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Abstract: The current study examines the performance of cluster analysis
with dichotomous data using distance measures based on response pattern
similarity. In many contexts, such as educational and psychological testing,
cluster analysis is a useful means for exploring datasets and identifying un-
derlying groups among individuals. However, standard approaches to cluster
analysis assume that the variables used to group observations are continu-
ous in nature. This paper focuses on four methods for calculating distance
between individuals using dichotomous data, and the subsequent introduc-
tion of these distances to a clustering algorithm such as Ward’s. The four
methods in question, are potentially useful for practitioners because they are
relatively easy to carry out using standard statistical software such as SAS
and SPSS, and have been shown to have potential for correctly grouping ob-
servations based on dichotomous data. Results of both a simulation study
and application to a set of binary survey responses show that three of the
four measures behave similarly, and can yield correct cluster recovery rates
of between 60% and 90%. Furthermore, these methods were found to work
better, in nearly all cases, than using the raw data with Ward’s clustering
algorithm.
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1. Introduction

Cluster analysis (CA) is an analytic technique used to classify observations
into a finite and, ideally, small number of groups based upon two or more vari-
ables. In some cases there are hypotheses regarding the number and make up
of such groups, but more often there is little or no prior information concerning
which individuals will be grouped together, making CA an exploratory analysis.
There are a number of clustering algorithms available, all having as their primary
purpose the measurement of mathematical distance between individual observa-
tions, and groups of observations. Distance in this context can be thought of in
the Euclidean sense, or some other, comparable conceptualization (Johnson and
Wichern, 1992).
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One of the primary assumptions underlying these standard methods for cal-
culating distance is that the variables used to classify individuals into groups are
continuous in nature (Anderberg, 1973). However, some research situations, such
as those involving testing data, may involve other types of variables, including
ordinal or nominal. For example, in some situations, researchers are interested
in grouping sets of test examinees based on their dichotomously scored responses
(correct or incorrect) to individual test items, rather than on the total score for
the exam, especially for identifying cases of answer copying (Wollack, 2002). The
clustering of observations based on dichotomous variables can be readily extended
beyond the realm of psychological testing to any situation in which the presence
or absence of several traits are coded and researchers want to group the obser-
vations based on these binary variables. These could include economic analyses
where individual firms are classified in terms of the presence or absence of vari-
ous management practices, or situations where binary coding is used to describe
industrial processes. In such situations, the standard Euclidean measures of dis-
tance are inappropriate for assessing the dissimilarity between two observations
because the variables of interest are not continuous, and thus some alternative
measure of separation must be used (Dillon and Goldstein, 1984). It is the goal of
this paper to investigate four measures of distance designed for clustering using
dichotomous data, and to compare their performance in correctly classifying in-
dividuals using simulated test data. A fifth approach, using the raw data rather
than these distance measures, will also be included. The paper begins with a
description of the four distance measures, followed by a discussion of the study
design and the Monte Carlo simulation. Next, is the presentation and discussion
of the results followed by a description of the implications for practitioners using
dichotomous variables for clustering, and finally, weaknesses of the study.

2. Distance Measures for Dichotomous Variables

There are several techniques for conducting CA with binary data, all of which
involve calculating distances between observations based upon the observed vari-
ables and then applying one of the standard CA algorithms to these distances.
A popular group of these measures designed for binary data is known collectively
as matching coefficients (Dillon and Goldstein, 1984). There are several types
of matching coefficients, all of which take as their main goal the measurement
of response set similarity between any two observations. The logic underlying
these techniques is that two individuals should be viewed as similar to the degree
that they share a common pattern of attributes among the binary variables (Sni-
jders, Dormaar, van Schurr, Dijkman-Caes and Driessen, 1990). In other words,
observations with more similar patterns of responses on the variables of interest
are seen as closer to one another than are those with more disparate response



Cluster Analysis with Dichotomous Data 87

patterns. An advantage of these measures is that they are easy to effect using
available statistical software such as SAS or SPSS.

In order to discuss how these methods work, it is helpful to refer to an example.
In this case, Table 1 below will be used to demonstrate how each of the four
measures are calculated. The rows represent the presence or absence (1,0) of a
set of K traits for a single observation i, and the columns represent the presence
or absence of the same set of K traits for a second observation, j, where i �= j.

