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Abstract:  This paper provides a Bayesian approach to estimating the in-
terest rate term structures of Treasury and corporate debt with a penalized
spline model. Although the literature on term structure modeling is vast, to
the best of our knowledge, all methods developed so far belong to the fre-
quentist school. In this paper, we develop a two-step estimation procedure
from a Bayesian perspective. The Treasury term structure is first estimated
with a Bayesian penalized spline model. The smoothing parameter is nat-
urally embedded in the model as a ratio of posterior variances and does
not need to be selected as in the frequentist approach. The corporate term
structure is then estimated by adding a credit spread to the estimated Trea-
sury term structure, incorporating knowledge of the positive credit spread
into the Bayesian model as an informative prior. In contrast to the frequen-
tist method, the small sample size of the corporate debt poses no particular
difficulty to the proposed Bayesian approach.
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1. Introduction

This paper presents a term structure estimation method using Bayesian pe-
nalized splines. The term structure of interest rates describes how the interest
rate of bonds evolves over time. This interest rate is implicitly determined by the
price of the bonds through any of the discount function D(0,7"), the yield curve
y(0,T), or the forward rate f(0,7"), where T is time to maturity from today (time
0).

To simplify the notation, we consider current time to be fixed at 0 and omit
0. The discount function D(T') represents today’s price of a zero coupon bond
(a bond that pays no interest or principal until maturity and then pays a fixed
amount called the par value) that pays one dollar at maturity time 7". The yield
curve y(T') = f(;f f(s)ds/T gives the average of the forward rate between today
(time 0) and the maturity date T. The forward rate f(s) is a variable interest
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rate (changing over time s). It is the interest rate one can lock in today for future
borrowing or lending at time s. The relationships among these three functions
are:

D(T) = exp{~Ty(T)} = exp(= [ f(5)ds). (1.1)

Availability of any one of the three determines the rest.

To estimate the term structure, a spline may be used to model the discount
function D(T'), the yield curve y(T'), or the forward rate f(s). However, Fisher,
Nychka, and Zervos (1995) conclude that modeling the forward rate using a spline
gives the most accurate estimation. Moreover, modeling the forward rate f(s)
with a spline naturally embeds the constraint that a dollar paid today is worth
a dollar: D(0) = 1. On the other hand, modeling the discount function with
splines requires the constraint D(0) = 1 to be imposed. Shea (1985) notes seri-
ous problems when modeling the discount function D(T') with splines: negative
forward rates and instability at the long maturities. Moreover, for monetary pol-
icy purposes, estimating the forward rate may be the objective (Anderson and
Sleath 1999). Therefore, only the term structure of the forward interest rate is
considered in this paper.

The term structure of government debt such as US Treasury bonds is of in-
terest to monetary authorities as it contains information about current macroe-
conomic conditions and market participants’ expectation of future economic con-
ditions. Treasury bonds are virtually risk free as they are backed by the taxing
power of the government. The term structure of such bonds provides a bench-
mark for analysts and traders to assess other securities. The term structure can
also be used to price financial products such as bonds, swaps, etc. To maximize
returns, fixed-income money managers vary their portfolio based on the term
structure as it reveals the volatility in the interest rate along the time line.

Corporate bonds bear credit risk in that a company may default on its debt.
Due to increased trading in instruments with credit risk, credit derivatives were
created to partially or fully offset the credit risk of a business deal. Estimation
of the corporate term structure is becoming increasingly important in financial
markets as the market for credit derivatives grows explosively. The size of the
credit derivatives market in 2001 reached around 835.5 billion dollars. Pricing
models for both corporate debt and credit derivatives require the corporate term
structure as input (see Jarrow and Turnbull 1995; Duffie and Singleton 1999).

