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Abstract: In many clinical trials, information is collected on both the fre-
quency of event occurrence and the severity of each event. For example, in
evaluating a new anti-epileptic medication both the total number of seizures
a patient has during the study period as well as the severity (e.g., mild,
severe) of each seizure could be measured. In order to arrive at a full picture
of drug or treatment performance, one needs to jointly model the number of
events and their correlated ordinal severity measures. A separate analysis is
not recommended as it is inefficient and can lead to what we define as “zero
length bias” in estimates of treatment effect on severity. This paper proposes
a general, likelihood based, marginal regression model for jointly modeling
the number of events and their correlated ordinal severity measures. We de-
scribe parameter estimation issues and derive the Fisher information matrix
for the joint model in order to obtain the asymptotic covariance matrix of
the parameter estimates. A limited simulation study is conducted to exam-
ine the asymptotic properties of the maximum likelihood estimators. Using
this joint model, we propose tests that incorporate information from both
the number of events and their correlated ordinal severity measures. The
methodology is illustrated with two examples from clinical trials: the first
concerning a new drug treatment for epilepsy; the second evaluating the
effect of a cholesterol lowering medication on coronary artery disease.

Key words: Joint modeling, marginal models, multiple endpoints, random
length, shared parameters, zero length bias.

1. Introduction

In many clinical trials, data on both the frequency of a disease event as well
as the severity of each event, often measured by an ordinal score, is recorded.
Both of these endpoints (frequency and severity) can be important in evaluating
treatment performance. Consider two examples. In a clinical trial of an anti-
epileptic seizure medication both the frequency and the severity of seizures are
important endpoints in evaluating treatment performance. In a clinical trial of
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a cholesterol lowering drug both the number of arterial blockages as well as the
degree of occlusion in each lesion are informative on drug performance. Data of
this type are actually quite common. More examples include: depression may
occur a random number of times with the severity of each depression episode
being measured by an ordinal scale (e.g., 1=mildly depressed, 2=moderately de-
pressed, 3=very depressed); patients suffering from migraine headache may have
a random number of headaches with differing levels of pain; patients with cancer
may have a random number of tumors of varying sizes, etc. Conceptually, we can
think of these responses as a random ordinal vector of random length. A naive
approach to such data would be to analyze the number of events separately from
the multivariate severity measures. However, there are several reasons why this
is not an ideal approach. First, even when one is primarily interested in each
outcome separately, a separate analysis can result in a substantial decrease in
efficiency (Albert et al., 1997) as information contained in one endpoint can be
used to estimate and make inference on parameters that describe the distribu-
tion of the other endpoint. Second, a separate analysis of severity can also give
misleading results. Consider the clinical trial of a cholesterol lowering medication
detailed in section 6.2. A separate analysis of severity is restricted to patients
with severity measures, i.e., the group of patients with at least one blockage
(event). In a randomized clinical trial, the patients with at least one event may
consist of a biased sample of the test population. We refer to this phenomenon
as “zero length bias”. If the treatment under investigation is effective, patients in
the treatment group are less likely to experience an event and therefore less likely
to have a severity measure. An estimate of the marginal probability of observing
a certain severity level conditional on observing an event, will not, in general, be
equal to the unconditional marginal probability of observing this severity level. In
the clinical setting, the unconditional marginal probabilities seem more relevant,
i.e., the probability of having a severe blockage seems more relevant in assessing
treatment than the probability of a severe blockage given a blockage has occurred.
By jointly modeling the distribution of the number of events and their correlated
severity measures, we propose a formal test for questions of this type (see details
in section 5). In addition, the investigator may be interested in the relationship
between the number of events and their severity. For example, one may want
to test whether a drug changes the inhibition process among cancerous tumors
(i.e., large tumors suppressing the ability of other tumors to grow near them)
or estimate the probability of observing two or more severe events. Questions of
this type can only be answered by modeling the joint distribution of the number
of events and their correlated severity measures.

Barnhart (1992) gave the first probabilistic definition of random length ele-
ments. Barnhart and Sampson (1995) proposed a multiple population model to
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jointly model the number of events and the correlated severities. Their meth-
ods are likelihood-based and assume that the event severities are distributed as
a multivariate normal distribution. Recently, Barnhart has proposed a probit
model for multivariate random length data (Barnhart, 1998). The probit model,
however, assumes a discretization of a latent multivariate normal distribution for
the multivariate ordinal responses and may not be flexible enough in many ap-
plications. Furthermore, these previous methods for multivariate random length
data produce estimates of two treatment effects: one for event severity and one
for the number of events. One needs to be cautious in interpreting the treatment
effect for severity as it conditions on an event occuring. The test proposed in this
manuscript provides a test of the overall treatment effect which includes both the
number of events and the severity of these events.

This paper proposes a general, likelihood based, marginal regression model
for jointly modeling the number of events and the vector of correlated ordinal
severity measures. The proposed method is an extension to the joint modeling
situation of the marginal models for multivariate categorical data proposed by
Molenberghs and Lesaffre (1999). These models re-parameterize the multinomial
distribution through a generalized linear model (GLIM) construction (McCullagh
and Nelder, 1989), and allow great flexibility in the specification of the margins
and associations.