Table 1: 2 × 2 response table

Subject 2
Subject 1 1 0

1 a b
0 c d

Cell a includes the count of the number of the K variables for which the
two subjects both have the attribute present. In a testing context, having the
attribute present would mean correctly answering the item. In turn, cell b repre-
sents the number of variables for which the first subject has the attribute present
and the second subject does not, and cell c includes the number of variables for
which the second subject has the attribute present and the first subject does
not. Finally, cell d includes the count of the number of the K variables for which
neither subject has the attribute present. The indices described below differ in
the ways that they manipulate these cell counts. While there are a number of
distance metrics available for dichotomous variables (Hands and Everitt, 1987),
this paper will examine the 4 most widely discussed in the literature (Anderberg,
1973; Lorr, 1983; Dillon and Goldstein, 1984; Snijders, Dormaar, van Schurr,
Dijkman-Caes and Driessen, 1990). It is recognized that other approaches are
available, however in the interest of focusing this research on using methods that
have been cited previously in the literature as being useful, and that are available
to practitioners, only these four will be included in the current study. The first
of these measures of distance is the Russell/Rao Index (Rao, 1948). It can be
expressed in terms of the cells of Table 1 as:

1
a + b + c + d

(2.1)

This index is simply the proportion of cases in which both observations had
the trait of interest. In contrast is the Jaccard coefficient, introduced by Sneath
(1957), which has a similar structure but excludes cases from the denominator
where neither subject has the trait of interest (cell d).

a

a + b + c
(2.2)
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A third variation on this theme, called the matching coefficient (Sokal and
Michener, 1958), includes both matched cells a and d: the number of cases where
both subjects have both attributes present, and the number of cases where neither
subject has the attributes present.

a + d

a + b + c + d
(2.3)

The final index to be examined here is Dice’s coefficient (Dice, 1945). It is
closely related to the Jaccard coefficient, with additional weight being given to
cases of mutual agreement.

2a
2a + b + c

(2.4)

As an example of how these coefficients work, assume two observations, each
of which have measurements for 7 binary variables where the presence of some
trait is denoted by a 1 and its absence is denoted by a 0. (In the case where these
variables represent responses to test items, a 1 would indicate a correct response,
while a 0 would indicate an incorrect response). Example data appear in Table
2.

Table 2: Example data for two subjects on 7 variables

Subject X1 X2 X3 X4 X5 X6 X7

1 1 1 0 0 1 0 0
2 0 1 0 1 1 1 0

These data can be summed and placed in a format similar to that found in
Table 1.

Table 3: Counts of response combinations for subjects 1 and 2

Subject 2
Subject 1 1 0

1 2 1
0 2 2

The data contained in Table 3 can be used to calculate values for the distance
measures described above.

Russell/Rao =
2

2 + 1 + 2 + 2
=

2
7

Jaccard =
2

2 + 1 + 2
=

2
5
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Matching =
2 + 2

2 + 1 + 2 + 2
=

4
7

Dice =
2 · 2

2 · 2 + 1 + 2
=

4
5

Distance is determined by taking the results of each calculation and sub-
tracting them from 1. Thus, the largest distance value for these two subjects is
associated with the Russell/Rao index, 1−2/7 = 3/7, while the smallest distance
is associated with the Matching and Dice coefficients, 1 − 4/7 = 3/7. After dis-
tances are calculated for an entire set of data, they are combined into a matrix
that is entered into a standard clustering algorithm such as Ward’s (Ward, 1963).

3. Methodology

In order to compare the performance of these indices in terms of correctly
grouping individuals, a set of Monte Carlo simulations were conducted under
a variety of conditions, and the 4 distance measures, along with the raw data
method, were applied to assess their performance. The data for this Monte Carlo
study were generated using a 2-parameter logistic (2PL) model, which takes the
following form:

Pi(θ) =
wDai(θ−bi)

1 + eDai(θ−bi)

where Pi(θ) = probability of having the attributeon variable i, given the level of
the latent trait, θ = level of the latent trait, D = scaling constant to make the
logistic model match the normal ogive, ai = ability of the particular attribute
to discriminant among subjects with different levels of θ, bi = the point on the
latent trait scale where probability of having the attribute is 0.5, item difficulty.