Much research has been done in term structure estimation. McCulloch (1971,
1975) and Shea (1984) estimate the discount function with regression splines.
Vasicek and Fong (1982) and Shea (1985) estimate the discount function with
exponential splines. Chambers, Carleton, and Waldman (1984) estimate the
yield curve with polynomials. Adams and Van Deventer (1994), Fisher et al.
(1995), Tanggaard (1997), and Waggoner (1997) estimate term structure using a
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smoothing spline model, minimizing a penalized sum-of-squared-errors criterion.
Schwartz (1998) adopts a robust criterion in eliminating outliers and estimates the
term structure of AAA credit class corporate debt by fitting the forward rate with
a piecewise constant curve. Linton, Mammen, Nielsen, and Tanggaard (2001)
present kermel methods in term structure estimation and establish asymptotic
properties. JRY (Jarrow, Ruppert, and Yu 2004) estimate the term structure of
individual corporate bonds when the sample size is very small (typically 4 or 5).
They adopt a semi-parametric model to estimate the individual corporate debt
term structure. They estimate the Treasury term structure with a nonparametric
penalized spline model by minimizing the sum of the least squares criterion and a
roughness penalty term. Due to the limited number of individual corporate bonds
available, they obtain the individual corporate debt term structure by adding a
credit spread to the Treasury term structure.

To the best of our knowledge, all of the term structure modeling approaches
that have appeared in the literature belong to the frequentist school. In this pa-
per, we provide a Bayesian approach to estimating Treasury and corporate term
structures with a penalized spline (P-splines) model. Eilers and Marx (1996),
Ruppert and Carroll (1997), and Ruppert, Wand, and Carroll (2003) present pe-
nalized splines in detail. The models considered in these works are all linear in
nature. The term structure models we estimate are nonlinear since the forward
rate term appears exponentially in the discount function. We develop a Bayesian
penalized spline model and employ Markov chain Monte Carlo (MCMC) tech-
niques in our term structures estimation.

We model the forward rate curve f with a spline f = & B, where 6 is a vector
of spline coefficients and is a matrix of spline basis functions such as power basis
or B-splines. We use penalized splines to estimate the forward rate term structure
of Treasury and corporate debt. The classical penalized splines minimize the sum
of the lack of fit of the data and a roughness penalty measure. The forward rate
f = &'B is estimated by minimizing

LSNP w@) + ap(d) (1:2)
=1

where P; is the observed bond price, 1;(d) is the model price from the penalized
spline model, « is the smoothing parameter, and p(d) is a roughness penalty
measure. The roughness penalty measure is a function of the spline coefficients.
The smoothing parameter « is chosen to control the trade-off between the lack
of fit and the roughness measure.

The roughness measure can also be treated as the prior information on the
spline coefficients within a Bayesian framework. It represents our subjective
knowledge about the spline coefficients while the lack of fit term is our attempt
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to estimate the spline coefficients with the existing data. This is the approach
we take.

We also estimate the corporate term structure by adding a credit spread to
the estimated Treasury term structure as in JRY. A credit spread represents the
excess return from a corporate bond over the return from an equivalent Treasury
bond. It can be used to assess credit quality for related uses in risk management
procedures (see Jarrow 2001). Credit quality assessment is essential for bond
portfolio management, value at risk computations, and even FDIC insurance
premium calculation'. An estimate of the credit spread gives an approximation
of the term structure of the individual corporate bond. This term structure can
be used to price and hedge corporate debt, a common risk management practice
in business (see Jarrow 2002).

There are usually quite many Treasury bonds available but far fewer indi-
vidual corporate bonds in trading. Borrowing strength from the Treasury term
structure to estimate corporate term structures is natural. A Bayesian approach
facilitates this “borrowing strength” nicely. We include the information that
this credit spread should be positive because corporate securities are riskier than
Treasury securities. The knowledge that this credit spread is positive can be
easily incorporated into the Bayesian model as prior information. On the other
hand, within the frequentist framework, forcing the credit spread to be positive is
equivalent to adding n constraints to the minimization criterion aforementioned,
where n is the number of corporate bonds available. It is possible to solve this
constrained nonlinear optimization problem. However, the small sample size of
corporate bonds available on a given day is 4 or 5 on average (JRY). This makes
it difficult to justify the frequentist statistical inference procedures as they rely
on the assumption of large samples. On the other hand, the Bayesian approach
does not rely on this kind of assumption.

