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Abstract: Auditors are often faced with reviewing a sample drawn from
special populations. One is the special population where invoices are divided
into two categories, according to whether or not invoices are qualified. In
other words, the qualified amount follows a nonstandard mixture distribu-
tion in which the qualified amount is either zero with a certain probability
or the same as the known invoice amount with a certain probability. The
other is the population where some invoices are partially qualified. In other
words, some invoices have a qualified amount between zero and the full
invoice amount. For these settings, the typical sample design is stratified
random, with the estimation method employing a ratio type method. This
paper focuses on efficient sample design for this setting and provides some
guidelines in setting up stratum boundaries, calculating sample size and
allocating sample size optimally across strata.
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1. Introduction

Much of traditional sampling theory was developed in the household survey
context. Sampling business records presents very different challenges and often
requires different solutions. Most commonly, the quantity to be estimated is
financial. It may be, for example, the amount subject to sales tax, the amount
deductible from income tax, or the amount that is in error in the business records.
The sampling unit is frequently invoices. The estimates for these quantities have
a lower bound of zero but can take on large positive values, sometimes millions of
dollars. In addition, there are always requirements to minimize the impact of the
sampling on company operations and to keep the sample size as small as possible,
while still achieving good precision. Whether we are reviewing for the traditional
audit purpose of identifying and quantifying errors in business records or for
determining taxable amounts, we can generally classify our sampling as audit
sampling, where we are beginning with a recorded amount and making some
quantitative determination about that original amount.
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There are two types of populations that we often face in auditing. One is
the special population where invoices are divided into two categories according
to whether or not invoices are qualified. In other words, the qualified amount
is either zero or the same as the known invoice amount, depending on which
category the invoice falls into. This type of populations is called Population
One. Figure 1 (left half) shows the scatterplot of the qualified amount against
the invoice amount for population one. The other population type arises when
some invoices have a qualified amount between zero and the full invoice amount.
This type of population is called Population Two. Figure 1 (right half) shows
the scatterplot of the qualified amount against the invoice amount for population
two.
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Figure 1: Population one (left part) and population two (right part)

For these two populations, the typical sample design is a stratified random
sample design using the known invoice amount as the stratifying variable. In
this paper, we assume the cases with the largest recorded amounts (or potential
‘outliers’) are taken with certainty.

We first summarize the characteristics of population one. Suppose that the
population includes invoices and each has a known invoice amount. The invoices
are divided into two classes — qualified class C and non-qualified class C̃. If an
invoice is in class C, then the qualified amount is equal to its invoice amount; oth-
erwise the qualified amount is zero. In this paper, we assume that the percentage
of invoices in one class is in a reasonable range. If the percentage of invoices in
one class is extreme, either very small or very large; a hypergeometric estimation
method is recommended (Liu, Batcher and Rotz, 2001). Here, however, we will
assume a binomial model applies.
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Further, we assume that qualified invoices and non-qualified invoices are ran-
domly distributed among the N population units. Let xi be the known invoice
amount for invoice and be the unknown qualified amount for invoice i. According
to Roberts (1978), the N population units may be characterized as a realization
of the following process:

yi = xi, with probabilityp

= 0, with probability(1 − p) (1.1)

The properties of this process in terms of averages over all possible realiza-
tions, denoted as Ep, lead to some useful applications. We first outline these
properties summarized by Roberts (1978). The population parameter to be esti-
mated is the ratio:

R =
∑N

i=1 yi∑N
i=1 xi

(1.2)

The corresponding sample estimate under simple random sample is:

R̂ =
ȳ

x̄
(1.3)

where ȳ = n−1
∑n

i yi and x̄ = n−1
∑n

i xi. The variance of R̂, for large n, is
approximately:

V (R̂) =
1 − f

nX̄2
S2

d (1.4)

where S2
d is the variance of di = yi − Rxi and

S2
d =

1
N − 1

N∑
i=1

(yi − Rxi)2 =
1

N − 1

N∑
i=1

d2
i (1.5)

