man’s rural household, a non-migrant man and his partner(s) were selected and
invited to participate. The study participants were visited approximately every
four months to administer a detailed questionnaire eliciting information related to
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Table 1: Distribution of sexual partnerships and HIV infection

HIV infection
Sexual partnership Number of sexual Percentage N Percentage

size partnerships

1 122 36.0 48 39.34
2 175 51.6 88 25.14
3 37 10.9 38 34.23
4 4 1.2 2 12.5
5 1 0.3 0 0.0

demographic and socioeconomic characteristics, sexual behavioural and biomed-
ical factors. At each visit, blood and urine specimen were collected to test for
HIV status and status of other sexually transmitted infections (STI)s, respec-
tively. This resulted in discrete interval-censored infection times due to known
clinical visit time before and after the infection time. Further details of the study
including details of inclusion criteria and testing of specimen have been reported
elsewhere (Lurie, et al. 2003a; 2003b).

The current analysis is restricted to 339 identifiable distinct sexual partner-
ships from 604 individuals. The mean sexual partnership size is 1.78 individuals.
Sexual partnership size ranges from 1 to 5 individuals with only one man in each
sexual partnership. Table 1 shows the distribution of sexual partnerships and
percentage of persons infected with HIV. Considerable numbers of migrant men
gave incorrect information about the location of their partners and some of their
identified partners refused to participate resulting in cases where only a man was
included making up to 36% of five different number of included participants in a
partnership. Fifty-two percent of sexual partnerships were couples.

Men (mostly migrants) whose partners were not part of the study, contributed
considerably to high HIV infection in sexual partnerships where only one part-
ner was included. HIV infection was considerably higher in triads than couples.
There are small proportions of sexual partnerships of size greater than three to
make valid comparisons. The maximum total number of HIV infected members
per sexual partnership size was three, and was among triads. The mean age at
first sexual intercourse was 18 and 17 years for men and women, respectively. The
mean number of lifetime partners was 15.8 and 2.0 for men and women, respec-
tively. Men tend to overstate their sexual behaviour whilst women understate
theirs.
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3. The Conditional Survival Model

The data analyzed is clustered within sexual partnerships. The HIV in-
fection time is interval-censored such that it is unobserved but only the time
interval within which HIV infection occurs is observed. Let vij = {Lij ;Uij}
(i = 1, · · · , I; j = 1, · · · , Ji) denote the examination endpoints encompassing the
unobserved HIV infection time tij ∈ (Lij , Uij ] where Lij is the last time a person
tested HIV negative and Uij is the first time a person tested HIV positive. For
right-censored observation, the observed time is Lij. For notational simplicity,
let Yij = (Lij , tij) denote both observed right-censored time Lij and unobserved
infection time tij. Define a non-censoring indicator δij = 1 if HIV positive and 0
otherwise. The ith sexual partnership frailty is denoted by bi.

The multiplicative frailty model is assumed. Baseline hazards are assumed
constant λ0(yij) = λ0 and the corresponding integrated baseline hazard is Λ0(yij) =
λ0yij. Throughout this paper, it is assumed that censoring and infection times are
independent. Therefore, the censoring process is non-informative. Conditional
on bi, survival times are independent and their conditional hazards distribution
is

h(yij |bi,Xij) = biλ0(yij)eβ′Xij

where Xij is the vector of covariates and β represents the corresponding covariate
effect. Those infected with HIV contribute to the likelihood the product of their
conditional hazards and conditional survival function whilst those who were right-
censored contribute only the conditional survival function. The conditional sur-
vival distribution is S(yij|bi,Xij) = exp[−H(yij |bi,Xij)] where H(yij|bi,Xij) =
biΛ0(yij) exp(β′Xij) is the integrated hazards corresponding to h(yij |bi,Xij). The
integrated fixed effects hazards are Λ(yij|Xij) = Λ0(yij) exp(β′Xij).

