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Abstract: We have extended some previous works by applying the product
partition model (PPM) to identify multiple change points in the variance of
normal data sequence assuming mean equal to zero. This type of problem
is very common in applied economics and finance. We consider the Gibbs
sampling scheme proposed in the literature to obtain the posterior estimates
or product estimates for the variance and the posterior distributions for
the instants when changes take place and also for the number of change
points in the sequence. The PPM is used to obtain the posterior behavior
of the volatility (measured as the variance) in the series of returns of four
important Latin American stock indexes (MERVAL-Argentina, IBOVESPA-
Brazil, IPSA-Chile and IPyC-Mexico). The posterior number of change
point as well as the posterior most probable partition for each index series
are also obtained.
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1. Introduction

Most methodologies used to analyse structural changes and change points
problems assume that the number of change points is a known and fix value.
For example, we can cite the threshold models (Chen and Lee, 1995, Geweke
and Terui, 1993), the methods based on maximum likelihood estimators consid-
ered by Hawkins (2001) and many others. Other authors have studied the one
change point problem using a Bayesian approach (Menzefricke, 1981, Hsu, 1984
and Smith, 1975, for example). The product partition model (PPM) developed
by Hartigan (1990) introduces more flexibility into the analysis of these problems
since it rather considers the number of change points as a random variable. As
shown by Barry and Hartigan (1992), by applying the PPM one can easily ob-
tain product estimates for the parameters of interest at each point the time, the
posterior distribution of the random partition generated by the change points,
and also the posterior distribution of the number of change points. (For multi-
ple change point analysis using Bayesian approach see also Chernoff and Zacks
(1964)).
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Barry and Hartigan (1993) and Crowley (1997) applied the PPM to the iden-
tification of multiple change points in normal means only. Both papers consider
Gibbs sampling approaches to obtain only the product estimates. Later, Loschi
et al. (1999) extended the results from Barry and Hartigan (1993) and Crowley
(1997) by applying the PPM to identify multiple changes in both means and
variances of normal data and by proposing a Gibbs sampling scheme to com-
pute the posterior distributions of the random partition generated by the change
points and the posterior distributions of the number of change points. Quin-
tana and Iglesias (2003) provided a decision-theoretic formulation to PPM and
linked it to the Dirichlet process. Loschi et al. (2003a) extended even further the
PPM by rather assuming a prior distribution for the parameter p that indexes
Yao’s (1984) cohesions, that is, the probability p of having a change point at
any instants of time and by proposing a Gibbs sampling scheme to compute the
posterior relevances involved in the product estimates. Despite all flexibility in-
troduced by the PPM in the analysis of change point problems, Loschi and Cruz
(2002) showed also that the product estimates may be considerably influenced by
the prior specifications for p.

On the other hand, several models proposed to describe the behavior of fi-
nancial time series assumes that the variance is constant throughout the time.
Homoscedasticity hypothesis can be reasonable for efficient markets. However,
this assumption seems to be too strong for emerging markets since they are more
susceptible to shocks (Mendes (2000), Duarte and Mendes (1997)) which can
produce changes in the volatility.

Hsu (1984) considers that the returns of the Dow Jones Industrial Average
follows a normal distribution and “under modest efficient market assumptions”
(see Hawkins (2001), p. 333) assumes that the mean (µ) is zero. Correa (1998)
provides empirical evidence that the mean return in the Chilean market is also
zero. Following Correa (1998) assumptions for the Chilean market, since the
markets considered in this paper are also emerging markets, we suppose that,
conditionally in the variance (σ2), the returns are normally distributed with mean
equal to zero. We also adopt a conjugate inverted-gamma prior distribution for
σ2. As a consequence of these assumptions, the returns are distributed according
to a Student-t distribution, which discloses a structure of correlation among the
returns and has heavier tails than the normal distribution.

This paper addresses the identification of multiple change points in the vari-
ance (which is understood here as a measure of volatility) of data sequences using
a Bayesian approach. We apply the PPM to identify multiple change points in
the normal variances. It is assumed that only contiguous blocks are possible and
that the prior cohesions (Yao’s cohesions, 1984) are a truncated geometric dis-
tribution with parameter p. We extended some results from Correa (1998) by
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assuming a beta prior distribution for p and by providing the posterior distribu-
tions of the random partition generated by the change points and for the number
of change points. The Gibbs sampling scheme proposed by Loschi et al. (1999) is
considered to obtain the estimates for these posterior distributions. Unlike Cor-
rea (1998), the product estimates for the variance are obtained using the method
proposed by Loschi et al. (2003a). Then, the PPM will be applied to the analysis
of four Latin American stock markets. To represent these markets we consider
the return of their most important stock prices indexes: the MERVAL (Índice de
Mercado de Valores de Buenos Aires) of Argentina, the IBOVESPA (Índice da
Bolsa de Valores do Estado de São Paulo) of Brazil, the IPSA (Índice de Precios
Selectivos de Acciones) of Chile and the IPyC (Índice de Precios y Cotizaciones)
of Mexico.