Under the realization process of population units described in equation (1.1),

EpR = p (1.6)

and
Ep(S2

d) ≈ p(1 − p)(S2
x + X̄2) (1.7)

when the population size, N , is also reasonably large.
We now expand the above properties to population two where some invoices

are partially qualified. In order to relate population two to population one and
make use of the results from population one, we assume the same average ratio
for population two, i.e., Ep(R) = p. There should be many scenarios of the
relationship between the qualified amount, denoted as zi (in order to distinguish
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it from yi in population one), and the invoice amount xi. One scenario is that
points of are randomly scattered around the line . So the population units can
be characterized as a realization of the following process:

zi = pxi + u(1 − p)xi, with probability p

= pxi − upxi, with probability (1 − p), (1.8)

i = 1, 2, . . . , N , where u is a random number from Uniform(0, 1). Under the
realization process of population units described in equation (1.8), we still have
Ep(R) = p for the ratio R =

∑N
i=1 zi/

∑N
i=1 xi. Corresponding to formula (1.4),

the approximate variance of R̂ = z̄/x̄ is V (R) = 1−f
nX̄2 S2

d(z). Now, S2
d(z) is the

variance of di(z) = zi − Rxi. Rewrite di(z) as

di(z) = zi − Rxi ≈ zi − pxi = u(1 − p)xi, with probability p

= −upxi, with probability (1 − p), (1.9)

i = 1, 2, . . . , N .
Rewrite di in population one as:

di = yi − Rxi ≈ yi − pxi = (1 − p)xi, with probability p

= −pxi, with probability y(1 − p), (1.10)

i = 1, 2, . . . , N . Comparing equations (1.9) and (1.10), we have di = udi.
Now from equation (1.5), S2

d = (N − 1)−1
∑L

i=1 d2
i . Therefore, S2

d(u) = (N −
1)−1

∑N
i=1(udi)2 = u2S2

d . Ep(S2
d(z)) = Ep(S2

d) = Ep(u2)Ep(S2
d), since u and d are

independent. Ep(u2) = 1/3, since u
∑

Uniform(0, 1). Therefore,

Ep(S2
d(z)) =

Ep(S2
d)

3
(1.11)

Note that most scenarios of population two fall between the process characterized
in equations (1.1) and the process characterized in equation (1.8). Therefore, we
may expect the value of S2

d(z) to lie between S2
d/3 and S2

d for most scenarios of
population two.

2. Determination of Stratum Boundaries

At the design stage, we only have knowledge about the invoice amount. In
practice, the Dalenius-Hodges method (Cochran 1977, pp. 127-131 and Särndla,
et al. 1991, pp. 463-464) is often used to set up stratum boundaries based
on the values of x. Then sample size is allocated by the Neyman rule (Cochran
1977, Chapter 5), based on knowledge of x. This works well only if the correlation



Efficient Sampling Design in Audit Data 217

between x and y is strong, say a correlation coefficient of 0.9 or more. This is often
not the case in practice. Therefore, for our special ratio type data, we develop
a new method to determine stratum boundaries and sample size allocation using
the special relationship between x and y. Specifically, we use equation (1.7) as
the approximation of S2

d .
Given the number of strata and the same sample size per stratum, stra-

tum boundaries under Neyman optimum allocation can be determined such that
NhShd (h = 1, 2 . . . , L)) is about the same for all strata. That is,

Nh

√
ph(1 − ph)(S2

hx + X̄2
h) = C, h = 1, 2, . . . , L (2.1)

where C is a constant. If we are comfortable with the assumption that all the
qualified invoices are evenly distributed in the population, ph is about the same
across all the strata. We can, therefore, use the known (S2

hx + X̄2
h). Equation

(2.1) is reduced to:

Nh

√
S2

hx + X̄2
h = C, h = 1, 2, . . . , L (2.2)

Now we can rewrite equation (2.2) as:

Xh

√
CV 2

hx + 1 = C, h = 1, 2, . . . , L (2.3)

where CVhx is the coefficient of variation of x for stratum h.
Equation (2.3) leads to an important application of setting up stratum bound-

aries. First, it should be easy to set up stratum boundaries under Neyman allo-
cation using equation (2.3). Further note that CV 2

hx is much smaller than 1 in
many accounting applications. Therefore, equation (2.3) can be approximated
by Xh = C, h = 1, 2, . . . , L if the distribution of invoice amount x is not highly
skewed. In other words, since Xh is the total value of the invoices in stratum
h, then what is being said is that setting equal the total invoice amount per
stratum gives us the approximate stratum boundaries for the same sample size
per stratum under Neyman allocation. To be more accurate, we may first set
up stratum boundaries based on the equal invoice amount; and then adjust the
boundaries based on the coefficient of variation per stratum. The above guide-
lines of optimum stratum boundaries also apply to population two described by
equation (1.8), which is supported by equation (1.11). Note that there are many
scenarios for population two and equation (1.8) is one of them. The stratum
boundaries for the same sample size per stratum under Neyman allocation may
vary for different scenarios, but the equal invoice amount criterion can provide a
useful approximation for other scenarios as long as the assumption that the CV’s
are small holds. That is, the qualified invoices are randomly scattered in the pop-
ulation. If the qualified percentage tends to increase or decrease as the invoice
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amount increases or decreases, we may incorporate information about different
qualified percentages in different strata into equation (2.3). That is, we can set
up stratum boundaries using:

Xh

√
CV 2

hx + 1
√

ph(1 − ph) = C, h = 1, 2, . . . , L (2.4)

3. Sample Size Determination and Allocation

The above stratum boundary criterion yields equal stratum sample sizes for
all strata. The sample size formula for population one is:

n1 =
t2L

∑
N2

hS2
hd

A2 + t2
∑

Nhs2
hd

(3.1)

where t is the t-value corresponding to the confidence level and A is the desired
absolute precision or margin of error. For population two, that is described by
the model of equation (1.8), the sample size is:

n2 =
t2L

∑
N2

hS2
hd(z)

B2 + t2
∑

NhS2
hd(z)

(3.2)

where B is the desired absolute precision. Since S2
hd(z) ≈ S2

hd/3 by equation
(1.11), we have:

n2 =
t2L

∑
n2

hS2
hd

3B2 + t2
∑

NhS2
hd

(3.3)

Compare equations (3.1) and (3.3), the same sample size leads to B = 0.58A. In
other words, the same sample size can give a better precision for population two
than for population one. For the assumed qualified percent p, the sample size to
achieve a certain precision under population one is a conservative estimate of the
sample size needed to achieve the same precision for some unknown scenario of
population two. We should caution that it maybe too conservative sometimes.
As in the above analysis, the sample size calculated under population one can
give a 42% shorter margin of error for the scenario described in equation (1.8).

4. Simulation

The simulation population includes 3,231 invoices after removing the largest
invoices with certainty. Figure 2 gives the histogram based on invoice amount —
the design variable x.
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Figure 2: Histogram of the simulated population

The population is divided into five strata with equal stratum total dollar
amounts on x. The population summary is presented in Table 1.

Table 1: Simulation Population Summary by Stratum

Range of x
h Min Max Nh Xh CVhx

1 10,260 46,920 1,112 37,446,730 29%
2 46,960 59,771 702 37,484,099 7%
3 59,857 70,040 576 37,448,657 5%
4 70,078 84,950 491 37,500,290 6%
5 84,951 193,405 350 37,525,292 23%

Variable y is created based on the equation (1.1) to represent population one
and variable z is created based on equation (1.8) to represent one of the scenarios
in population two. p = 0.2 is used in creating variables y and z.

The Neyman allocations across strata based on different variables are given
in Table 2.