Compared with the frequentist approach, the Bayesian approach has several
advantages. First, frequentist large sample asymptotic statistical procedures of-
ten break down when the sample size is small. With a Bayesian approach, the
small sample size of individual corporate bond data poses no problem in sta-
tistical inference. Second, we are able to incorporate important information of
positive credit spreads between corporate and Treasury securities into the model
through the adoption of an informative prior distribution. Third, the role of the
smoothing parameter is diminished. The smoothing parameter is used to control
the trade-off between lack of fit and overfitting. A common criterion to select the
smoothing parameter in the frequentist approach is generalized cross validation
(GCV) or cross validation (Cj) through grid search. With the Bayesian approach,
the smoothing parameter is obtained as a by-product and does not need to be

'See: http://www.fdic.gov/deposit /insurance/initiative/OptionPaper.html.
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selected.

The remainder of the paper is organized as follows. We describe the fixed
income data base in Section 2 and present a Bayesian approach to estimating the
Treasury term structure with penalized splines in Section 3. We then illustrate
the Bayesian estimation of the corporate term structure with informative priors
in Section 4. Some concluding remarks follow in Section 5.

Table 1: A Sample of five of the 117 US Treasury STRIPS on December 31,

1995.

Current Date Issue Date Maturity Date Market Price
19951231 19850215 19960515 98.155
19951231 19850215 19961115 95.717
19951231 19850215 19970515 93.215
19951231 19850215 19971115 90.852
19951231 19850215 19980515 88.481

Table 2: AT&T Bonds on December 31, 1995. Coupon listed is the semi-annual
dollar coupon payment.

Current Date Issue Date Maturity Date Market Price Coupon

19951231 19920114 20020115 109.458 7.125

19951231 19940324 20040401 106.284 6.750

19951231 19940601 20060601 111.436 7.500

19951231 19950228 20070301 115.509 7.750

19951231 19950512 20050515 107.659 7.000
2. Data

The University of Houston Fixed Income database contains over 28,000 in-
struments, including publicly traded non-convertible debt with principal value
no less than one million dollars. Warga (1995) gives a detailed description of
the database. The bond data that make up the Lehman Brothers Bond Indices
are reported with month-end flat prices, accrued interest, coupon, yields, current
date, issuance date, maturity date, S&P and Moody’s ratings, and option-like
features. The market price of a corporate bond equals the quoted flat price plus
the accrued interest. The data we use are US Treasury STRIPS (Separate Trad-
ing of Registered Interest and Principal of Securities) and AT&T Bonds from
April 1994 to December 1995. The US Treasury STRIPS (coupon and principal
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STRIPS) are zero coupon bonds that are synthesized from the coupon and prin-
cipal payments of Treasury bonds. Table 1 shows the market prices of five of the
117 US Treasury STRIPS on December 31, 1995 in the fixed income data base.

Table 2 shows the market prices of all five AT&T bonds available on December
31, 1995:

There are usually few individual corporate bonds available in a given month.
JRY observe that on average there were only 4.3 AT&T bonds available per
month during the period of April 1994 to December 1995. It is difficult to ob-
tain a meaningful estimate of the corporate term structure based on these few
observations. On the other hand, the average number of US Treasury STRIPS
per month during the same period was 117, ranging from 115 to 120. Borrowing
strength from other sources such as US Treasury STRIPS becomes necessary in
estimating the term structure of individual corporate bonds.

For estimation, time-to-maturity and the coupon payment times need to be
converted to the same unit scale. These can be easily accomplished with the
Matlab finance toolbox functions days365() and cfdates(). Days365() counts the
number of days between dates based on 365-day year and cfdates() gives cash
flow dates for a fixed-income security. We use days365() and cfdates() based on
conventional actual/365 day count.