The paper is organized as follows. In Section 2, the PPM and related results
are presented following Barry and Hartigan (1992). The PPM is applied to
identify multiple change points in normal variances assuming Yao’s cohesions. In
Section 3, we describe the Loschi et al.’s (2003a) computational method to obtain
the product estimates of the variances, as well as a Gibbs sampling scheme to
compute the posterior distributions for the random partition generated by the
change points and for the number of change points. In Section 4, the methodology
is applied to the four Latin American indexes aforementioned. Finally, Section 5
concludes the paper.

2. Statistical Models

2.1 The product partition model

Let X1, . . . ,Xn be a data sequence and consider the index set I = {1, . . . , n}.
Consider a random partition ρ = {i0, i1, · · · , ib} of the set I, 0 = i0 < i1 <
· · · < ib = n, and a random variable B which denotes the number of blocks in ρ.
Consider that each partition divides the sequence X1, . . . ,Xn into B = b contigu-
ous subsequences, which will be denoted here by X[ir−1ir] = (Xir−1+1, . . . ,Xir )′,
for r = 1, . . . , b. Let c[ij] be the prior cohesion associated with the block [ij] =
{i+1, . . . , j}, for i, j ∈ I∪{0}, and j > i, which represents the degree of similarity
among the observations in X[ij] and can be interpreted as transition probabilities
in the Markov chain defined by the change points (for details, see Barry and
Hartigan (1993)).

Let θ1, . . . , θn be a sequence of unknown parameters, such that, condition-
ally in θ1, . . . , θn, the sequence of random variables X1, . . . ,Xn has conditional
marginal densities f1(X1|θ1), . . . , fn(Xn|θn), respectively. The prior distribu-
tion of θ1, . . . , θn is constructed as follows. Given a partition ρ = {i0, . . . , ib},
for b ∈ I, one has that θi = θ[ir−1ir ], for every ir−1 < i ≤ ir and r = 1, . . . , b,
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and that θ[i0i1], . . . , θ[ib−1ib] are independent, with θ[ij] having prior (block) den-
sity π[ij](θ), θ ∈ Θ[ij], where Θ[ij] is the parameter space corresponding to the
common parameter, say, θ[ij] = θi+1 = . . . = θj, which indexes the conditional
density of X[ij].

Hence, we say that the random quantity (X1, . . . ,Xn; ρ) follows a PPM, de-
noted by (X1, . . . ,Xn; ρ) ∼ PPM , if:

i) the prior distribution of ρ is the following product distribution:

P (ρ = {i0, . . . , ib}) =
Πb

j=1c[ij−1ij ]∑
C Πb

j=1c[ij−1ij ]

(2.1)

in which C is the set of all possible partitions of the set I into b contiguous
blocks with endpoints i1, . . . , ib, satisfying the condition 0 = i0 < i1 < · · · <
ib = n, for all b ∈ I;

ii) conditionally on ρ = {i0, . . . , ib}, the sequence X1, . . . ,Xn has the joint
density given by:

f(X1, . . . ,Xn|ρ = {i0, . . . , ib}) = Πb
j=1f[ij−1ij ](X[ij−1ij ]), (2.2)

in which f[ij](X[ij]) =
∫
Θ[ij]

f[ij](X[ij]|θ)π[ij](θ)dθ is the predictive density
of the random vector X[ij], called data factor.

Consequently, if (X1, . . . ,Xn; ρ) ∼ PPM, the number of blocks B in ρ has a
prior distribution given by:

P (B = b) ∝
∑
C1

Πb
j=1c[ij−1ij ], b ∈ I, (2.3)

in which C1 is the set of all partitions of I into b contiguous blocks with endpoint
i1, . . . , ib, satisfying the condition 0 = i0 < i1 < · · · < ib = n.