This model, which is a standard way to express the probability of an examinee
correctly answering a test item (see, for example, Lord, 1952; Birnbaum, 1968),
links an underlying ability, θ, with the difficulty of the particular item, b, as well as
its ability to differentiate among examinees of different abilities, a. In this context,
θ represents the unobservable ability of an individual in a particular subject
area. For example, if the test of interest measures mathematics knowledge, θ
would be mathematics aptitude. The difficulty parameter, b, will be larger for
items that are more difficult, while the discrimination parameter, a, will be larger
for items that do a better job of discriminating between those individuals with
more aptitude and those with relatively less aptitude. In the analysis of actual
testing data, these parameters are estimated using Maximum Likelihood methods.
However, for the purposes of this study, they were simply generated randomly,
as described below. For the current set of simulations, the value of the latent
variable, θ, was generated using a standard normal distribution, as was the b
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parameter, while the a values were generated from the uniform (0,1) distribution.
For each simulated dataset, a unique set of θ, a and b parameters were generated
for each simulated individual and item; i.e., for each simulation there is a unique
set of item parameters for all k items and j individuals: a (a1, a2, . . . , ak)) and
b, (b1, b2, . . . , bk) and θ, (θ1, θ2, . . . , θk). The resulting probability of having the
attribute was then compared to a randomly generated value from the uniform
(0,1) distribution, with the resulting dichotomous variable being assigned a 1 if
the probability from the 2PL model was larger than the uniform variate, and
a 0 otherwise. Two groups, or clusters, of subjects were simulated with the
difference between them being the mean value of the latent trait; i.e., one group
was associated with a high value while the other was associated with a low value.
There were two sets of these latent variables corresponding to cases of high group
separation and low group separation, with high group separation having means
of either −2 or 2 and low group separation having means of either −0.5 or 0.5.
Other conditions which were varied were the variance of the latent trait (1.5 and
0.5), the number of variables (10 and 24) and the number of subjects (240 and
1000). It should be noted that the two clusters always had an equal number
of subjects, and all combinations of simulation condition were crossed with one
another.

Cluster analysis was conducted using the four distance measures described
above, in addition to the raw dichotomous data with no distance measure applied.
Ward’s method of cluster extraction was selected for use in this study based upon
results indicating that of the major clustering methods, it often performs the best
at population recovery of clusters (Kuiper and Fisher, 1975; Blashfield, 1976;
Overall, Gibson and Novy, 1993). In addition, Hands and Everitt (1987) found
that it performed the best at cluster extraction when used in conjunction with
distance measures of this type. For each simulation, the distance measures were
calculated and the resulting matrices were submitted to the Ward’s method using
the SAS software system. In the case of the raw data, Ward’s method of cluster
extraction was applied directly to the dichotomous variables themselves, with no
distance measures calculated. The results of the cluster analyses were compared
using the percent of cases correctly grouped together, and the Kappa coefficient
of agreement, which takes the form:

K =
P0 − PE

1 − PE
,

where P0 = proportion of variables with attribute for both subjects in a pair,
PE =

∑
i Pi·P·i, expected proportion of variables with attribute for both subjects

in a pair, Pii = probability that a given subject will be classified win cluster i
and they should be in cluster i, Pi· = probability of being in cluster i in the
population, P·i = probability of being put into cluster i by the cluster analysis.
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Various authors have discussed the interpretation of Kappa (Landis and Koch,
1977; Fleiss, 1981; Gardner, 1995) with some consensus that values less than 0.4
indicate low agreement, and values above 0.7 indicating relatively high agreement.
In the context of this study, high agreement corresponds to the clustering solu-
tion matching the actual grouping of subjects. In addition to using simulations,
a set of real dichotomous data, taken from the National Center for Education
Statistics was also cluster analyzed using these five methods. The data are part
of the Early Childhood Longitudinal Study, and pertain to teacher ratings of
student aptitude in a variety of areas, along with actual achievement scores in
reading, math and general knowledge. In this case, 22 questions asked of teachers
were used to cluster a sample of 500 first graders. Each of these survey items
asked the teacher to rate a specific child on some type of academic performance,
such as their ability to clearly compose a story, read words with irregular vow-
els, group living and non-living things and understand whole numbers. These
items were dichotomized into categories representing performance at an inter-
mediate or proficient level, or performance that is still in progress of developing
or lower. In order to assess the success of the various approaches, the resulting
clusters were examined using student performance on reading, mathematics and
general knowledge achievement tests. It is hypothesized that the teacher ratings
of student aptitude should result in clusters that clearly demarcate students by
performance on these achievement tests.

4. Results

4.1 Results of simulation study

Across all treatment conditions, the percent correctly classified and the Kappa
coefficient values are very similar for all five methods, as can be seen in Table 4.
Based upon the standards for the Kappa value described above, it would appear
that overall, all five approaches to clustering have moderate agreement across all
of the study conditions. Indeed, they correctly group just under three quarters
of the observations.