The organization of this paper is as follows: in section 3 we present the
proposed joint model; in section 4 we discuss estimation issues; in section 5 we
present a limited simulation study; and in section 6 we present two examples
from two clinical trials–one concerning an anti-seizure medication, the other a
cholesterol lowering drug.

2. Data Examples

2.1 Example 1: Epilepsy clinical trial

This example involves data collected as part of a double-blind placebo con-
trolled clinical trial designed to study the effect of felbamate (FBM), a new anti-
epileptic drug, on epileptic seizure activity. A group of 40 epileptic patients were
randomized to receive either placebo or felbamate. Patients were then followed
for eighteen days (the first three being a titration period), and the number of
partial seizures as well as a binary variable characterizing the severity of each
seizure were recorded. The study was described in detail in Theodore et. al.
(1995). For purposes of illustration, we collapsed the data in the following way.
The study period (day 4 through day 18) was divided into four time periods. If
an individual had any seizure activity in a given time period, we considered an
event to have taken place. In addition, we assigned a severity score (mild or se-
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vere) based on the severity of seizures in that time period. The number of events,
therefore, varied between 0 and 4 while the severity of each event was either mild
or severe. The data is given in table 3. A quick look at the data suggests that
felbamate lowers both the average number and severity of seizures. Let treatment
group be denoted by the indicator variable FBMi with FBMi = 1 if individual
i is given felbamate and FBMi = 0 if given placebo. Informative dropout was
a problem in this dataset. Out of the original 40 individuals (20 randomized
to felbamate and 20 randomized to placebo), 21 completed the protocol (13 in
the felbamate group and 8 in the placebo group). Most of the dropouts in the
placebo group dropped out because of increased seizure frequency and severity
during the titration period. Those in the felbamate group tended to drop out
due to drug induced side effects unrelated to seizure activity. To illustrate the
current method, we ignore the problem of informative dropout and include only
individuals that completed the protocol. Estimates based on this data set will
tend to underestimate the effect of the drug therapy on seizure activity.

2.2 Example 2: Type II coronary intervention study

This example involves data collected during the National Heart, Lung and
Blood Institute (NHLBI) Type II Coronary Intervention study (Brensike et al.,
1982, 1984). Patients with Type II hyperlipoproteinemia and coronary heart
disease were randomly allocated to a daily dose of 24g of cholestyramine and diet
(treatment group) or placebo and diet (control group). The goal of the study
was to assess the effect of cholestyramine on coronary artery disease progression
at the end of five years of study. The number and size of each lesion (blockage)
in the lower arterial descending portion of the heart was determined by coronary
angiogram at the fifth year of follow-up. We take the size of each lesion to be a
severity score with small (=1), medium (=2), or large (=3) degrees of blockage.
The observed number of blockages in this part of the heart varied from zero to
four. A total of 143 patients were recruited into the study. At the end of five
years of follow-up there were only 116 (57-placebo; 59-cholestyramine) patients
who had their fifth year coronary angiogram done. For the purpose of illustration,
this is the population we consider. Examination of the data did not suggest any
problems with informative dropout. Let treatment group be denoted by the
indicator variable TRTi with TRTi = 1 if individual i is given cholestyramine
and TRTi = 0 if given placebo. We also have two additional covariates. SBPi

is an indicator variable for whether systolic blood pressure is greater than 120,
and RCAi is an indicator variable of whether a regional contractile abnormality
is present.
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3. A Joint Model

Suppose we observe data (ki,yi,xi) for the ith individual, where the count
ki is a realization of a discrete random variable Ki (frequency of event in our
context), yi is a realization of a ki-dimensional ordinal random variable Yi =(
Y 1

i , Y 2
i , ..., Y ki

i

)′
(severity measures in our context), and xi is a vector of covari-

ates. For simplicity, we will assume that each component of Yi can take on r
distinct values (i.e., r ordinal categories), though this assumption can be relaxed.
Without loss of generality we will denote these values as 1, 2, ..., r. We specify a
joint distribution for Ki and Yi by factoring it into two parts: a distribution for
Ki and a distribution for Yi|Ki. Since the event severities and the counts both
reflect the severity of the disease outcome, certain covariates that affect disease
may affect both Ki and Yi|Ki. Therefore, we specify a dependence between them
by allowing these two pieces to share information through common parameters.
We summarize the proposed joint model here:

1. The distribution of the random length Ki, following Barnhart et al. (1999),
is modeled as a slightly modified generalized linear model (GLIM) (Mc-
Cullagh and Nelder, 1989) with three components:

(a) The random length variable Ki has a discrete distribution:

Pr (Ki = k) = a (k) exp (kφi − b (φi)) , k = 0, 1, ..., J

where the φi’s are the natural parameters for the exponential family,
J > 0 is assumed known (possibly infinite), and a (·) and b (·) are
known positive functions;

(b) The link function h: ηi = h (E (Ki)) , where we choose h (·) such that
h
(
b
′
(·)
)

is either a strictly increasing or strictly decreasing function;

(c) The systematic component: ηi = δ + γx′
iβ.