As shown by Barry and Hartigan (1992), the posterior distributions of ρ and
B have the same functional form of the prior distribution, in which the posterior
cohesion for the block [ij] is given by

c∗[ij] = c[ij]f[ij](X[ij]). (2.4)

Barry and Hartigan (1992) also show that the posterior distributions of θk is
given by:

π(θk|X[0n]) =
k−1∑
i=0

n∑
j=k

r∗[ij]π[ij](θk|X[ij]), k = 1, . . . , n, (2.5)
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and that the posterior expectation (or product estimate) of θk is given by:

E(θk|X[0n]) =
k−1∑
i=0

n∑
j=k

r∗[ij]E(θk|X[ij]), k = 1, . . . , n, (2.6)

in which r∗[ij] denotes the posterior relevance for the block [ij], that is:

r∗[ij] = P ([ij] ∈ ρ|X[0n]) =
λ[0i]c

∗
[ij]λ[jn]

λ[0n]
, (2.7)

with λ[ij] =
∑

Πb
k=1c

∗
[ik−1ik], in which the summation is over all partitions of

{i + 1, . . . , j} in b blocks with endpoints i0, i1, . . . , ib, satisfying the condition
i = i0 < i1 < · · · < ib = j.

2.2 The product partition model for normal variances

In order to specify the PPM for the normal case, assume that there is a
sequence of unknown independent parameters θ1 = σ2

1 , . . . , θn = σ2
n, such that

Xk|σ2
k ∼ N(0, σ2

k), for k = 1, . . . , n. It is also assumed that each common param-
eter θ[ij] = σ2

[ij], related to the block [ij], has the conjugate inverted-gamma prior
distribution denoted by σ2

[ij] ∼ InvGam(a[ij]/2, d[ij]/2), a[ij] > 0,d[ij] > 0, whose
density function is given by:

f(σ2
[ij]) =

(a[ij]/2)
d[ij]/2

Γ(d[ij]/2)
(σ2

[ij])
d[ij]+2

2 exp

{
a[ij]

2σ2
[ij]

}
, σ2

[ij] > 0. (2.8)

The expected value, the variance and the mode of the distribution of σ2
[ij] is

given, respectively, by:

E(σ2
[ij]) = a[ij]

d[ij]−2 ,

V ar(σ2
[ij]) =

2a2
[ij]

(d[ij]−2)2(d[ij]−4)
,

Mo(σ2
[ij]) = a[ij]

d[ij]+2 .




(2.9)

Hence, the conditional distribution of θ[ij] = σ2
[ij], given the observations in

X[ij], is the inverted-gamma distribution given by:

σ2
[ij]|X[ij] ∼ InvGam(a∗[ij]/2, d

∗
[ij]/2), (2.10)

where the posterior parameters are:{
a∗[ij] = a[ij] +

∑j
k=i+1 X2

k , and

d∗[ij] = d[ij] + j − i.
(2.11)
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Consequently, it follows that

E(σ2
[ij]|X[ij]) =

a∗[ij]
d∗[ij] − 2

(if d∗[ij] > 2). (2.12)

The interested reader may find details in O’Hagan (1994).
From (2.12) and (2.6), it follows that the product estimates for the parameter

σ2
k, for k = 1, . . . , n, is given by:

σ̂2
k = E(σ2

k|X[0n]) =
k−1∑
i=0

n∑
j=k

r∗[ij]
a∗[ij]

d∗[ij] − 2
(if d∗[ij] > 2), (2.13)

in which a∗[ij] and d∗[ij] are defined as in (2.11).
Let 0n be the n × 1 vector of zeros and In the n × n identity matrix. The

posterior relevances r∗[ij] can be obtained from (2.7) and (2.4) where the random
vector X[ij] follows a centred (j − i)-dimensional Student-t distribution denoted
by X[ij] ∼ tj−i(0(j−i), Ij−i; a[ij], d[ij]) (see Arellano-Valle and Bolfarine, 1995)
with density function given by

f(X[ij]) =
Γ

(
d[ij]+j−i

2

)
Γ

(
d[ij]

2

)
π

(j−i)
2

a
d[ij]/2

[ij]

{
a[ij] +

j∑
k=i+1

X2
k

}−(d[ij]+j−i)/2
. (2.14)

Notice that, as a consequence of the assumptions made in this section, the ob-
servations within the same block are correlated and distributed according to a
distribution with heavier tail than the normal distribution.