Table 4: Kappa and percent correctly classified by distance measure

Distance Kappa Percent Correctly Grouped

Dice 0.471 0.735
Jaccard 0.473 0.736
Matching 0.466 0.733
Russell/Rao 0.467 0.734
Raw Data 0.465 0.732
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Table 5: Kappa / percent correctly grouped by measure and levels of
manipulated variables

Level of Group Separation
Distance Low (0.5/-0.5) High (2.0/-2.0)

Dice 0.137 / 0.628 0.793 / 0.906
Jaccard 0.139 / 0.637 0.796 / 0.909
Matching 0.124 / 0.568 0.797 / 0.911
Russell/Rao 0.134 / 0.614 0.792 / 0.905
Raw Data 0.103 / 0.472 0.716 / 0.818

Variance of Latent Variable
0.5 1.5

Dice 0.486 / 0.744 0.456 / 0.741
Jaccard 0.489 / 0.749 0.457 / 0.743
Matching 0.485 / 0.743 0.447 / 0.727
Russell/Rao 0.486 / 0.744 0.449 / 0.730
Raw Data 0.543 / 0.832 0.421 / 0.685

Number of Variables
10 24

Dice 0.431 / 0.710 0.513 / 0.776
Jaccard 0.434 / 0.715 0.514 / 0.777
Matching 0.431 / 0.710 0.503 / 0.761
Russell/Rao 0.432 / 0.712 0.504 / 0.762
Raw Data 0.445 / 0.733 0.486 / 0.735

Number of Subjects
240 1000

Dice 0.463 / 0.735 0.478 / 0.748
Jaccard 0.467 / 0.742 0.479 / 0.750
Matching 0.460 / 0.731 0.471 / 0.737
Russell/Rao 0.458 / 0.727 0.476 / 0.745
Raw Data 0.442 / 0.687 0.490 / 0.767

Because the pattern for the Kappa coefficient and the percent correctly grouped
is virtually identical for the five methods used in this paper, the results of Kappa
are emphasized in subsequent discussion, though the percent correctly grouped
is also presented. This choice is made based on the fact that researchers have
identified relevant cut off values for Kappa (i.e., what values represent high agree-
ment and what values represent low agreement), making it easier to interpret
and generalize than the percent correctly classified. The effect of differences in
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classification accuracy due to the manipulated study variables, including group
separation, variance of the latent variable, number of variables and number of
subjects are shown in Table 5.

It appears that the four measures of distance all have similar Kappa values at
both levels of group separation, with better performance associated with greater
separation, as would be expected. The clustering algorithm is somewhat less
accurate when using raw data rather than the distance measures, at both levels
of group separation. Similar patterns of performance can be seen among the
four distance measures across all treatment conditions. In general, they all have
higher Kappa values when the variance of the latent trait is lower, when there
are more variables being measured and when there are more subjects included in
the sample, though in this latter case the difference from smaller to larger sample
sizes is very minor. It is interesting to note that the raw data approach works
better than all four distance measures when the variance in the latent trait is low
and when the sample size is large. In addition, the impact of increased variance
appears to be much greater for the raw data method, as is evidenced by the
much sharper decline in Kappa and percent correctly grouped from low to high
variance, when compared with the four distance measures. It should be noted
that potential interactions among the manipulated variables were examined, and
none were found.

4.2 Results of real data analysis

The results of the cluster analysis for each measure are interpreted using
both the pseudo F (Calinski and Harabasz, 1974) and pseudo T 2 (Duda and
Hart, 1973) measures of cluster fit provided by SAS. These statistics have been
identified in simulations (Milligan and Cooper, 1985) to be accurate for identify-
ing the number of clusters present in a dataset, and to be robust in cases where
a high degree of error appears in the data. There has been more recent research
examining appropriate indices for ascertaining the number of clusters to retain
for a set of binary data (Dimitriadou, Dolincar and Weingessel, 2002). However,
the decision was made with respect to this study, to use a method that has been
proven useful in the past, and that is easily accessed by practitioners using stan-
dard software, such as SAS. In general, the number of clusters is determined by
examining the pattern of change for both statistics. One should look for a local
maximum of the pseudo F statistic, to be accompanied by a local minimum of
the pseudo T 2. Using this heuristic, it appears that each clustering approach
found three distinct groups of first graders in the data, based upon teachers’
ratings of their academic performance. In order to better understand the nature
of these clusters, the mean of reading, math and general knowledge test scores
taken by the children in the spring of first grade are calculated and appear in
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Table 6. Based on these means, it appears that for each of the five approaches,
the clustering algorithm finds groups of high, medium and low achieving children.
Interestingly, however, the degree of group separation is not uniform across meth-
ods. For example, it appears that the Jaccard, Russell/Rao and Dice methods
all result in three clearly defined groups based on the test scores. On the other
hand, the Matching coefficient cannot seem to distinguish between the highest
achieving group, and one that achieves in the middle. It does, however, clearly
group the lowest achieving students. Finally, the raw data approach does appear
to successfully differentiate the groups based on the reading and math scores, but
not general knowledge.

