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Abstract: In Bayesian analysis of mortality rates it is standard practice to
present the posterior mean rates in a choropleth map, a stepped statistical
surface identified by colored or shaded areas. A natural objection against
the posterior mean map is that it may not be the “best” representation of
the mortality rates. One should really present the map that has the highest
posterior density over the ensemble of areas in the map (i.e., the coordinates
that maximize the joint posterior density of the mortality rates). Thus, the
posterior modal map maximizes the joint posterior density of the mortality
rates. We apply a Poisson regression model, a Bayesian hierarchical model,
that has been used to study mortality data and other rare events when
there are occurrences from many areas. The model provides convenient
Rao-Blackwellized estimators of the mortality rates. Our method enables
us to construct the posterior modal map of mortality data from chronic
obstructive pulmonary diseases (COPD) in the continental United States.
We show how to fit the Poisson regression model using Markov chain Monte
Carlo methods (i.e., the Metropolis-Hastings sampler), and obtain both the
posterior modal map and posterior mean map are obtained by an output
analysis from the Metropolis-Hastings sampler. The COPD data are used
to provide an empirical comparison of these two maps. As expected, we have
found important differences between the two maps, and recommended that
the posterior modal map should be used.

Key words: COPD, Metropolis-Hastings sampler, mode-Hessian, optimiza-
tion, Poisson regression.

1. Introduction

In Bayesian analysis of mortality rates it is standard practice to present the
posterior mean rates in a choropleth map. A natural objection against the pos-
terior mean map is that it is not the “best” representation of the mortality rates
(i.e., the most probable map should be presented). From a Bayesian point of view
one should really present the map that has the highest posterior density over the
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ensemble of areas in the map (i.e., the coordinates that maximize the joint pos-
terior density of the mortality rates). Thus, unlike the posterior mean map, the
posterior modal map maximizes the joint posterior density of the mortality rates.
In a Bayesian analysis, a scientist can generate a large number of maps from an
output analysis of an appropriate sampling based method. By simply present-
ing the posterior mean map useful information may be lost. Our objective is to
develop a method to construct the map that has the highest posterior density.

The first known choropleth map was constructed on education rates in France
in 1826 by Charles Dupin, an education reformist not a cartographer. But the
word “choropleth” had to wait over one hundred years before it was invented in
1938 by Wright, a cartographer from the American Geographical Society in New
York City. A choropleth is an areal symbol and “choropleth” means “area” and
“fullness, quantity” as Wright said. Technically a choropleth is based on a stepped
statistical surface identified by colored or shaded areas called chorograms (e.g.,
statistical or admisistrative areas). One of the most common forms of mapping
data today is the choropleth map, in which each area (e.g., state or county) is
shaded according to the characteristic (e.g., mortality rate, crime rate, income,
rain fall). Areas with higher values of the characteristic are shaded more darkly
and vice versa. In the United States of America choropleth maps are used in
almost all applications, even in the daily newspapers and on television. Three
characteristics of these maps are (a) the value at specific area, (b) overall pattern
on the map and (c) pattern on one map as compared with the pattern on other
maps. For each area uniform distribution is assumed: the spatial unit used for
shaded mapping (same color) is the smallest detail that the shaded map can
represent. Within this unit the variable being mapped is uniformly distributed.
If the areas are too large, this type of mapping can hide important variation in
these areas. Too small units may, however, introduce visual noise. Aggregating
these units to larger ones may better reveal a visual pattern of the data. It
is important to choose the right classification method and there are two main
considerations (a) the interpretation skills of an expected user and (b) the best
classification method to represent particular data. Classification of the areas can
be done by forming intervals across the range of the data. For example, these
intervals can be equal widths, formed from quantiles or using natural breaks. In
our work on mortality data we generally use quantiles (e.g., quintiles) and the
areas in the higher quantiles get deeper colors or heavier shades in grey scale.

Recently, there has been increased interest in estimating mortality rates for
small geographical areas. Models and methods of analysis on rates are abundant
(see Nandram, Sedransk and Pickle 1999, Nandram, Sedransk and Pickle 2000,
Waller, Carlin, Xia and Gelfand 1997). For the purpose of constructing the
posterior modal map, we use a Bayesian hierarchical model recently discussed by
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Christiansen and Morris (1997). This is a Poisson regression model that has been
used to study mortality data and other rare events when there are occurrences
from several areas. The model utilizes a form in which there are convenient Rao-
Blackwellized estimators of the mortality rates. See Nandram (2000) for a review
of this model. Christiansen and Morris (1997) describe a hierarchical Bayesian
model for heterogeneous Poisson counts under the exchangeability assumption,
called Poisson regression interactive multilevel modeling (PRIMM). They have
made some analytical approximations which are very accurate, and it is important
to note that these approximations avoid the use of sampling based methods such
as Markov chain Monte Carlo (MCMC) methods. A sampling based method helps
us to find the rates that make the posterior density over the entire ensemble the
highest. This is a desirable approach in a Bayesian analysis.