The frailties act multiplicatively on the baseline hazard and are interpreted as
relative risks (RR)s. They are unobserved and take only positive values. In this
work, they are modelled as independent random variates from a Gamma(α,α)
distribution. The RR for sexual partnerships has mean 1 and variance 1/α in
this case. The unit mean constrain ensures that the sexual partnership effects
represent deviations from the population average risk. The gamma distribution
is a popular choice for frailties, possibly due to its flexible shape and conjugacy
property (Guo and Rodriguez, 1992; Klein, 1992; Bolstad and Manda, 2001).
Heckman and Singer (1984) and Pickles and Crouchley (1995) discuss problems
associated with the choice of the frailty distribution.
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4. Maximum Likelihood Estimation

This section examines estimation of fixed effect parameters β, baseline haz-
ard λ0 and association parameter α from the Gamma frailty distribution using
maximum likelihood approach. To do this, we need the joint distribution of the
response vector and frailties. The response vector yi of sexual partnership i con-
sists of (possibly sub-vectors) observed vi and unobserved ti. Using conditional
independence between yi given bi, the complete-data likelihood contribution for
sexual partnership i is

Li(bi, vi, ti; θ) =
αα

Γ(α)
bα−1
i e−α bi

×
Ji∏

j=1

(
e−biλ0tijeβ′Xij

biλ0e
β′Xij

)δij
(

e−biλ0Lijeβ′Xij

)1−δij

(4.1)

where θ = {α, λ0, β}. The complete-data log-likelihood for sexual partnership i
corresponding to (4.1) is

li(θ) = α log α − log Γ(α) + (α − 1) log bi − αbi

+
Ji∑

j=1

δij [−biλ0tij exp(β′Xij) + log(bi) + log(λ0) + β′Xij ]

− (1 − δij)biλ0Lij exp(β′Xij). (4.2)

The complete-data log-likelihood (4.2) depends on functions of unobserved infec-
tion time (tij) and sexual partnership specific frailty (bi). Implementation of the
EM algorithm requires calculation of Q(θ; θ(r)) equal to the conditional expecta-
tion of (4.2) over all functions of unobserved data, given the observed data and
current estimate θ(r) of θ. The observed data likelihood Li(vi; θ) is attained by
integrating out unobserved data from (4.1) as follows:

Li(vi; θ)

=
∫ ∞

0

∫ Uiδi+

Liδi+

· · ·
∫ Ui2

Li2

∫ Ui1

Li1

Li(bi, vi, ti; θ) dti1 dti2 · · · dtiδi+
dbi

=
αα

Γ(α)

∫ ∞

0
bα−1
i e

−bi

(
α+

∑Ji
j=1(1−δij) Λ(Lij |Xij)

)

×
δi+∏
j=1

(
e−biΛ(Lij |Xij) − e−biΛ(Uij |Xij)

)
dbi

where δi+ =
∑Ji

i=1 δij is the total number of HIV positive members of a partic-
ular sexual partnership network. The number of people infected with HIV in a
particular sexual partnership is known at the analysis stage and thus δi+.
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It can be seen from (4.2) that we need only the conditional expectations of
bi, log bi and bitij. This is because (4.2) is a linear function of these quantities.
The conditional expectations of bi and log bi are computed using the marginal
conditional distribution of bi given the observed data. Firstly, the joint marginal
distribution f(bi, vi|θ) is

f(bi, vi; θ) =
∫ Uiδi+

Liδi+

· · ·
∫ Ui2

Li2

∫ Ui1

Li1

Li(bi, vi, ti; θ) dti1 dti2 · · · dtiδi+

=
αα

Γ(α)
bα−1
i e−bi(α+

∑Ji
j=1(1−δij )Λ(Lij |Xij)

×
δi+∏
j=1

(e−biΛ(Lij |Xij) − e−biΛ(Uij |Xij)).

Thus, the marginal conditional distribution of bi is given by

g(bi|vi; θ) =
f(bi, vi; θ)
Li(vi; θ)

=
bα−1
i e−bi(α+

∑Ji
j=1(1−δij)Λ(Lij |Xij)G(bi)∫ ∞

0 bα−1
i e

−bi

(
α+

∑Ji
j=1(1−δij) Λ(Lij |Xij)

)
G(bi) dbi

,

where

G(bi) =
δi+∏
j=1

(
e−biΛ(Lij |Xij) − e−biΛ(Uij |Xij)

)
.