2.3 The product partition model for Yao’s cohesions

In this paper, the prior cohesions proposed by Yao (1984) will also be consid-
ered. Let p, for 0 ≤ p ≤ 1, be the probability that a change occurs at any instant
in the sequence. Therefore, the prior cohesion for block [ij] is given by:

c[ij] =
{

p(1 − p)j−i−1, if j < n,
(1 − p)j−i−1, if j = n,

(2.15)

for all i, j ∈ I, i < j, which corresponds to the probability that a new change
takes place after j − i instants, given that a change has taken place at instant i.
These prior cohesions imply that the sequence of change points establishes a dis-
crete renewal process, with occurence times identically distributed with geometric
distribution. Such cohesions are appropriate when it is reasonable to assume the
past change points are noninformative about the future change points.
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In this case, the conditional prior distributions for ρ and B, given p, are
obtained from (2.1) and (2.3), respectively, and assume the following form:

P (ρ = {i0, . . . , ib}|p) = pb−1(1 − p)n−b, (2.16)

for every partition {i0, . . . , ib}, satisfying 0 = i0 < i1 < . . . < ib = n,b ∈ I, and

P (B = b|p) = Cn−1
b−1 pb−1(1 − p)n−b, b ∈ I, (2.17)

where Cn−1
b−1 denotes the number of distinct partitions of I into b contiguous

blocks.
Let assume that p has beta prior distribution with parameters α > 0 and

β > 0, denoted by p ∼ Beta(α, β). Consequently, the prior distributions for ρ
and B are given, respectively, by:

P (ρ = {i0, . . . , ib}) =
Γ(α + β) Γ(α + b − 1) Γ(n + β − b)

Γ(α) Γ(β) Γ(n + α + β − 1)
, (2.18)

and
P (B = b) = Cn−1

b−1

Γ(α + β)Γ(α + b − 1)Γ(n + β − b)
Γ(α)Γ(β)Γ(n + α + β − 1)

. (2.19)

It is noticeable from (2.19) that B
D= Y + 1 where Y is a random variable

which has a Binomial-Beta distribution with parameters n − 1, α and β, α > 0,
β > 0 (see Bernardo and Smith (1994) for details). Thus, the prior mean and
variance of B is given, respectively, by:

E(B) = (n−1) α
α+β + 1,

V ar(B) = (n−1) α β (α+β+n−1)
(α+β)2 (α+β+1) .


 (2.20)

Assuming the 0-1 loss function (Bernardo and Smith, 1994), that is consider-
ing the following penalty function:

L(δ,B) = lim
ε→0

I|B−ε|([ε,∞)),

the prior Bayes estimator of B is the mode of the prior distribution of B, which
is the greatest integer which does not exceed (n + 1)(α − 1)/(α + β − 2) + 1.

Thus, the posterior distribution of ρ is the following distribution:

P (ρ = {i0, . . . , ib}|X[0n])

=
b∏

j=1

f[ij−1ij ](X[ij−1ij ])
Γ(α + β) Γ(α + b − 1) Γ(n + β − b)

Γ(α) Γ(β) Γ(n + α + β − 1)
, (2.21)
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and the posterior distribution of B is given by:

P (B = b|X[0n])

= Cn−1
b−1

b∏
j=1

f[ij−1ij ](X[ij−1ij ])
Γ(α + β) Γ(α + b − 1) Γ(n + β − b)

Γ(α) Γ(β) Γ(n + α + β − 1)
, (2.22)

where f[ij](X[ij]), i, j ∈ I, i < j, is the Student-t distribution given in (2.14) if
the normal case is under consideration.

3. Computational Methods

3.1 The Gibbs sampling

Gibbs Sampling is a Monte Carlo Markov Chain (MCMC) scheme which con-
siders that the transition kernel is constituted by full conditional distributions
(Gilks et al., 1996, Gamerman, 1997). This algorithm was proposed by Geman
and Geman (1984) and adapted to Bayesian statistics by Gelfand and Smith
(1990). In particular, Gibbs sampling provides the posterior distributions gener-
ation scheme which is described in the following.

Let X = (X1, . . . ,Xn) be a random quantity whose posterior distribution
is π(x). Suppose that all full conditional distributions πi(Xi) = π(Xi|X−i) are
available, where X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn). Given the initial values
X(0) = (X(0)

1 , . . . ,X(0)
n ), samples of the posterior distribution π(x) can be gener-

ated by using the following procedure:
1. Initialize the iteration counter of the chain by making j = 0 and obtain

the j + 1-th value X(j+1) generating

X(j+1)
1 ∼ π(x1|x(j)

2 , . . . ,x(j)
n )

X(j+1)
2 ∼ π(x2|x(j+1)

1 ,x(j)
3 , . . . ,x(j)

n )
...