2. Yi|Ki = k is modeled as a marginal model for multivariate categorical
(MMMC) data (Molenberghs and Lesaffre, 1999). This model is also com-
prised of three components:

(a) The distribution of Yi|Ki = k is multinomial with cell probabilities πi

and corresponding orthant probabilities pi;

(b) A vector of link functions h:

ηm
i = hm (pm

i )
ηa

i = ha (pi)
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where hm is a vector of marginal link functions, ha is a vector of
bivariate and higher order association link functions, and

pm
i =

((
p1

i

)′
,
(
p2

i

)′
, . . . ,

(
pk

i

)′)′

is a vector of univariate orthant probabilities. For example, a com-
monly used link function is the logit (h(p) = log(p/1 − p)). Addi-
tional examples can be found in section 3.2. For simplicity, we restrict
the component functions of hm to be the same scalar function, i.e.,
hm = (hm, ..., hm)′ , where hm : [0, 1] �−→ � is either a strictly increas-
ing or decreasing function. Therefore, the size of hm is the same as
pm

i with each component operating on one and only one component
of pm

i ;

(c) The systematic component:

ηm
i = Xm

i α+
(
x′

iβ
)
e

ηa
i = Xa

i ν

where Xm
i and Xa

i are design matrices formed by linear combinations
of covariates and intercept terms, and e is a vector of all 1’s with its
size being the same as ηm

i . Hence, different covariates may be used
in the marginal (ηm

i ) and association (ηa
i ) models. Here we make the

proportional odds like assumption that β is the same for all levels of
the severity measure Yi. We discuss the MMMC framework in more
detail later in this section.

3. (Ki,Yi) is independent of (Kj ,Yj) for i �= j.

Note that the β’s are common parameters shared in the specifications for both
Ki and Yi|Ki. The scalar parameter γ can be thought of as scaling the marginal
effect of the covariates on the multivariate severities to the random length scale.
In addition, the sign and magnitude of γ control the association of the random
length with the multivariate severities. If γ = 0, there is no relationship be-
tween the number of events and their severities. By the model assumptions, we
have E (Ki) = b′ (φi) , thus ηi = h (b′ (φi)) . Suppose γ > 0 and Ki and Ki′

are two random length variables such that x′
iβ > x′

i′β, and therefore ηi > ηi′ .
Then if h

(
b
′
(·)
)

is a strictly increasing function, we have φi > φi′ . It is easy
to show that the distribution of Ki is stochastically increasing in φi. Therefore,
x′

iβ > x′
i′β implies that Ki is stochastically larger than Ki′ when γ > 0. Similarly,
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let Yi| (Ki = k,xi) and Yi′ | (Ki′ = k,xi′) be conditional severity random vari-
ables such that x′

iβ > x′
i′β, and therefore ηm

i > ηm
i′ . If hm is strictly increas-

ing, then pt
i (j) > pt

i′ (j) for all t (1 ≤ t ≤ k) and j (1 ≤ j ≤ r) , implying that
Y t

i | (Ki = k,xi) is stochastically larger than Y t
i′ | (Ki′ = k,xi) for all t (1 ≤ t ≤ k)

when x′
iβ > x′

i′β. Therefore, if both h
(
b
′
(·)
)

and hm are strictly increasing func-
tions, the above model describes the following: for γ > 0, the larger the value of
x′

iβ the more likely we are to observe a larger number of events as well as greater
severity in any given event; for γ < 0, the larger the value of x′

iβ the more likely
we are to observe a smaller number of events as well as greater severity in any
given event. Note that if h is a canonical link function, then h

(
b
′
(·)
)

is the
identity function (McCullagh and Nelder, 1989), a strictly increasing function.

3.1 Marginal models for multivariate categorical data

The MMMC framework was proposed by Molenberghs and Lesaffre (1999).
For simplicity, in this section “marginal” is used in the context of the conditional
random variable Yi|Ki. Note that given Ki = k, all the information in Yi is
contained in the rk contingency table obtained by cross-classifying Yi. Denote the
jth entry in this table by Zi (j) (Zi (j) ∈ {0, 1}) where j = (j1, j2, ..., jk)

′
,1 ≤ j ≤ r

(r = (r, r, ..., r)
′
, a k-dimensional vector). Assume this table is sampled from a

multinomial distribution with jth cell probability πi (j) . Note that E (Zi (j)) =
πi (j) . Define orthant probabilities pi (j) =

∑
l≤j πi (l) . This can be concisely

written in matrix form as pi = Lπi (Molenberghs and Lesaffre, 1999), where
pi is a vector of all orthant probabilities, πi is a vector of all multinomial cell
probabilities, and L is a rk×rk matrix of 0 and 1’s. For example, in the bivariate
binary case, the matrix L is given by

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 .

Univariate (marginal) orthant probabilities are then given by setting all but
one of their indices to their maximal value: pt

i (j) = pi (r1, ..., rt−1, j, rt+1, ..., rk) ,
where r1 = ... = rt−1 = rt+1 = ... = rk = r. The n-variate (marginal, n < k)
orthant-probabilities are given in a similar way by setting all but n of the in-
dices to their maximal value. For example, in the bivariate case pt1,t2

i (j1, j2) =
pi (r1, ..., rt1−1, j1, rt1+1, ..., rt2−1, j2, rt2+1, ..., rk) . In the marginal models proposed
by Molenberghs and Lesaffre, the cell probabilities in the above contingency ta-
ble are expressed, via the link functions of orthant probabilities, as a function of
covariates. This model is “marginal” since it explicitly models the univariate or-
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thant probabilities, through link functions, as linear functions of covariates. The
bivariate and higher-dimensional orthant probabilities are then used to model
the association structure with link functions chosen so as to parameterize a given
association structure.