Table 6: Mean scores on achievement tests by distance measure and
cluster type

Cluster Type Reading Math General Knowledge

Jaccard
High 54.57 55.15 54.57
Medium 48.76 46.44 47.06
Low 39.88 34.84 37.67

Russell/Rao
High 54.80 55.59 54.60
Medium 50.23 48.70 49.85
Low 40.94 35.74 38.12

Dice
High 54.59 55.37 54.60
Medium 49.65 47.14 48.16
Low 39.49 34.73 37.16

Matching
High 55.10 55.96 54.97
Medium 53.93 52.02 52.32
Low 45.19 42.01 43.68

Raw data
High 57.47 57.07 55.56
Medium 52.37 53.84 53.71
Low 45.19 42.01 43.69

Table 7 displays the percent of observations that are grouped in the same
clusters by pairs of the clustering methods. It appears that there is high agree-
ment in terms of case clustering for the Jaccard, Russell/Rao and Dice indices.
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On the other hand, the groupings created by these three distance measures have
somewhat lower levels of agreement with the Matching coefficient, and much
lower agreement rates with the raw data. However, the Matching coefficient and
raw data approaches appear to have created clusters that are fairly similar, with
agreement between the two at 82.6%.

Table 7: Percent agreement in clustering observations

Jaccard Russell/Rao Dice Matching Raw data

Jaccard 91.4 96.0 68.6 53.2
Russell/Rao 94.2 74.6 58.6
Dice 71.2 54.6
Matching 82.6
Raw data

5. Discussion

As was discussed above, previous work has not been done comparing these
indices using Monte Carlo methods, which has left a gap in the literature in terms
of assessing their performance under a variety of conditions. Given the results
described herein, it appears that under the conditions present in this study, the
four measures of distance perform very much the same in terms of correctly
classifying simulated observations into two clusters based on a set of dichotomous
variables. In turn, the use of the raw data is associated with somewhat lower
accuracy unless the sample size is large or the variation of the underlying latent
trait is low. The similarity in performance of the four distance measures appears
to hold true regardless of the level of group separation, the variation in the
underlying latent variable, the number of variables included in the study and the
size of the sample. Across all measures, the clustering solutions are more accurate
for greater group separation, lower variance in the latent trait, more variables
and a larger sample size. With respect to the real data, the five methods did not
have perfect agreement in terms of clustering observations. While they all found
three clusters, the use of the Jaccard, Russell/Rao and Dice coefficients resulted
in very similar solutions, with clusters that were clearly differentiated based on
the achievement measures. In contrast, the matching and raw data approaches
yielded somewhat different results with less well defined groups.

The relative dearth in previous research of this type leaves little in the way
for comparison of these results with comparable ones. However, there has been a
small amount of discussion regarding the expected performance of these indices,
given their conceptual bases. Hall (1969) made the point that the Dice and
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Jaccard coefficients should differ because in the former index, mismatches (the
0,1 or 1,0 cases) lie halfway between matches, either 0,0 or 1,1, in terms of
importance, while in the latter they are of equal weight to the 1,1 category.
The fact that in the current study these two indices performed very similarly
suggests that this distinction is not very important in terms of classification. In
other words, giving mismatches equal weight with the 1,1 case does not seem
to detract from the ability of cluster analysis to correctly group observations as
compared to increasing the weight of the 1,1 agreement. Anderberg (1973) argues
that including the 0,0 case should not provide any useful information in terms
of classification, and in fact can be misleading. The current research appears
to support this assertion, at least in terms of the relatively poor performance of
the matching index versus the Jaccard, Dice and Russell/Rao alternatives. It is
interesting to note that the latter of these three, which uses the 0,0 category in
the denominator but not the numerator does perform as well as either Jaccard
and Dice, both of which ignore the matched absence (0,0) category altogether.
Therefore, it appears that if inclusion of the 0,0 category in calculating distance
does lead to a diminution in the performance of the clustering algorithm, it only
does so when this category in included in the numerator and denominator and
not the denominator only.