3. A Bayesian Model for the Term Structure of Treasury Bonds

3.1 Model

In this section, we estimate the term structure of US Treasury bonds using
Bayesian penalized splines. Let P;,7 = 1,...,n, be the market price of the -
th bond at time 0. Each bond pays fixed coupons and principal C;(t;;) due on
dates t;;, where j = 1,..., 2z and z; is the total number of coupon and principal
payments for the ith bond. Thus, ¢;; is the first coupon payment date and ¢;,,
is the maturity date of bond i. According to the theory of term structure, the
model price for the coupon bond, p;, is related to the forward rate f through the
discount function:

pi= 3" Cilti)D(tig) = 3 Ciltiy) expl— /0 7 f(s)ds}, (3.1)
J=1 J=1

where the current time is assumed to be 0. For zero-coupon bonds such as the
US Treasury STRIPS data we use, there is no coupon payment and only the
principal is due on the maturity date. Equation (3.1) reduces to

T;
i = Lexp{— / £(s)ds}, (3.2)
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where L is the principal and 7; is time until maturity for the ¢-th bond. However,
many Treasury bonds pay coupons.

The forward rate curve f is modeled as splines f(s) = 6'B(s), where B(s) is
a vector of spline basis functions and § is the coefficient vector. We use the d-th
degree power basis:

K
F(s) =60+ 615+ +0as"+ > Sapnl(s — tr)].
k=1

Here
8= 1[00,01,..,0a+x]"

and
B(s) = [l,s,...,sd,(s—tl)i,...,(s—tK)i],

where (s — t;)4 = max(0,s — t;) and {tx}5_, are K fixed spline knots. Power
basis has the advantage of being simple and allows easy modeling of the credit
spread for corporate term structure in the later portion of the paper. Moreover,
setting some polynomial coefficients to zero allows convenient modeling of sub-
models. However, other basis, such as B-spline basis (de Boor 1978), can also be
used.

The model relating the observed market price P; and the model price pu; for
the ith bond is:

P = i + €,

where the disturbances ¢;,7 = 1,...,n, are assumed to be normal with zero
mean and constant variance. JRY estimate & by minimizing a penalized sum-
of-squared-errors criterion (1.2), where the roughness penalty measure p(d) =
ad’'Gd and G is a symmetric, positive semi-definite penalty matrix. If we choose
the penalty matrix G to be a diagonal matrix with its last K diagonal ele-
ments equal to one and all others zero as in Ruppert and Carroll (1997), the
roughness penalty measure ' D4 quantifies the closeness of the spline coefficients
0d+1,0d+2, - --,0d+K to zero. The positive smoothing parameter « controls the
trade-off between the two terms in the minimization criterion. A large « shrinks
the spline coefficients toward zero and the lack of fit term plays an insignificant
role in the minimization criterion, yielding large model errors. On the other hand,
a small a puts more emphasis on the lack of fit term, making the model errors
small. Thus, the smoothing parameter « controls the trade-off between lack of
fit and overfitting the sample.

As we have noted in Section 1, the roughness measure can also be treated
as the prior information on the spline coefficients within a Bayesian framework.
Here we assume the disturbances follow a normal distribution with mean zero and
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constant variance 0. We impose normal prior distributions on the polynomial
coefficients with dg,d1,...,8, distributed as N(0,0%) and the knot coefficients
8di1s 0412, - - 041k distributed as N(0,03). If o7 is infinity, the posterior distri-
bution of the coefficients is proportional to

} . (3.3)

oo (-3) | (- + (oas)

If we let the smoothing parameter a be 02 /03, the mode of this posterior distribu-
tion (3.3) minimizes the criterion in (1.2), as pointed out by Ruppert and Carroll
(1997) for the linear penalized spline model. Thus, minimizing (1.2) is equivalent
to finding the mode of (3.3). The reason for o being set to infinity is that the
polynomial coefficients dg, d1, . . . , 54 are not penalized. Only the spline coefficients
0d+1,0d+2, - - -, 04+ are penalized and they are assumed to be exchangeable. The
idea of treating the smoothing parameter as a variance ratio was first proposed
by Lindley and Smith (1972) in the scenario of exchangeability within multiple
regression equations. Since the variances o2 and o3 in (3.3) are unknown, we
develop a hierarchical Bayesian approach to estimate the coefficients.
We consider the following model:

P=u+e
where
eNN(0702I)7 P:[P17P27"'7Pn]/7 IJ’[MDIU’Qw"MU’n]/a

and
Zj ti'
i = ZC(tz‘j)eXP{—/ " §'B(s)ds),
j=1 0

and n is the total number of Treasury bonds available. By assuming the dis-
turbances to be normal, we are in fact minimizing the sum of the least squares
criterion and a roughness penalty term as in (1.2). To simplify the notation, we
integrate the forward rate:

tij tij tij s
; (s)ds = ; 'B(s)ds = 5'/0 B(s)ds = §' B (t;;),

where
tij
Bl(tij) = / B(s)ds
0

2 d+1 d+1 d+17t
B T R0 - Rt 9 4
Yo Td4+1 d+1 d+1
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Then the model price for the coupon bond can be expressed as

i = Z C(ti;) exp{—6'B (t;;)}.

J=1

Note that this model is nonlinear in nature since the spline coefficients appear in
the exponential term in the discount function.

We adopt the usual conjugate priors for the coefficient vector § and the error
variance o2 and develop an MCMC sampling scheme to find the parameter esti-
mates. According to the prior specification above, the prior distribution for the
coefficient vector § is multivariate normal N (0, C), where

2
o 011d+1 0
€= [ 0 o3lg ] '

The error variance o2 has an Inverted-Gamma distribution: 1G(a,b). We impose

a second-stage prior on o5: an Inverted-Gamma distribution, IG(ag,by). Here

a,b,as and by are constants. Let [ | denote probability densities. The joint
density of P, 8, and o2 can be written as
[P,8,0% = [P|5,07][8][0”]
= N,(P|p,0°T) x Nyyg41(6]0,C) x IG(c* | a,b)

The posterior distribution of the coefficient vector § is

[01P,0% 0f,03] o [P |4, 0% o1, 03][8]

o N (P | p,0°T) x Nayx11(6]0,C)
x exp [(—1) <(P “WIP o, 5'0—15)} , (3.4)

2 o

where o« means proportional to. This posterior distribution is not of any known
type and the Metropolis-Hastings algorithm (Hastings 1970) is needed to draw
random variates.
The posterior distributions of ¢ and o2 are shown below:
[0° | P, 8,a,b] o [P|8,0%][6][07]
x N, (P | p,0*1)IG(a,b)

x (o)~ (H20+2) g, [(_%) ((P - M);(P — ) n %)]

This is an Inverted-Gamma distribution:

IG(nga,((P_“);(P_“’)+%)_1>.
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Similarly, the posterior distribution for o3 can be found to be an Inverted-Gamma
distribution:

-1

K [6%, . +:+62 1
I1G as + —, dt1 d+K+—
2 2 by

Unlike the posterior distribution for d the random variates for these two
posterior distributions of 0% and o3 are readily available. If we allow a and as to be
small while b and by to be large, the impact of our prior distributions for o2 and o3
on the corresponding posterior distributions will be minimal. Doing so allows us
to adopt the usual diffuse (vague) priors. Also, the smoothing parameter, «, in the
classical penalized splines, is the ratio of the modes of these two Inverted-Gamma
distributions. Thus, the smoothing parameter « is automatically obtained within
the Bayesian framework. We describe the MCMC computation algorithm in more
detail in the next section.