...
X(j+1)

n ∼ π(xn|x(j+1)
1 ,x(j+1)

2 , . . . ,x(j+1)
n−1 )

2. Update the counter by making j = j + 1 and return to step 1. Repeat this
procedure until convergence is reached.

The sequence of values X(j) generated by Gibbs sampling is a Markov chain.
When convergence is reached, X(j) is value from the posterior distribution π(x).
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3.2 Gibbs sampling for PPM

As in Section 2, suppose that p ∼ Beta(α, β). Assume that, given ρ, θk ∈ [ij],
for k = 1, . . . , n and i, j ∈ I, i < j. Let X[0n] = (X1, . . . ,Xn) and θ = (θ1, . . . , θn)
and denote by θ−k the vector (θ1, . . . , θk−1, θk+1, . . . , θn). The full conditional
distributions of p, ρ, and θk, for k = 1, . . . , n are given, respectively, by:

π(p|ρ, θ,X[0n]) ∝ pb+α−2(1 − p)n+β−b−1;

π(ρ|p, θ,X[0n]) ∝
(
Πb

j=1f[ij−1ij ](X[ij−1ij ])
)

pb−1(1 − p)n−b;

π(θk|ρ, p, θ−k,X[0n]) ∝ f[ij](θk|X[ij]).

Notice that, since all partitions should be considered, it can be very hard to
sample directly from the full conditional distribution of ρ if long sequences are
considered. An easier way to sample from those distributions is described in the
following.

3.3 A Gibbs sampling scheme to the PPM

Consider the auxiliary random quantity Ui, suggested by Barry and Hartigan
(1993), which reflects whether or not a change point occurs at time i, that is,
Ui = 1 if θi = θi+1 and Ui = 0 if θi �= θi+1, for i = 1, . . . , n − 1. Notice
that the random partition ρ is immediately identified by considering the vector
U = (U1, . . . , Un−1) of these random quantities.

Each partition Us = (U s
1 , . . . , U s

n−1), s ≥ 1, is generated by using the Gibbs
sampling as follows. Starting from an initial value (U0

1 , . . . , U0
n−1), the rth element

at step s, U s
r , is generated from the conditional distribution Ur|U s

1 , . . . , U s
r−1,

U s−1
r+1 , . . . , U s−1

n−1, p(s−1), θ(s−1); X[0n],for r = 1, . . . , n−1. In order to generate the
samples of U’s above, it is sufficient to consider the following ratio:

Rr =
P (Ur = 1|V s

r , p(s−1), θ(s−1);X[0n])
P (Ur = 0|V s

r , p(s−1), θ(s−1);X[0n])

for r = 1, . . . , n − 1, in which V s
r = {U s

1 = u1, . . . , U
s
r−1 = ur−1, U

s−1
r+1 =

ur+1, . . . , U
s−1
n−1 = un−1}.

Considering the Yao’s prior cohesions given in (2.15) and assuming that p ∼
Beta(α, β), each value U s

r , s ≥ 1, r = 1, . . . , n − 1, can be generated by using

Rr =
f[xy](X[xy])Γ(n + β − b + 1)Γ(b + α − 2)

f[xr](X[xr])f[ry](X[ry])Γ(b + α − 1)Γ(n + β − b)
, (3.1)
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for b = 1, . . . , n, in which:

x =




max{i, s.t. : 0 < i < r,U s
i = 0}, if U s

i = 0, for some
i ∈ {1, . . . , r − 1}

0, otherwise,
(3.2)

and

y =




min{i, s.t. : r < i < n,U s−1
i = 0}, if U s−1

i = 0, for some
i ∈ {r + 1, . . . , n − 1}

n, otherwise.
(3.3)

Consequently, the criterion of choosing the values U s
i , i = 1, . . . , n−1 becomes:

U s
r =

{
1, if Rr ≥ 1−u

u
0, otherwise,

for r = 1, . . . , n− 1, in which u ∼ U(0, 1). If the normal case described in Section
2 is considered, the joint density f[ij](X[ij]) is the Student-t distribution given in
(2.14). (For a degenerate prior distribution to p, see details about the generation
of U in Loschi et al. (1999).)

The posterior probability for each particular partition ρ = {i0, i1, . . . , ib} is
estimated by computing the proportion of samples of (U2, . . . , Un) such that Uir =
0 for r = ik +1, k = 1, . . . , b−1, and Ur = 1 otherwise. The posterior distribution
of B is obtained by noticing that the number of blocks in Us is given by Bs =
1 +

∑n−1
i=1 (1−U s

i ). Consequently, the posterior distribution of B (or the number
of change points B − 1) is estimated as follows:

P (B = b|X[0n]) =
∑T

s=1 1{Bs = b}
T

,

in which T is the net number of vectors U generated and 1{B} denotes the
indicator function of B. The method used to compute the product estimates of
σ2

k, for k = 1, . . . , n, is described in the next section.