The integrand expands depending on δi+. Therefore, the sums of integrals will
disappear by making each integrand mimic a gamma density. The EM algorithm
proceeds by iteratively computing the following E- and M-steps.

• E-step: The E-step computes the conditional expectations of bi, log bi and
bitij given the observed data and current parameter estimates of θ. The con-
ditional expectation of bi simplifies whilst that of log bi can be approximated
numerically. The conditional expectation E[bitij′ |Lij′ < tij′ ≤ Uij′ ; θ] is
calculated using f(bi, tij′ ; θ) where f(bi, tij′ ; θ) is the joint conditional dis-
tribution obtained by first integrating out the remaining sexual partnership
unobserved infection times tij , for j �= j′ from Li(bi, vi, ti; θ).

• M-step: The M-step of the algorithm involves maximizing Q(θ; θ(r)) af-
ter replacing bi, log bi and product bitij by their conditional expectations
in (4.2). Maximization is accomplished via Newton-Raphson algorithm
which requires evaluation of the first and second derivatives of Q(θ; θ(r)).
The parameters (α, λ0) and the parameter vector (β) are maximized se-
quentially.
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The two steps are iterated until convergence criterion is met. The EM algo-
rithm may show slow convergence if there is large amount of missing data, or if
the estimated hyperparameter heavily depends on missing data. The rate of con-
vergence in this study was satisfactory and thus complex computations involved
in the acceleration procedures were not used (Laird, Lange and Stram, 1987).

5. The Full Bayesian Estimation

The model framework presented in the preceding section is hierarchical and
fully specified from the frequentist point of view and the model parameters have
been estimated using the EM algorithm. In addition to this, we need to specify
priors for fixed effects β, baseline hazard λ0 and hyperparameter α before the
model is fully specified from a Bayesian perspective. The prior for β is assumed
multivariate normal with mean vector d0 = 0 and diagonal covariance matrix
Σ0 = υ0I, where υ0 is a suitably chosen large number. The prior mean is set to 0
since the fixed effects represent logarithms of RRs and not expected to be far from
0. The effect of these priors on the marginal posteriors of the regression coeffi-
cients is almost identical to the flat priors. A Gamma(ξ0, ζ0) prior distribution is
specified for the baseline hazard. The specification of priors for precision param-
eter is more difficult in hierarchical model setting. An improper prior can lead
to an improper posterior (Hobert and Casella, 1996). Thus, a Gamma (ν0, κ0)
prior for precision component is often assumed due to its conjugacy status. All
prior distributions are assumed independent of each other.

The modelling framework considered here is related to the work of Clayton
(1991), Gustafson (1997) and Bolstad and Manda (2001). All these authors
discuss Bayesian models for hierarchical multivariate survival data for precisely
known failure times. Gustafson (1997) used similar approach in the implementa-
tion of Cox partial likelihood. Bolstad and Manda (2001) presented a three-way
multilevel model for child mortality. In this work, an important aspect of sam-
pling interval-censored failure times conditional on examination times, frailties
and other observed data is considered. Sinha and Dey (1997) reviewed a number
of Bayesian methods for analysing survival data and clearly, the extensions of
semiparametric Bayesian model for analysis of multivariate survival data using
frailty model (Clayton, 1991) to interval-censored data are not immediate.

Figure 1 presents the directed acyclic graph of the model. Each parameter
node is circled; the data and prior constants are indicated by rectangles denoting
that they are fixed. The joint distribution of all parameters, hyperparameters and
the data can be written as the product of all prior and conditional distribution
as follows:
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Figure 1: The directed acyclic graphical model representation of migration data
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f(data, β, λ0, tij , bi, α) = f(β)f(λ0)f(α)
I∏

i=1

f(bi|α)
Ji∏

j=1

Li(yij|β, λ0, bi). (5.1)

In Bayesian analysis, the joint posterior distribution of all parameters given the
data is required. In our model, the joint posterior distribution cannot be obtained
analytically. Instead, we use the Gibbs sampler (Geman and Geman, 1984) to ob-
tain the required posterior. The Gibbs sampler proceeds by iteratively sampling
from the conditional posterior distribution of each parameter using the most re-
cent values of the given parameters. This generates a Markov chain in the process
and the chain has the joint posterior as its long-run distribution.