3.2 Examples of marginal models for multivariate categorical data

The MMMC framework provides a class of models with the generality and
flexibility necessary to model multivariate categorical data. Many previously
proposed models are MMMC models. For example, assume Ki = 2 and r = 2,
giving us two binary responses Yi1, Yi2. Let πi (j1, j2) = Pr (Yi1 = j1, Yi2 = j2) =
Pr(Zi (j1, j2) = 1). The bivariate logistic transform was defined by McCullagh
and Nelder (1989) by the mapping π

L�−→ p �−→ η = (η1, η2, η12) where

ηi1 = logit
[
p1

i (1)
]

= logit [πi (1, 1) + πi(1, 2)]
ηi2 = logit

[
p2

i (1)
]

= logit [πi (1, 1) + πi (2, 1)]

ηi12 = log

[
pi (1, 1)

[
1 − p1

i (1) − p2
i (1) + pi (1, 1)

][
p1

i (1) − pi (1, 1)
] [

p2
i (1) − pi (1, 1)

] ] = log
[
πi (1, 1) πi (2, 2)
πi (1, 2) πi (2, 1)

]
.

The ηi’s are usually taken to be linear functions of the covariate vector xi. Note
that the association is modeled with an odds ratio, given as exp (ηi12) . A bivariate
probit model can be defined for these data by the mapping π

L�−→ p �−→ η =
(η1, η2, η12) with

ηi1 = Φ−1
[
p1

i (1)
]

= Φ−1 [πi (1, 1) + πi(1, 2)]
ηi2 = Φ−1

[
p2

i (1)
]

= Φ−1 [πi (1, 1) + πi (2, 1)]
ηi12 = log

{
1 + rt

(
L−1pi

)}− log
{
1 − rt

(
L−1pi

)}
= log {1 + rt (πi)} − log {1 − rt (πi)} ,

where rt (·) is the tetrachoric correlation. If we define Φ(x, y, ρ) to be the cu-
mulative distribution function of a standard bivariate normal distribution with
correlation ρ, the tetrachoric correlation is the value of ρ such that πi(2, 2) =
1 − Φ(ηi1, ηi2, ρ). Thus two popular models for univariate categorical data, the
logit and the probit model, are unified in a multivariate setting with the marginal
parameters having the same interpretation as in the univariate setting. Many
more models are possible, and the bivariate logit and probit models can be gen-
eralized to higher dimensions. Molenberghs and Lesaffre (1999) discuss possi-
ble association structures for different marginal models. An important class of
marginal models are the so called multivariate logistic models of Glonek and Mc-
Cullagh (1995). The multivariate logistic transform is defined by the mapping



Joint Modeling of Frequency and Severity 207

π
L�−→ p �−→ η where

η = C ′ log
(
AL−1pi

)
= C ′ log (Aπi) ,

and involves contrasts of log probabilities–given by linear combinations of multi-
nomial cell probabilities. The explicit construction of C and A is given in Glonek
and McCullagh (1994). This class of models extends the logit models for categor-
ical data given in Agresti (1990, pp. 306-338) to the multivariate setting. Global
and local odds ratios are common measures of association that are included in the
multivariate logistic model class. The bivariate Dale model (Dale, 1986) and its
n-variate extensions (multivariate Dale model: Molenberghs and Lesaffre, 1994)
are also members of the MMMC family. These Dale models specify dependences
between the ordinal outcomes in terms of (generalized) global odds ratios while
there are no restrictions on the types of marginal distributions that can be used.
The above bivariate logistic transform is actually a binary version of the bivariate
Dale model.

An important feature of marginal models is that if a set of outcomes satisfy
a marginal model, then so does every subvector of outcomes. As a result, given
that we observe a severity outcome, the interpretation of the parameters does
not depend on the actual number of outcomes. This property is important in
the random length data context where the length of the outcome is random. The
parameters will have the same interpretation regardless of size of the outcome
vectors observed.

4. Maximum Likelihood Estimation

Collectively denote the model parameters as θ =
(
α′, ν ′, β′,δ, γ

)′
. The log-

likelihood function for the model proposed in the above section is

l (θ) = log

{
N∏

i=1

P (Ki) f (Yi|Ki)
δ(Ki)

}

where N is the total number of individuals and δ (·) is an indicator function such
that δ (Ki) = 1 if Ki > 0, and δ (Ki) = 0 if Ki = 0. Let I (θ) be the total Fisher
information matrix for θ contained in the N independent multivariate random
length observations Yi with random length Ki, i = 1, ..., N. Then by Theorem
3.3.1 of Barnhart (1992), we have

I (θ) = I∗ (θ) +
N∑

i=1

J∑
k=1

P (Ki = k) I (θ|k)



208 A. S. Allen and H. X. Barnhart

where I∗ (θ) is the total Fisher information matrix for θ contained in the random
length data {Ki, i = 1, ..., N} , and I (θ|k) is the total Fisher information matrix
for θ contained in the conditional severities Yi|Ki = k. The appendix gives the
form of I∗ (θ) and I (θ|k) for the proposed model. Intuitively, the information is
the sum of the information from the random length and the weighted average of
information from severity over all possible lengths.