3.4 Computational procedure for the product estimates

Loschi et al. (2003a) obtain the product estimates as follows. Generate T
vectors U = (U1, . . . , Un−1). The estimate of the posterior relevance of the block
[ij], i, j = 1, . . . , n, i < j, is computed as follows:

r̂∗[ij] =
M

T
, (3.4)
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Figure 1: Return series

in which M is the number of vectors U for which it is observed that Ui = 0,
Ui+1 = · · · = Uj−1 = 1, and Uj = 0. The product estimates of σ2

k, for k = 1, . . . , n,
are obtained substituting (3.4) in (2.13), respectively.
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4. Application to Latin American Emerging Markets

In this section we focus on the identification of multiple change points in the
volatility (variance) of the stock indexes of four important Latin American mar-
kets: the MERVAL (Índice de Mercado de Valores de Buenos Aires) of Argentina,
the IBOVESPA (Índice da Bolsa de Valores do Estado de São Paulo) of Brazil,
the IPSA (Índice de Precios Selectivos de Acciones) of Chile and the IPyC (Índice
de Precios y Cotizaciones) of Mexico. We apply the methodology presented in
the previous sections to analyse the behavior of these indexes within the period
from October 31, 1995 to October 31, 2000, recorded fortnightly. A return series
is defined by using the transformation Rt = (Pt − Pt−1)/Pt−1, where Pt is the
price in the month t. Defined in this way, the returns within each block can be
considered normally distributed with mean equal to zero, given the volatility (see
Correa (1998) for empirical evidence). MERVAL, IBOVESPA, IPSA and IPyC
return series are plotted in Figure 1.

We notice from Figure 1 that the behavior of all these indexes suggests the
existence of some changes in the variance. Our purpose here is to show that
within the period from 31 October, 1995 to 31 October, 2000 the four return
series present change points in their volatility - that is, we show that MERVAL,
IBOVESPA, IPSA and IPyC series possess volatility clusters. We consider the
PPM approach described in Section 2.

The prior distributions and cohesions related to MERVAL, IBOVESPA, IPSA
and IPyC returns are formulated in accordance with the facts reported by Loschi
et al. (1999) and Correa (1998) for the Chilean market and Duarte and Mendes
(1997) for emerging Latin American markets. Brazilian, Argentinian and Mexican
markets are also emerging markets and, like the Chilean market, more suscep-
tible to the political scenario than developed markets (Mendes, 2000) justifying
these specifications. As for the Chilean market, we also assume that changes
in the behavior of MERVAL, IBOVESPA, IPSA and IPyC return series are a
consequence of the receipt of not previously anticipated information, so that past
change points are non-informative concerning future change points (see Mandel-
brot, 1963). Hence, the prior cohesions presented in (2.15) are an adequate choice
for the four stock market indexes we will analyse.

We suppose that returns within the same block are conditionally independent
and distributed according to the normal distribution N (0, σ2

[ij]). We also adopt
the natural conjugate prior distribution for the parameter σ2

[ij] which, in this case,
is the inverted-gamma distribution given in (2.8). Consequently, we are assuming
that the returns are distributed according to a Student-t PPM (Loschi al., 1999),
which has heavier tails than the normal distribution and discloses a structure of
correlation amongst the returns within the same block similar to that one obtain
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Table 1: Parameters and descriptive statistics for the prior
distribution of the volatility

Index a[ij] d[ij] Mean Variance Mode

MERVAL 0.001 6 2.50×10−4 6.25×10−5 1.25×10−4

IBOVESPA 0.001 2 - - 2.50×10−4

IPSA 0.001 8 1.67×10−4 1.39×10−5 1.00×10−4

IPyC 0.001 6 2.50×10−4 6.25×10−5 1.25×10−4

by using ARCH model (Loschi et al., 2003b).
Table 1 presents the descriptive statistics for prior distributions of σ2

[ij] for
each index obtained from (2.9). These distributions are ploted in Figure 2.
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Figure 2: Prior distribution for the volatility