3.2 Algorithm

The conditional distributions of the variances are Inverted-Gamma and can be
drawn directly. To draw the coefficient vector §, we implement the Metropolis-
Hastings algorithm. First, at iteration J we draw § from a proposal density,
a multivariate normal distribution N (5(‘] -, Y) where ¥ is tuned so that the
acceptance rate of the algorithm is around 10%. Second, compute the ratio
A = [6]/[6")] where [ ] is the posterior density of & without the normalizing
constant. The normalizing constant is not needed in the ratio due to cancellation.
Third, generate a random number v between 0 and 1. If v < X, 6¢) = 4.
Otherwise, 6¢) = U1 To facilitate computation, the ratio A can be shown to
be

1\ [ — 2P (p, —
exp <§> [uu u*u*+2 (s — 1) L oC16— 5.0
g

where ¢ is generated from the proposal distribution and g is computed with the
generated 0 as the input. The simulation algorithm uses both the Metropolis
algorithm and Gibbs sampling and is the so-called Metropolis within Gibbs algo-
rithm. A detailed presentation of these sampling schemes can be found in Robert
and Casella (1999). The algorithm is summarized below:

Step 1. Choose arbitrary starting values for parameter estimates of 4.
Step 2. Set a and as to be small positive numbers. Set b and bs to be large
positive numbers.
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Step 3. Draw from Inverted Gamma

G (% ‘e ((P—m;(P—m . i)) |

Step 4. Draw o3 from Inverted Gamma

—1
2 2
e 12( (5d+1+"'+5d+1<+1>

at 5 2 by

Step 5. Draw § with the Metropolis-Hastings algorithm outlined above.

We note that when a, as are small and b, by are large, the priors for o2 and 0%
have minimal impact on their posterior distributions respectively. The smoothing
parameter equals the ratio of the modes of these two posterior distributions.
Thus, our priors have little effect on the smoothing parameter and it is chosen
automatically by the data.

We apply this Metropolis within Gibbs algorithm to the US Treasury STRIPS
data available on December 31, 1995 (see Table 1). The knots carefully chosen
by Schwartz (1998) are used here. These knots are located at times to maturity
of 1 year, 2 years, 3 years, 4 years, 6 years, 8 years, 10 years, and 18 years. We
also adopt the automatic quantile knots used in penalized splines (Ruppert and
Carroll 1997). The knots can be equally spaced or placed at uniformly spaced
quantiles of maturity time 7; where the knot ¢; is the (k/(K + 1))-th sample
quantile of the T;’s. A quadratic spline (d = 2) is adequate for the data. It is
also easy to use splines with different degrees. For Step 5, a burn-in phase of
100,000 simulation draws was sufficient to achieve convergence and 10,000 draws
were saved for computing the estimates. Convergence in Steps 3 and 4 can be
achieved much more rapidly.

We report the mean absolute deviation (MAD) and the root mean squared
error (RMSE) in Table 3 along with those from JRY and Schwartz (1998), us-
ing both the fixed 8 knots in Schwartz (1998) and the 8 automatic quantile
knots. Both MAD (MAD = (1/n) " ,|P; — i;|) and RMSE (RMSE =
V(1/n) YT (P — pi)?) measure the goodness-of-fit. The MADs and RMSEs
from the Bayesian approach are similar to the ones given by JRY under the 8
fixed knots. They are much smaller than the MAD and RMSE from Schwartz’s
piecewise constant method.
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Table 3: Results for US Treasury STRIPS on December 31, 1995. The piecewise
constant fit is as in Schwartz (1998), with d = 0 and « = 0; the quadratic spline
fit is as in JRY, with d = 2 and « chosen by GCV; the Bayesian quadratic spline
fit uses d = 2 and « is the ratio of two posterior variances. Spline knots are either
fixed and located at times to maturity of 1 year, 2 years, 3 years, 4 years, 6 years,
8 years, 10 years, and 18 years, as in Schwartz (1998), or are placed at uniformly
spaced quantiles of maturing times.

Type of Schwartz d =0 JRY d =2, GCV Bayesian, d = 2 Normal
Methods

Knots fixed (8) fixed (8) auto (8) fixed (8)
MAD 0.20 0.04 0.04 0.04
RMSE 0.25 0.06 0.06 0.06

The method is then applied 21 times independently to the 21 monthly data
sets from April 30, 1994 to December 31, 1995. Figure 2 (see Section 4) displays
the fitted forward rate from April 30, 1994 to December 31, 1995. The STRIPS
data are sparse after 20 years to maturity and only the forward curves up to
20 years to maturity are plotted. We do not recommend using the fitted values
after 20 years to maturity. By graphing the 21 fitted curves in one figure, we
show both the evolution of the end-of-month forward rate from April 30, 1994 to
December 31, 1995 and the rate based on years to maturity from 0 to 20 years.
If maturity is fixed, the forward rate is a function of time. The evolution of the
term structure displayed in this figure has important applications such as pricing
interest rate derivatives (Jarrow 2002).