The sample size allocation across strata would be best determined by the
variable of interest, y or z. In ratio type estimation, the Neyman allocation
percentages are calculated for variable y by NhShd/

∑
h NhShd, where S2

hd is the
variance of d = y − Rx and R =

∑N
i=1 yi/

∑
i = 1Nxi. The results are given

in column (a). Column (b) gives the Neyman allocation percentages based on
variable z. These percentages are calculated using NhShd(z)/

∑
h NhShd(z), where

S2
hd(z) is the variance of d(z) = z − Rx and R =

∑N
i=1 zi/

∑N
i=1 xi. The numbers
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Table 2: Neyman Allocation Comparison

Based on Simulated Based on the Known
Variables of Interest Covariate Variable x

(a) (b) (c) (d)
h dy dx Equation (1.7) x

1 19.6% 20.4% 20.5% 41.8%
2 20.5% 19.0% 19.8% 10.0%
3 20.1% 19.4% 19.7% 6.5%
4 19.6% 20.6% 19.8% 8.1%
5 20.1% 20.7% 20.3% 33.6%

in columns (a) and (b) are very close stratum by stratum. This indicates that
stratum boundaries under Neyman allocation are about the same whether they
would have been determined by population one type of data (y) or by the type of
data of population two (z). In practice, the values of variable y are unknown at

the design stage. Fortunately, Shd is well approximated by
√

p(1 − p)(S2
hx + X̄2

h).
Therefore, Neyman allocation percentages can be actually calculated by

Neyman Allocation =
Nh

√
S2

hx + X̄2
h

∑
h Nh

√
S2

hx + X̄2
h

(4.1)

The above formula (4.1) involves only the known values of variable x. The results
are shown in column (c) of Table 2. Comparing the numbers in column (c) to
those in column (a), there are only minor differences. Therefore, we can achieve
Neyman allocation regarding to the variable of interest (y or z) at the design
stage without knowing the variable of interest. As a comparison, the Neyman
allocation percentages regarding to the design variable x using NhShx/

∑
h NhShx

are also presented in column (d). The numbers in column (d) are quite different
from those in the other three columns. This indicates that the Neyman allocation
based on the variance of the design variable x alone is very inefficient. It under-
allocates for certain strata and over-allocates for other s trata by a large degree.
In summary, Neyman allocations can be calculated using equation (4.1) for both
population one and population two.

The allocation percentages across strata in column (a) are very close, which
indicates an equal sample size across strata is appropriate. This confirms our
earlier finding that stratum boundaries by equation (2.4) are well approximated
by setting an equal invoice amount per stratum if the distribution of x is not
highly skewed and qualifying percentage ph is about the same across all the
strata.
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The above simulation is based on p = 0.2. Other simulations using p = 0.5
and p = 0.8 lead to the same conclusion.

Using formula (3.1), the sample sizes in order to reach a relative precision of
10% at 90% confidence level are given in Table 3.

Table 3: Sample Size Comparison

Assumed p Using Simu. y Using Simu. z Using Roberts’ Formula

0.2 788 329 797
0.5 247 88 253
0.8 70 21 68

The sample sizes using Roberts (1978)’s formula are obtained by substituting
equation (1.7) into sample size formula (3.1). As shown in Table 3, Roberts (1978)
gives sample sizes very close to those obtained using the simulated variable y. The
simulated variable z achieves the same relative precision with smaller sample
sizes. For many situations in practice, the variable of interest is between y and
z. Therefore, Roberts (1978) gives somewhat conservative sample sizes for these
situations. As the values of p increase, the sample sizes decrease. However, even
though the overall sample size needed to achieve desired precision levels may be
very small, the stratum sample size should not be allowed to become too small
in order to reduce bias and stabilize the variance estimation.

5. Conclusion

For our special ratio type data, assuming the qualified amounts are randomly
spread throughout the population, the stratum boundaries with equal stratum
sample size under Neyman allocation can be obtained approximately by setting
up equal total stratum amounts on the design variable x. The stratum boundaries
can, then, be modified by considering the coefficient of variation of x per stratum,
using equation (2.3). Even more modification can be made using equation (2.4)
if there is prior knowledge about different values of p for different strata. The
sample size calculated from the Roberts (1978) formula tends to be conservative
in practice for many scenarios of population two.

6. Future Work

We plan to analyze the effectiveness of different numbers of strata and the
stratum sample size. For example, for a fixed sample size of 100 units, we may
compare the setting of 4 strata with 25 units per stratum and the setting of
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2 strata with 50 units per stratum. We also plan to explore the relationship
between the value of p and the gains achieved using ratio estimation.
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