Notice from Figure 2 and Table 1 that we are assuming that in the prior
evaluation the IBOVESPA has the highest volatility (the prior mode is 2.5 ×
10−4) and the IPSA has the smallest volatility (the prior mode is 1.0 × 10−4).
The volatility for MERVAL and IPyC are considered the same (the prior mode
is 1.25 × 10−4). Observe also that there is less certainty about the volatility
of IBOVESPA since the variance for the volatility is the highest. These prior
specification are in accordance with Duarte and Mendes’s (1997) statements for
Latin American indexes.
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According to some expert’s opinion, changes in the behavior of stock returns
is mainly a consequence of crises or events that occur in other countries. Three
great financial crises envolving emerging markets occurred in January, 1995 (Mex-
ico’s Crisis), August, 1997 (Asia’s Crisis) and July, 1998 (Russia’s Crisis). Also,
in January, 1999, the Minas Gerais (Brazil) State Governor stopped paying Minas
Gerais’s debt with other countries. These important events are country specific.
However, they can spread out across countries with a similar economy eventu-
ally producing changes in their behavior (Lopes and Migon, 2002). It is also
expected that the policies adopted by the governments during and after theses
crises produced changes in the behavior of the economy. In the prior evaluation
we are assuming that MERVAL, IBOVESPA, IPSA and IPyC could experience
changes as a consequence of (at least) these events. Thus, we assume that the
probability of having a change in any instant p has a beta prior distribution with
parameters α = 5 and β = 50. This prior distribution has modal value equal to
0.091 and concentrate most of its mass in small values of p. Consequently, from
equation (2.20), we can also observe that the expected number of change points
in the prior evaluation for all indexes is 10.82 and the variance is high (standard
deviation is 5.53) which means that we are not very sure about the number of
change points. The modal value of the number of blocks is 10.0 which means
that the most probable number of change points in the four indexes is 9.0. That
is, for us the four indexes are equally susceptible to shocks and to the political
atmosphere.

We generate 10,000 samples of 0-1 vectors with dimension 119, starting from
a sequence of zeros. After convergence has been reached, we discarded the initial
4,000 interations. Since a small correlation is observed we consider lag of 10 and
worked with a sample of size 600.

From Figure 3 we can notice that the product estimates for the volatility in
each fortnight is smaller for IPSA followed, in general, by MERVAL and IPyC.
On the whole, IBOVESPA presents the highest volatility. It is also noticeable
that the product estimates for the volatility of IPSA, MERVAL and IPyC present
similar behavior. The volatility of MERVAL presents an important change in the
2nd fortnight, August, 1997. Its volatility reaches its highest value in the 2nd
fortnight, November, 1997 remaining at this level until the 1st fortnight, October,
1998. From the 2nd fortnight, December, 1996 to the 1st fortnight, August,
1997, MERVAL experiences its period of lowest volatility. Another change can
be observed in the 2nd fortnight, June, 1999. IPSA presents an important change
in its volatility in the 2nd fortnight, September, 1997 reaching its highest value
in the 2nd fortnight, December, 1997. Decreases in the volatility of IPSA are
observed in the 2nd fortnight, October, 1998, the 2nd fortnight, December, 1999
and in the 1st fortnight, June, 2000. The smallest volatility is observed from the
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1st fortnight, February, 1997 to the 2nd fortnight, March, 1997. The volatility of
IPyC increases strongly from the 1st fortnight, April, 1997, to the 2nd fortnight,
September, 1997. The maximum is reached in the 2nd fortnight, November, 1997
remaining at this level until the 2nd fortnight, July, 2000. IPyC experiences its
smallest volatility from the 1st fortnight, 1997 to the 2nd fortnight, March, 1997.
The volatility of IBOVESPA starts increasing in the 2nd fortnight, May, 1997 and
its decrease starts in the 2nd fortnight, May, 1999. IBOVESPA experiences its
highest volatilities from the 2nd fortnight, September, 1997 to the 2nd fortnight,
October, 1997 and from the 1st fortnight, July, 1998 to the 2nd fortnight, April,
1999. From the 2nd fortnight, March, 1996 to the 1st fortnight, November, 1996
IBOVESPA experiences its smallest volatility. In that period the volatility of
IPSA and IBOVESPA were very close.
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Figure 3: Product estimates for the volatility

Figure 4 presents the product estimates (solid lines) of the fortnightly volatil-
ities for MERVAL, IBOVESPA, IPSA and IPyC return series. These estimates
are contrasted with the square return series (dotted lines). We can notice that
the product estimates are in agreement with the square returns behavior.

It is noticeable from Figure 5 and Table 2 that for MERVAL, IPSA and
IPyC the posterior distribution of the number of blocks are very similar. All
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these distributions are asymetric, there are unique modes and they typically
concentrate the most of their mass in small values.
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Figure 4: Product estimates for the volatility and square return series

MERVAL, IPSA and IPyC present mode equal to 2 which means that con-
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Figure 5: Product distribution for the number of Blocks

sidering the 0-1 loss function (see Section 2.3) the posterior Bayes estimates for
the number of change points in such indexes are 1 - which is much smaller than
9, the prior Bayes estimate for the number of change points. It can be also
observed that, since the variance of the posterior distribution of the number of
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change points is smallest for IPyC, there is less uncertainty about the number
of changes in this index. IBOVESPA presents the highest mode (mode = 7)
and mean (mean = 11.22) which means that the Brazilian stock market was
more susceptible to changes in that period. Observe that, assuming the 0-1 loss
function, the posterior Bayes estimates of the number of change points in the
IBOVESPA is also smaller than the prior Bayes estimates.