Given the similarities in the structure of the distance measures, it is not to-
tally surprising that they would perform fairly similarly in terms of clustering
accuracy. Indeed, the major difference among them is with respect to their han-
dling of an absence of a particular trait for both members of an observation pair.
Both the Russell/Rao and matching coefficients include this category in their cal-
culations, though they deal with it somewhat differently. The results presented
here would suggest that the number of cases where neither pair has the attribute
of interest across the set of variables does not contain useful information in terms
of clustering, regardless of how it is handled. Furthermore, the fact that the re-
sults for Dice’s coefficient (which multiplies the count of joint agreement by 2) are
similar to those for the Jaccard index would suggest that the amount of emphasis
placed on the number of variables where subjects both exhibit the attribute is
not important either. In short, it seems that the simplest of the four measures of
distance, the Jaccard index, works as well as its more complicated competitors in
terms of correctly grouping individuals based on a set of dichotomous variables.

Another finding of interest in this study is that the use of raw dichotomous
data in clustering does not always lead to a worse solution than that obtained by
using formal measures of distance, and in some cases may actually work better. In
the worst instance, clustering with raw data results in a rate of correct grouping
approximately 8

Across all five clustering methods used in this study, the factor that influences
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the ability to correctly group subjects is the degree of cluster separation. Among
the other factors manipulated in this study, none have a particularly dramatic
impact on the ability of the procedures to correctly cluster. Indeed, while there is
a slight increase in correct grouping for lower variance, more variables and a larger
sample size, none of these conditions results in an improvement of more than
about 6% in correct classification versus the alternative level for that variable.
An interesting implication of these results is that in general, clustering with these
measures will work well for samples as small as 240, and for as few as 10 variables.
These results may give some insight into the minimum dataset size at which these
procedures work properly, particularly if they can be replicated.

The analysis of the real data found that the Jaccard, Russell/Rao and Dice
measures are largely in agreement in terms of grouping individuals, and appear
to do a better job of finding distinct clusters in the data than either the Matching
or raw data approaches. While it is recognized that these results may only be
applicable to this dataset, they do reinforce both the apparent lack of importance
of cases where neither observation displays the trait, and the slightly better overall
performance of distance measure based clustering as opposed to that based on
the raw dichotomous data.

6. Implications for Practitioners and Suggestions for Further Research

There are some interesting implications for those using dichotomous data to
cluster individual observations. First of all, the methods described here, all of
which are intuitively simple and practically easy to carry out using standard sta-
tistical software, typically yield successful clustering rates of around 75% for the
simulated data, with the best performance coming with greatest group separa-
tion, in which case it can be expected that over 90% of the cases will be correctly
grouped together. These results would support the notion that cluster analysis
of dichotomous data using these approaches is appropriate, and can be expected
to work reasonably well.

Furthermore, the results described herein, particularly those based on the
real data, indicate that the Jaccard, Dice and Russell/Rao approaches are all
comparable. In addition, it should be noted that using the raw data might be
acceptable in some cases, especially when the sample size is large. However, given
the different solutions obtained by the raw data with the real data analysis, it
seems that further work would need to be conducted before a final decision in
this regard is possible.

As noted above, the sample size and number of items did not have a great
impact on the ability of these approaches to cluster individuals. These results
should help practitioners to define a reasonable size for using dichotomous vari-
ables to cluster individuals. Clearly, the payoff for greatly increasing the scope
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of a study in terms of the sample size and the number of variables is fairly small
in terms of clustering accuracy.

Finally, it seems clear that when group separation on the latent trait is rel-
atively low, the Jaccard, Dice and Russell/Rao measures work similarly, and
better, than the Matching coefficient or raw data. Indeed, even in the case of low
group separation, these three measures are able to correctly cluster over 60% of
the subjects.

As with any research, there are weaknesses in this study which should be
taken into account as the results are interpreted. First of all, only one clustering
algorithm, Ward’s, was used. In order to expand upon these results, the data
could be replicated and other clustering algorithms used. In addition, the dis-
tance measures selected for inclusion in this study are of a particular class, albeit
one identified by several authors as among the most useful for clustering with di-
chotomous data. Therefore, it would be worthwhile to compare these approaches
to other measures of distance that are calculated fundamentally differently, such
as Holley and Guilford’s G index. Finally, it might be worthwhile to expand
the parameters used in the 2PL model that simulated the data. For example, a
larger difference between the two levels of latent trait variance could be used, or a
sample size of less than 240, so that a true lower bound for adequate performance
for this variable could be identified.
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