In a hierarchical model, the conditional distribution of one node given all
the other nodes is proportional to the prior distribution of that node times the
conditional distribution of all its direct child nodes and co-parent nodes. The
relevant Gibbs conditionals can be computed from the joint distribution (5.1)
and some of these conditionals are presented here below:

• f(bi|data, β, λ0, tij , α) ∝ b
∑Ji

j=1 δij+α−1

i

× e
−bi

[
α+

∑Ji
j=1 δijΛ(tij |Xij)+{1−δij}Λ(Lij |Xij)

]

which we recognize as the kernel of a gamma distribution with shape α+
∑Ji

j=1 δij

and inverse scale α +
∑Ji

j=1[δijΛ(tij |Xij)+ (1− δij)Λ(Lij |Xij)]. This node can be
sampled directly.

• f(tij|Lij < tij ≤ Uij ,data, β, λ0, bi, α) = f(tij |data,β,λ0,bi)∫ Uij
Lij

f(t|data,β,λ0,bi,α)dt

∝ exp(−tijbiλ0e
β′Xij )

which we recognize as the kernel of a gamma distribution with shape 1 and in-
verse scale biλ0e

β′Xij . Such a gamma distribution is equivalent to an exponential
distribution with parameter biλ0e

β′Xij . This node can also be sampled directly
on condition that the sampled value tij ∈ (Lij, Uij ].

• f(α|data, β, λ0, bi) ∝ κ
ν0
0

Γ(ν0)
αν0−1e−ακ0 × ∏I

i=1
αα

Γ(α)b
α−1
i e−αbi

∝ αν0−1 ×
(

αα

Γ(α)

)I (∏I
i=1 bi

)α−1
e−α[κ0+

∑I
i=1 bi].

This full conditional does not simplify to any standard distribution. Methods
for sampling from an arbitrary conditional distribution are required. It turns
out that the full conditional distribution is a simple log-concave distribution in α
and thus can be sampled efficiently using the adaptive-rejection sampling scheme
(Gilks and Wild, 1992).
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• f(β|data, λ0, tij, bi, α)

If a flat prior f(β) = 1 is assumed for β, the posterior mode can be replaced by the
maximum likelihood estimate β̂ and the log posterior density by the log likelihood
function. The normal approximation, with mean and covariance matrix equal to
the mode and inverse of the information obtained from the maximum likelihood
estimation, can be used in the Metropolis step to generate candidates for β.

6. Application and Comparison

The possible risk factors of HIV considered in our analysis include migration
status, age at recruitment, number of lifetime partners, and number of recent sex-
ual contact partners, syphilis status and status of other STIs. Other STIs refer to
the status of any of the following STIs: chlamydia, gonorrhoea, genital discharge
and genital sores. These are typical covariates that are considered important
determinants of HIV infection. Circular migration is one of the structural factors
associated with HIV infection, but the dynamics and complex role of circular mi-
gration as a determinant of HIV infection is still a major issue for social science
research. Importance of migration as a risk factor lies in the assumption that
circular migrant men, whilst away from their partners, engage in risky sexual be-
haviour with other female sexual partners (Lurie, et al. 1997). During this period
of migration, partners of circular migrant men are also as likely to acquire extra
sexual partners (Lurie, et al. 1997). Risk factors parallel to the epidemic of HIV
such as the number of lifetime partners are considered important determinants
of HIV infection due to their cumulative effect. Evidence shows that STIs, both
ulcerative and non-ulcerative, facilitate transmission of HIV (Wasserheit, 1992).

The EM algorithm and the Gibbs sampler were implemented on Microsoft
Visual C++ Version 6.0. For Bayesian inference, five parallel chains were run
from independent starting points for 2n =4 000. All the fixed effects parameters,
some random effects, inverse scale, baseline hazard and some infection times
were monitored for convergence. Gelman and Rubin’s (1992) scale reduction
factor and other convergence checks were computed. These convergence checks
were satisfactory. The first 2 000 iterations were discarded. Starting from the
4 000th iteration, a further 38 000 values were simulated. Every 100th value
was taken resulting in 2 000 nearly independent samples from the joint posterior
distribution.