The maximum likelihood estimator (MLE) for θ can be obtained through a
Fisher scoring algorithm or by numerical maximization of the likelihood through
a standard optimization algorithm. Both techniques require the inversion of
the link functions at each step of the algorithm to obtain the multinomial cell
probabilities. A number of techniques are possible: Newton-Raphson (Glonek
and McCullagh, 1995), iterative proportional fitting (Molenberghs and Lesaffre,
1999), Lagrange multipliers (Haber and Brown, 1986), etc. In the simulation
and examples that follow, we use a multivariate Dale type approach where the
orthant probabilities are found sequentially as solutions to polynomial equations
(Molenberghs and Lesaffre, 1994). Barnhart (1992) has shown that, under the
usual regularity conditions, the MLE is consistent and asymptotically normal.
The asymptotic covariance matrix of the MLE, θ̂, is obtained as the inverse of
the above information matrix and is estimated by I−1

(
θ̂
)

.

5. Simulation

We performed a limited simulation study to evaluate the asymptotic behavior
of the MLE for the simple case where the number of events is either one or two.
For three different sets of parameters, we generate 1000 data sets where each data
set consists of ordinal responses (3 levels) from two different treatment groups
with 500 subjects in each. As before we specify the model in two parts. The
first part, the distribution of Yi|Ki = k, is taken to be multinomial with cell
probabilities related to the covariates, via the orthant probabilities, by

α1 − βxi = logit
[
p1

i (1)
]

α2 − βxi = logit
[
p1

i (2)
]

α1 − βxi = logit
[
p2

i (1)
]

α2 − βxi = logit
[
p2

i (2)
]

ν = log

[
pi (1, 1)

[
1 − p1

i (1) − p2
i (1) + pi (1, 1)

][
p1

i (1) − pi (1, 1)
] [

p2
i (1) − pi (1, 1)

] ] (5.1)

ν = log

[
pi (1, 2)

[
1 − p1

i (1) − p2
i (2) + pi (1, 2)

][
p1

i (1) − pi (1, 2)
] [

p2
i (2) − pi (1, 2)

] ]
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ν = log

[
pi (2, 1)

[
1 − p1

i (2) − p2
i (1) + pi (2, 1)

][
p1

i (2) − pi (2, 1)
] [

p2
i (1) − pi (2, 1)

] ]

ν = log

[
pi (2, 2)

[
1 − p1

i (2) − p2
i (2) + pi (2, 2)

][
p1

i (2) − pi (2, 2)
] [

p2
i (2) − pi (2, 2)

] ]

in the case when k = 2 and by

α1 − βxi = logit [pi (1)] (5.2)
α2 − βxi = logit [pi (2)]

when k = 1. Here xi is an indicator variable of treatment group. Hence, a pro-
portional odds cumulative-logit model is being assumed for the marginal distri-
butions of Yi|Ki while the association is being described by global odds-ratios.
The distribution of Ki is taken to be Bernoulli with

logit(Pr (Ki = 1|xi)) = δ − γβxi. (5.3)

For each of 1000 data sets, data for 500 subjects in each of two treatment groups
(xi = 1, 0) were simulated in the following way: first, the length of the severity
vector was determined by drawing from a Bernoulli distribution with probability
given by equation (5.3); then given the value of k, the severity vector was obtained
by drawing from a multinomial distribution with cell probabilities πi = L−1pi,
where pi is determined (k = 2) by equation (5.1) or (k = 1) equation (5.2) .
The parameter vectors used for the simulations were θ = (α1, α2, ν, β, δ, γ)′ =
(0.5, 1.25,−1.0, ν, 0.8, 1.2) ′ where ν = 0.5, 1.0, 2.0. For each data set, the above
model was fit by numerically maximizing the log-likelihood. Table 1 displays the
means, standard errors (s.e.) and ranges of the parameter estimates from the
1000 simulations.

We found the empirical distribution of the MLE to be symmetric and ap-
proximately normal as evidenced by high degree of linearity found in normal
probability plots (not shown). In table 2, we compare the standard errors of the
MLE computed from the inverse of the Fisher total information matrix, I−1 (θ) ,
with the standard errors from the simulation. These results indicate that the two
standard errors are quite close.

6. Examples

In this section, we illustrate the proposed joint model with two examples
from clinical trials: the first concerning a new drug treatment for epilepsy; the
second evaluating the effect of a cholesterol lowering medication on coronary
artery disease.
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Table 1: MLE estimates from simulated data

α̂1 α̂2 ν̂ β̂ δ̂ γ̂
True Value 0.5 1.25 -1 0.8 1.2
ν = 0.5

mean 0.500 1.252 0.493 -0.998 0.799 1.219
s.e. 0.080 0.086 0.173 0.107 0.096 0.189
min 0.274 1.003 -0.120 -1.325 0.558 0.616
max 0.739 1.527 1.126 -0.629 1.109 1.982

ν = 1.0
mean 0.501 1.253 0.995 -1.000 0.807 1.222
s.e. 0.082 0.088 0.171 0.112 0.094 0.192
min 0.233 0.954 0.493 -1.470 0.549 0.695
max 0.754 1.588 1.545 -0.643 1.109 2.093

ν = 2.0
mean 0.501 1.254 2.000 -1.001 0.807 1.223
s.e. 0.085 0.091 0.177 0.117 0.094 0.199
min 0.238 0.956 1.518 -1.495 0.549 0.700
max 0.765 1.558 -0.656 2.566 1.109 2.143