Remark: The Treasury STRIPS are zero-coupon bonds as stated in (3.2):

T;
pe=Lesp(= [ f)ds).

A monotonic log transformation may be adopted (JRY). An advantage is that
log(u;) of equation (3.2) is now linear in the parameters so that a linear Bayesian
penalized spline procedure (Ruppert et al., 2003) can be used. That is, the condi-
tional posterior distribution of the coefficient vector is a multivariate normal, not
the indeterminate type in (3.4). Gibbs sampling can be used to easily draw ran-
dom variates from the three conditional posterior distributions. We implemented
this linear model and did not find noticeable differences from the previous non-
linear approach. However, for general coupon bonds, the proposed nonlinear
procedure needs to be applied.
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4. Bayesian Estimation of the Corporate Term Structure with Infor-
mative Priors

We have estimated the term structure of Treasury bonds using Bayesian pe-
nalized splines. In this section, we illustrate Bayesian estimation of the corporate
term structure with informative prior distributions on the parameters.

Since the number of corporate bonds available is very small, we need to esti-
mate the corporate term structure by borrowing strength from the Treasury term
structure. As in JRY, we model the corporate term structure f.(s) by adding a
spread to the estimated Treasury term structure fTrea(s) from Section 3:

fe(s) = frrea(s) + spread.

For a constant spread, f.(s) = fTrea(s) + Bo = 6.B(s) where
8. = [60 + Bo. 01,09, ..., 0ark]'-

For a linear spread,

66 = [30 +/80731 +ﬂl7327° .. 73d+K]/'

For a quadratic spread,

50 = [80 +50781 +51782 +52,(§3, . 7(§d+K]/-

We first consider estimation of a constant spread. Since the Treasury securi-
ties are backed by the taxing power of the US government, corporate debt should
be riskier than Treasury securities. As a result, the forward rate for corporate
debt should be higher than those for Treasury securities, as a premium is required
to compensate for the risk. Consequently, we incorporate the knowledge of pos-
itive credit spreads into our Bayesian model as informative priors. We assume
that the spread is between 0 and a positive constant prior to our estimation,
where the prior for a constant spread is supposed to follow a uniform distribution

(0,9):

1
[Bo] = §I(O,g) (Bo) o< I(9,4)(B0)

The posterior distribution for the constant spread is:

i (P~ Hi)2> ’

| ] ox [P | ] o T o) (~ =210

where n. is the number of corporate bonds, P; is the observed price of the i-th
corporate bond, and yi; = 3771 Cy(t;) exp{— fg” fe(s)ds} (each bond pays fixed
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coupons and principal C;(t;;) due on dates ¢;;, where j = 1,..., 2 and z; is the
total number of coupon and principal payments for the i-th bond). This is not
of any known distribution and we again apply the Metropolis algorithm. The
posterior distribution of the error variance is an Inverted-Gamma distribution:

e )2 -1
[0'2|P’ﬂ07a7b] ~ IG (% +CL, (Zzl(]:)z ,Uzl) 4 1) > '

2 b

To estimate the linear spread, we adopt a flat prior and add a constraint: 0 <
fo+B1s < g. The prior distribution can be written as: [Go, £1] o L(9<g,+8,s<g)(50,
B1). For the quadratic spread, the constraint becomes: 0 < 3y + (15 + (2s% < g.
The prior becomes: [Bo, 81, 82] < I9<gy+8+8252<g)(B0; B1, F2). One needs to
choose g to complete the prior specification. This prior information can come
from one’s subjective knowledge. For example, a trader who has previously traded
AT&T bonds before has some idea regarding the difference between US STRIPS
and AT&T bonds. The prior information can also come from previous empirical
studies on the AT&T bonds credit spread. We suppose g to be 0.2 as we believe
it is reasonable to assume that the credit spread is between 0 and 0.2 prior to
estimation.