It is worth mentioning that fixed effect sampling scheme involved an EM
estimation for maximum likelihood estimates and the calculation of Fisher infor-
mation matrix. The resulting estimates were used in the proposal density for the
Metropolis step. This was computationally intensive and equal sampling of all
parameters led to correlated values of bi, tij , α and λ0 compared to β values.
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Table 2: Results for HIV infection among migratory partnerships form South
Africa

EM algorithm Gibbs sampler
Parameter Mean SD Mean SD

Baseline hazard
Constant 0.007 0.022 0.013 0.004

Migration status
Migrant men −0.156 0.911 0.391 0.276
Partners of migrant men −0.204 0.886 0.354 0.276
Non-migrant men −0.616 0.440 −0.103 0.276

Age in years
18 to 24 0.861 2.360 1.590 0.383
25 to 34 0.330 1.110 0.709 0.201

Recent sexual contact partners
More than one 0.174 1.020 0.609 0.216

Number of lifetime partners
More than one 0.113 0.944 0.521 0.215

Syphilis
0=Negative, 1=Positive 0.147 0.849 0.501 0.179

Status of other STIs
0=Negative, 1=Positive 0.167 1.020 0.588 0.218

Frailty variance
Sexual network 0.614 1.120 0.812 0.120

Thus, the iteration scheme was modified to iterate through bi, tij , α and λ0 five
times for each draw of β. The modification greatly improved efficiency. The
acceptance rate for candidate β was about 54%, which was well within 30% and
70%, the recommended acceptance rate (Raftery and Lewis, 1996). The high
acceptance rate indicates that the multivariate normal proposal distribution is a
good initial approximation to the actual conditional posterior.

The estimates from both methods are presented in Table 2. The fixed effects
estimates are presented on a log scale where no risk is represented by 0. Standard
deviations from the EM algorithm were computed using the SEM methods pro-
posed by Meng and Rubin (1991). The estimates of the fixed effects and baseline
hazard are similar for all practical purposes to the respective modes obtained
from the EM algorithm. However, variance parameter estimates differ markedly
between the two methods. The Gibbs sampler provides variance estimates that
are larger than those from the EM algorithm. The estimate of sexual partnership
frailty variance from the Gibbs sampler is quite large compared to the estimate
obtained from the EM algorithm. The posterior median and mean is 0.788 and
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0.812, respectively. The 95% credible interval for sexual network frailty variance
is (0.614, 1.120). In the EM algorithm, the mode of the sexual partnership frailty
variance was estimated to be 0.462. The unfavorable consequence is that if one
based inference on the EM algorithm, the resulting confidence intervals would be
narrower and differences more significant.

7. Data

The Gibbs sampler and the EM algorithm have been implemented on cor-
related interval-censored data. The paper showed that Bayesian analysis via
MCMC is capable of not only incorporating information about frailties and in-
fection time, but also uncertainties about available information. For example, the
uncertainty about the true values of variance components is formally incorporated
into the analysis through the choice of a plausible prior distribution.

The fixed effects results from the Gibbs sampler are in good agreement with
the corresponding posterior modes from the EM algorithm. This agreement is
generally expected due to the specified proper prior for fixed effects which is
nearly flat in the region near zero (Harville, 1974). However, estimated standard
deviations from the likelihood approach are severely biased downwards. The bias
reflects the incapability of likelihood approach to correct for variability of unob-
served frailties and infection time (Ripatti and Palmgren, 1999). Downward bias
in standard deviations observed in the likelihood estimation is highly undesirable
because it provides false sense of security for the estimates. The frailty variance
estimate from the EM algorithm also shows similar downward bias compared to
the estimate from the Gibbs sampler.

The Gibbs sampler has been shown to be a plausible alternative to the EM
algorithm in this setting. The Gibbs sampler does not require evaluation of high-
dimensional integrals as done in the EM algorithm. Estimation via the Gibbs
sampler is advantageous in that it is easily extendable to other frailty distributions
(Sargent, 1998). Superiority of the Gibbs sampler has also appeared in three-way
multilevel hazards model for right-censored data (Manda, 2001).
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