Table 2: Standard errors from simulation and from information matrix

α̂1 α̂2 ν̂ β̂ δ̂ γ̂
True Value 0.5 1.25 -1 0.8 1.2
ν = 0.5

s.e. from simulation 0.080 0.086 0.173 0.107 0.096 0.189
s.e. from I−1 (θ) 0.081 0.087 0.171 0.107 0.097 0.185

ν = 1.0
s.e. from simulation 0.082 0.088 0.171 0.112 0.094 0.192
s.e. from I−1 (θ). 0.083 0.089 0.173 0.110 0.097 0.188

ν = 2.0
s.e. from simulation 0.085 0.091 0.177 0.117 0.094 0.199
s.e. from I−1 (θ) 0.086 0.092 0.181 0.115 0.097 0.192
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Table 3: Epilepsy seizure data

Placebo Felbamate
Subject ID Event Sequence Subject ID Event Sequence

3 1,2,1 4 *
6 2,2 7 *
15 1,2,1 9 1
16 * 12 *
17 1,2,1 13 1,1
24 2,2 19 1
25 1,1,1 20 2
39 2,1,2 21 *

30 1,1
33 2,1
36 1
40 *

*-indicates no seizure; 1-indicates mild seizure; 2-indicates severe seizure

6.1 Example 1: Epilepsy clinical trial

This example involves data collected as part of a double-blind placebo con-
trolled clinical trial designed to study the effect of felbamate (FBM), a new anti-
epileptic drug, on epileptic seizure activity. A group of 40 epileptic patients were
randomized to receive either placebo or felbamate. Patients were then followed
for eighteen days (the first three being a titration period), and the number of
partial seizures as well as a binary variable characterizing the severity of each
seizure were recorded. The study was described in detail in Theodore et. al.
(1995). For purposes of illustration, we collapsed the data in the following way.
The study period (day 4 through day 18) was divided into four time periods. If
an individual had any seizure activity in a given time period, we considered an
event to have taken place. In addition, we assigned a severity score (mild or se-
vere) based on the severity of seizures in that time period. The number of events,
therefore, varied between 0 and 4 while the severity of each event was either mild
or severe. The data is given in table 3. A quick look at the data suggests that
felbamate lowers both the average number and severity of seizures. Let treatment
group be denoted by the indicator variable FBMi with FBMi = 1 if individual
i is given felbamate and FBMi = 0 if given placebo. Informative dropout was
a problem in this dataset. Out of the original 40 individuals (20 randomized
to felbamate and 20 randomized to placebo), 21 completed the protocol (13 in
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Table 4: MLE estimates of epilepsy data from joint model

Parameter Estimate S.E. Z-score
α -0.274 0. 593 −0. 462
ν 2.310 0. 728 3. 173
β -1.536 1. 249 −1. 230
δ 1.112 0. 170 6. 541
γ 0.880 0. 751 1. 172
γβ −1. 352 0. 352 −3. 841

the felbamate group and 8 in the placebo group). Most of the dropouts in the
placebo group dropped out because of increased seizure frequency and severity
during the titration period. Those in the felbamate group tended to drop out
due to drug induced side effects unrelated to seizure activity. To illustrate the
current method, we ignore the problem of informative dropout and include only
individuals that completed the protocol. Estimates based on this data set will
tend to underestimate the effect of the drug therapy on seizure activity.

We applied the proposed joint model to the data in table 3. The distribution of
the number of events Ki (time periods with seizures) was assumed to be Poisson,

Pr (Ki = k) = a (k) exp (kφi − b (φi))

where a (k) = 1/k!, φi = ηi = δ + γβFBMi, and b (φi) = exp (δ + γβFBMi) . The
distribution of Yi|Ki = k was taken to be multinomial with cell probabilities
related to the covariates via the orthant probabilities as before. Here we assumed
the univariate orthant probabilities were related to the covariates through the
logit link, i.e.,

α − βFBMi = logit
[
pt

i (1)
]
, t = 1, 2, ..., k,

and the bivariate associations were described with global odds ratios by,

ν = log

pt1,t2
i (1, 1)

[
1 − pt1

i (1) − pt2
i (1) + pt1,t2

i (1, 1)
]

[
pt1

i (1) − pt1,t2
i (1, 1)

] [
pt2

i (1) − pt1,t2
i (1, 1)

]
 ,

t1 < t2 (t1, t2 ∈ {1, 2, ..., k}) . The trivariate and higher order associations were
also described by global odds ratios and were assumed to be zero on the log
scale. The parameters for this model were α, ν, β, δ, and γ. Table 4 gives the
maximum likelihood estimates and the corresponding standard errors computed
from the inverse of the Fisher total information matrix. The estimate for the last
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term, γβ, was computed using the MLE invariance principle while the estimate’s
standard error was calculated using a standard delta-method approach. The
negative values for γ̂β and β̂ suggest that felbamate decreases the number and
severity (conditional on k) of seizures, while the positive value for γ̂ confirms that
the effect of felbamate is in the same direction for both the number and severity
of seizures.