Table 2: Descriptive statistics – Posterior distribution of the
number of blocks

Index Mean Variance Mode

MERVAL 2.75 0.84 2
IBOVESPA 11.22 27.50 7

IPSA 2.91 1.07 2
IPyC 2.47 0.53 2

Table 3 presents the prior and posterior probabilities for the posterior mode
of the number of blocks for the four indexes. Notice, for example, that in spite of
having a low prior probability for MERVAL, IPSA and IPyC series experiencing
only one change point (5.5%), the posterior probability for this event increases
strongly reaching 53%, 46% and 63.0%, respectively. For the IBOVESPA the
posterior probability for the posterior mode also increases reaching 10% only.
For IBOVESPA, we also observe that the posterior probability of the number
of blocks is 7 (the posterior mode) or more is 82.66%. For the other index, the
posterior probability of the number of blocks is 2 (the posterior mode) or more
is 100.00%.

Table 3: Prior and posterior probabilities for the posterior
mode of B

Index Posterior mode Prior prob. Posterior prob.

MERVAL 2 0.055 0.53
IBOVESPA 7 0.066 0.10

IPSA 2 0.055 0.46
IPyC 2 0.055 0.63

Table 4 presents the posterior most probable partition for MERVAL, IBOVES
PA, IPSA and IPyC series. We can perceive that the posterior most probable
partition of each index indicates the presence of only one change point. MER-
VAL,IPSA and IPyC present change point in very close instants. For example,
the posterior most probable partition for MERVAL is {0, 47, 120} which means
that MERVAL experiences changes in its behavior in the observation 48 (2nd
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fortnight, September, 1997). IBOVESPA behaves differently presenting change
in the 2nd fortnight, April, 2000.

Table 4: The posterior most probable partition and their
prior and posterior probabilities

Index Partition Prior prob. Posterior prob.

MERVAL {0,47,120} 4.6 × 10−4 0.2233
IBOVESPA {0,109,120} 4.6 × 10−4 0.0017

IPSA {0,47,120} 4.6 ×10−4 0.4333
IPyC {0,45,120} 4.6 ×10−4 0.1117

Notice that the change points identified by the PPM in MERVAL, IPSA and
IPyC indexes are close to a important international event – Asia’s crisis in August.
Despite of the good performance of the PPM, some other Bayes estimates could be
considered in case the interest is not a retrospective analysis as it was considered
in this paper (see Quintana and Iglesias, 2003).

5. Final Remarks

We applied the PPM to identify multiple change points in the variance of
data sequence which are normally distributed, given the variance. We assumed
an inverted-gamma prior distribution for the variance. Consequently, the data
sequence is distributed according to a Student-t distribution. We considered the
Yao’s prior cohesions (Yao, 1984) and a beta prior distribution for the parameter
p extending previous work. The Gibbs sampling scheme proposed by Loschi al.
(1999) and Loschi al. (2003) was considered to obtain the posterior distributions
involved in the PPM.

We applied the PPM to identify multiple change points in the volatility of
four important Latin American stock markets. To represent these markets we
considered the return of their most important indexes: the MERVAL (Índice de
Mercado de Valores de Buenos Aires) of Argentina, the IBOVESPA (Índice da
Bolsa de Valores do Estado de São Paulo) of Brazil, the IPSA (Índice de Precios
Selectivos de Acciones) of Chile and the IPyC (Índice de Precios y Cotizaciones)
of Mexico.

The approach presented in this paper seems to explain the behavior of the
Latin American indexes - MERVAL of Argentina, IBOVESPA of Brazil, IPSA of
Chile and IPyC of Mexico - satisfactorily if a change point analysis is required.
We conclude that MERVAL, IPSA and IPyC have a very close behavior and could
probably suffer the influences of the same non-local events. IBOVESPA seems
to be the most unstable. We notice that all indexes present volatility clusters,
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and a small number of change points. Brazil is a developing country and has the
biggest economy in South America and the Chilean economy is the more stable
justifying the results we obtained.

Some open questions remain and are relevant topics for future research in this
area. The posterior distribution of p could also be important for decision makers.
Is it easy to implement it? How could we evaluate the probability of each instant
being a change point?
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