We note that the priors we have adopted are equivalent to constraints in a
nonlinear optimization problem with a frequentist approach. The average sample
size of the individual corporate bonds on a given day is only 4 to 5. Within the
frequentist framework, large-sample theories cannot be applied. JRY use a para-
metric bootstrap procedure for inference. With the Bayesian approach, statistical
inference does not rely on the assumption of large samples and can be easily per-
formed. The Bayesian approach allows one to obtain the posterior interval, a
100(1 — a))% central interval, from MCMC sample draws. The estimation results
are summarized in Table 4.

We notice that under the quadratic spread, the probability that the constant
spread lies in the interval (0.0045, 0.0075) given the observed bond prices is
0.95 while the confidence intervals for the linear spread and the quadratic spread
include 0. Under the linear spread case, the confidence interval for the linear
spread also contains 0. The confidence intervals for the constant spread coefficient
clearly do not contain 0. There is a 0.95 probability that the constant spread
is between 0.0038 and 0.0044. Hence, the simple model of a constant spread
is supported by the data. The results are not surprising. A constant spread
(one parameter) is sufficient to model a sample of 5 bonds. However, for other
individual corporate bonds with a larger sample size, including both the linear
and the quadratic spreads may be needed. Figure 1 provides the fitted forward
rate curves for both the US STRIPS and the AT&T bonds on December 31, 1995
for comparison.
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Table 4: Estimation results of AT&T bonds on December 31, 1995. Three types of
spreads are considered: constant spreads, linear spreads, and quadratic spreads.
One parameter needs to be estimated for the constant spread case. Two param-
eters, the intercept and the linear coefficient, need to be estimated for the linear
spread. Three parameters, the intercept, the linear coefficient, and the quadratic
coeflicient, need to be estimated for the quadratic spread. The root mean squared
error, parameter estimates (posterior means), and their 95% posterior intervals
are reported for the three types of spreads.

Constant spread  Linear spread Quadratic spread

RMSE 0.1728 0.11 0.1176
Parameter estimates 0.004 0.0051 0.0063

and 95% CI: (.0038, .0044) (.0034, .0063) (.0045, .0075)
Constant spread

Parameter estimates —.00025 —.00083

and 95% CI: (—.00051,.0015)  (—.0013,.000038)
Linear spread

Parameter estimates .00005

and 95% CI: (—.000024, .000086)

Quadratic spread

0.075—— US STRIPS

— — AT&T - Constant Spread

0.07

0.065

Forward Rates
o
o
(2]

0.055

0.05

1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Time to Maturity

0.045 L L L L
0

Figure 1: Fitted forward rate curves by Bayesian quadratic penalized splines
on US STRIPS and AT&T bonds on December 31, 1995.
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Figure 2: The fitted forward rate curves for AT&T (upper sheet) and US
STRIPS (lower sheet) over the 21-month period of April 1994 to December
1995. They are obtained by adding a constant spread to the estimated Treasury
term structures.

Next we estimate independently the term structures of AT&T bonds over the
21-month period of April 1994 to December 1995 by adding a constant spread
to the fitted forward rate for US STRIPS over the same 21 months from Section
3.3. The fitted forward rates are plotted in Figure 2. The interpretation and
application of these 21 curves are described at the end of Section 3.2.

5. Conclusions

We have proposed a Bayesian approach to estimating Treasury and corporate
term structures with a penalized spline model. We first estimate the Treasury
term structure. Due to the small sample size of corporate bonds, credit spreads
are added to the estimated Treasury term structure to obtain the corporate term
structure. The fact that the positive credit spreads between the default-free
Treasury securities and the risky corporate bonds is too important to ignore.
The Bayesian approach naturally takes this into account as a prior distribution
and also gives valid statistical inference.
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