We also ran two separate analyses, modeling the length and severity indi-
vidually (not shown). The model for the random length was assumed Poisson
as above, while the multivariate severities were modeled using GEE with a logit
link and an exchangeable working covariance matrix. Point estimates and stan-
dard errors from this approach were similar to corresponding parameters from
the above joint model. However, the joint model is likelihood based and directly
models the relationship between the random length and severities allowing more
flexibility in the types of questions that can be addressed. For example it would
be impossible, via the separate analysis, to address the question: “Does treat-
ment significantly decrease my chances of having more than two severe events?”
The joint model also makes explicit what is normally implicit in a separate anal-
ysis of severity: that you need to observe an event in order to observe a severity,
i.e., that the severity analysis is conditional on the occurrence of at least one
event. Ostensibly, a relevant question (perhaps the relevant question) regarding
treatment effect with respect to seizure activity is whether the marginal proba-
bilities of no seizure, mild seizure, or severe seizure are different between the two
treatment groups. When some subjects have no events this cannot be answered
by a separate analysis of severity since the marginal probability of having a mild
or severe event is the product of both pieces from the joint model, i.e.,

Pr (Y = MILD |x) = Pr (Y = MILD | k > 0,x) Pr (K > 0 |x)
Pr (Y = SEVERE |x) = Pr (Y = SEVERE | k > 0,x) Pr (K > 0 |x) .

This follows from the fact that

Pr (Y = SEVERE|k = 0,x) = Pr(Y = MILD|k = 0,x) = 0

and that the marginal model specification for Yi|Ki implies

Pr (Y = SEVERE|k = i,x) = Pr(Y = SEVERE|k = j,x) and
Pr (Y = MILD|k = i,x) = Pr(Y = MILD|k = j,x)

for all i, j > 0. In order to illustrate how the joint model can be used to generate
a test for a treatment effect, we compare the two multinomial distributions, πi =
(Pr (Ki = 0|FBMi) , Pr (Yi = MILD|FBMi) ,Pr (Y = SEVERE|FBMi))′, for the
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two treatment groups respectively using contrasts of baseline category logits.
Specifically we test

H0 : log
(

Pr (Y = k |FBMi = 1)
Pr (Ki = 0 |FBMi = 1)

)
= log

(
Pr (Y = k |FBMi = 0)
Pr (Ki = 0 |FBMi = 0)

)
,

for k = SEVERE, MILD. using a Wald chi-square test (details in appendix).
The resulting chi-square test statistic was 16.2. Comparing this to χ2

2 gives a
P-value of 0.0003. This indicates that, when compared to placebo, felbamate
significantly increases the chance of no seizure while lowering the chances of
having a severe seizure. The test effectively uses information from both endpoints
being investigated, seizure frequency and severity, and is made possible by the
joint-modeling framework.

6.2 Example 2: Type II coronary intervention study

This example involves data collected during the National Heart, Lung and
Blood Institute (NHLBI) Type II Coronary Intervention study (Brensike et al.,
1982, 1984). Patients with Type II hyperlipoproteinemia and coronary heart
disease were randomly allocated to a daily dose of 24g of cholestyramine and diet
(treatment group) or placebo and diet (control group). The goal of the study
was to assess the effect of cholestyramine on coronary artery disease progression
at the end of five years of study. The number and size of each lesion (blockage)
in the lower arterial descending portion of the heart was determined by coronary
angiogram at the fifth year of follow-up. We take the size of each lesion to be a
severity score with small (=1), medium (=2), or large (=3) degrees of blockage.
The observed number of blockages in this part of the heart varied from zero to
four. A total of 143 patients were recruited into the study. At the end of five
years of follow-up there were only 116 (57-placebo; 59-cholestyramine) patients
who had their fifth year coronary angiogram done. For the purpose of illustration,
this is the population we consider. Examination of the data did not suggest any
problems with informative dropout. Let treatment group be denoted by the
indicator variable TRTi with TRTi = 1 if individual i is given cholestyramine
and TRTi = 0 if given placebo. We also have two additional covariates. SBPi

is an indicator variable for whether systolic blood pressure is greater than 120,
and RCAi is an indicator variable of whether a regional contractile abnormality
is present.

We applied the above joint model to the data. Again, the distribution of Ki

was assumed to be Poisson,

Pr (Ki = k) = a (k) exp (kφi − b (φi))
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where a (k) = 1/k!, φi = ηi = δ + γ (β1TRTi + β2RCAi + β3SBPi) , and b (φi) =
exp[δ+ γ (β1TRTi + β2RCAi + β3SBPi)]. The distribution of Yi|Ki = k is taken
to be multinomial with cell probabilities related to the covariates via the orthant
probabilities as before. Here we assume the univariate orthant probabilities are
related to the covariates through a cumulative logit link, i.e.,

α1 − (β1TRTi + β2RCAi + β3SBPi) = logit
[
pt

i (1)
]

α2 − (β1TRTi + β2RCAi + β3SBPi) = logit
[
pt

i (2)
]
, t = 1, 2, ..., k,

and the bivariate associations are described with global odds ratios by,

ν = log

pt1,t2
i (1, 1)

[
1 − pt1

i (1) − pt2
i (1) + pt1,t2

i (1, 1)
]

[
pt1

i (1) − pt1,t2
i (1, 1)

] [
pt2

i (1) − pt1,t2
i (1, 1)

]


ν = log

pt1,t2
i (1, 2)

[
1 − pt1

i (1) − pt2
i (2) + pt1,t2

i (1, 2)
]

[
pt1

i (1) − pt1,t2
i (1, 2)

] [
pt2

i (2) − pt1,t2
i (1, 2)

]


ν = log

pt1,t2
i (2, 1)

[
1 − pt1

i (2) − pt2
i (1) + pt1,t2

i (2, 1)
]

[
pt1

i (2) − pt1,t2
i (2, 1)

] [
pt2

i (1) − pt1,t2
i (2, 1)

]


ν = log

pt1,t2
i (2, 2)

[
1 − pt1

i (2) − pt2
i (2) + pt1,t2

i (2, 2)
]

[
pt1

i (2) − pt1,t2
i (2, 2)

] [
pt2

i (2) − pt1,t2
i (2, 2)

]
 ,

t1 < t2 (t1, t2 ∈ {1, 2, ..., k}) . The trivariate and higher order associations are
also described by global odds ratios and are assumed zero on the log scale. The
parameters for this model are α1, α2, ν, β1, β2, β3, δ, and γ. Table 5 gives the max-
imum likelihood estimates and the corresponding standard errors computed from
the inverse of the Fisher total information matrix. The estimates and standard
errors for γβ1, γβ2, and γβ3 are computed as described before. The negative val-
ues for γ̂β1 and β̂1 suggest that cholestyramine decreases the number and severity
(conditional on k) of seizures. The positive value for γ̂ confirms that, on average,
the effect of cholestyramine and the other two covariates are in the same direction
for both the number and severity of seizures. Again, we ran two separate analyses
modeling the length and severity individually (not shown). The model for the
random length was again assumed Poisson, while the multivariate severities were
modeled using GEE with a cumulative logit link and an exchangeable working
covariance matrix. Point estimates and standard errors from this approach dif-
fered from the corresponding parameters in the above joint model, though the
overall pattern and directions of association were preserved. In particular, both
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Table 5: MLE estimates of heart data from joint model

Parameter Estimate S.E. Z-score
α1 -0.795 0. 269 −2. 953
α2 1.769 0. 321 5. 518
ν 0.873 0. 309 2. 824
β1 -0.302 0. 263 −1. 146
β2 0.621 0. 405 1. 535
β3 -0.091 0. 210 −0. 433
δ 0.461 0. 129 3. 583
γ 0.677 0. 498 1. 360

γβ1 −0. 204 0. 116 −1. 763
γβ2 0. 420 0. 175 2. 407
γβ3 −0.062 0.095 −0. 647

β1 is the parameter for TRTi; β2 is the parameter
for RCAi; β3 is the parameter for SBPi.

approaches failed to find significant effects of cholestyramine on either of the
disease outcomes (number or degree of occlusion of blockages).

Again we generated a test for a treatment effect, comparing the two multino-
mial distributions,

πi = (Pr (Ki = 0|TRTi,RCAi,SBPi) ,Pr (Yi = 1|TRTi,RCAi,SBPi) ,

Pr(Y = 2|TRTi,RCAi, SBPi),Pr (Y = 3|TRTi,RCAi,SBPi))′,

for the two treatment groups (holding RCAi and SBPi at their population aver-
ages) using contrasts of baseline category logits, i.e.,

H0 : log
(

Pr (Y = k |TRTi = 1,RCAi,SBPi)
Pr (Ki = 0 |TRTi = 1,RCAi,SBPi)

)
= log

(
Pr (Y = k |TRTi = 0,RCAi,SBPi)
Pr (Ki = 0 |TRTi = 0,RCAi,SBPi)

)
, k = 1, 2 and 3.

The Wald chi-square test statistic for H0 was 10.2. Comparing this to χ2
3 gives

a P-value of 0.017. This indicates that cholestyramine is effective in reducing the
chance of developing a lesion as well as the chance of having a larger lesion size.
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7. Discussion

We have proposed a general, likelihood based, joint model for multivariate
ordinal random length data where both the number of events and the severity
of events are outcome measures. A limited simulation showed that the MLE is
asymptotically normal. We also showed how one can construct a meaningful test
for treatment effect based on both the number and severity of events within the
joint modeling framework. We noted that informative dropout was a problem
for the epilepsy data example. This was beyond the scope of this paper, though
we are currently developing methodology for modeling the informative dropout
process within the joint modeling framework.
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Appendix

Form of I (θ)∗ and I (θ|k) :
Using similar computation methods as in GLIM (McCullagh and Nelder,

1989), one can show that

I (θ)∗ =
N∑

i=1

(
∂ηi

∂θ

)′ ((
h′ (E (Ki))

)2
V ar (Ki)

)−1
(

∂ηi

∂θ

)
where ηi = δ + γ (x′

iβ) as above. Using these same GLIM techniques, it is easy
to show that

Ii (θ|k) = X′
i

[(
∂ηi

∂πi

)′]−1

Cov (Zi)−1

(
∂ηi

∂πi

)−1

Xi

where ηi =
(
(ηm

i )′ , (ηa
i )′
)′ and Xi is the design matrix obtained by combining xi,

Xm
i , and Xa

i .

Chi-square test:

Let C be the contrast of multinomial cell estimates that are to be tested.
Then a Wald chi-square test statistic,

C

[
∂C

∂θ
I
(
θ̂
)−1

(
∂C

∂θ

)′]−1

C ′
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s asymptotically distributed as χ2
rank(C).
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