It is pertinent to point out a related problem. In many disease mapping
problems, presenting the mean rates is a natural and effective practice. However,
in the analysis on rare events (e.g., mortality rates of COPD), this often turns out
to be misleading because the distributions of such rare events are usually skewed.
This can produce a difference between the means and the modes, and presenting
means will fail to give us accurate information. We give a simple illustration. Let
us denote the mortality rate for an area by R and suppose R ∼ Gamma(α, β),
a natural choice for the distribution of mortality data. Then, the mean of R
is µ1 = α/β and the mode of R is µ2 = (α − 1)/β. Now, suppose α = 2 and
β = 10−4, then µ1 = 2×10−4 and µ2 = 10−4 (i.e., the mean rate is twice as large
as the modal rate, a significant difference). Yet in this example the mean is not
so plausible as the mode. But if α� 1, the difference between the mean and the
mode will be negligible. However, we believe that the map based on the mode
should really be the one drawn.

For convenience we denote the number of health ervice areas (HSAs) by
� = 798. Let λ∼ denote the ensemble of mortality rate parameters and d∼ rep-
resent the data. That is, λ∼ = (λ1, . . . , λ�), and the data consist of the deaths
d∼ = (d1, . . . , d�) and the population sizes n∼ = (n1, . . . , n�) which are known. We
ignore the covariates momentarily. In the Bayesian view, given λ∼ , the deaths
have a distribution; given hyperparameters, λ∼ have a distribution (hyperparam-
eters are parameters of this distribution); and finally the hyperparameters have
a distribution. This is a hierarchical Bayesian model. Note that unlike non-
Bayesian inference λ∼ is a random vector. Then, using Bayes’ theorem and some
integration, the joint posterior density of λ∼ is π(λ∼ | d∼). Note that the key idea
in Bayesian statistics is that all information about λ∼ resides in π(λ∼ | d∼). Also, it
is important to note that the components of λ∼ are correlated a posteriori. The
posterior mean map is obtained by drawing the choropleth map for the posterior
means of λi, i = 1, . . . , �. Clearly, this ignores the inherent correlation among
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the components of λ∼ , and this is one additional obvious short comings of the
posterior mean map. One needs to construct a map simultaneously across the
areas (i.e., incorporate the correlation). However, the posterior modal map is a
map that plots the joint posterior mode over the surface π(λ∼ | d∼) providing a
point in � dimensional space that includes this correlation (i.e., the synergism
or antagonism over the components of λ∼ ). The Bayesian view states that the
point that has the highest posterior density (i.e., the posterior mode) should be
used as a representative value; otherwise the entire posterior density should be
presented. But, it is clearly impossible to present the entire posterior density in
a high dimensional space such as in the case of drawing choropleth maps. When
there is skewness, the mean is not a high density point, but the mode is.

Optimization of a function in a high dimensional space is a very complex
task, but it is easier if the function is a density function as in our application.
Simulation methods (e.g., simulated annealing) are attractive because constraints
on both the regularity of the function and on the function itself can be largely
ignored. Of course, if these constraints can be included, there will be an improve-
ment in the optimization process. Monte Carlo optimization uses the idea that if
the function can be “transformed” (not needed in our application) to a probabil-
ity density function and a random sample can be obtained from it, then one can
maximize the original function. One can simply find the sample member among
all sample members where the function is the highest to serve as a surrogate for
the maximum; see Chapter 5 of Robert and Casella (1999). In our application
we need to maximize a posterior density function in a high dimensional space.

Then, what is our approach to construct a posterior modal map? The answer
is simply how to maximize the posterior density π(λ∼ | d∼); but this is a complex
task because of the high dimensionality. Our method for doing this relies on the
output from a MCMC method (i.e., a sampling based method). The posterior
density π(λ∼ | d∼) does not exist in closed form. This is a marginal density which
is obtained by integration over the parameters of the joint posterior density of λ∼
and the parameters. Moreover, when this is done, π(λ∼ | d∼) becomes extremely
complex (one can only imagine it). It is now a routine calculation to use a MCMC
method to obtain a sample from the entire joint posterior density. For many real
applications using Bayesian statistics this is the preferred route, and it has led to
the solutions of many complex problems that are otherwise intractable. In our
procedure we let λ∼

(h), h = 1, . . . ,M denote the ensemble of mortality rates for
M ≈ 1000 samples from a sampling based method; so there are M choropleth
maps available to us. Which map should be presented? It should be clear by
now that from a Bayesian perspective we should present the map which makes
the posterior density π(λ∼ | d∼) the highest (i.e., joint mode).

The method for constructing the posterior map is illustrated using mortality
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data from chronic obstructive pulmonary diseases (COPD) in the continental
United States. The dataset was compiled by the National Center for Health
Statistics (NCHS), Hyattsville, Maryland. It contains the number of deaths,
population sizes, and a set of potential explanatory covariates for the 798 health
service areas (HSAs) in the contiguous 48 states. In our study we also tried
to link the mortality rate to the potential explanatory variables (covariates).
These covariates include smoking history, population density, elevation, annual
rainfall level, summer rainfall level, average income level, and college student
ratio. Here lung cancer rate within a HSA is used as a surrogate for smoking
history. Previous study by Nandram, Sedransk and Pickle (2000) shows that
for older white males, wmlung (white male lung cancer rate), sqrtpopd (square
root of population density), sqrtelev (square root of elevation) and arain (annual
rainfall level) are significant at a 5% significance level. Our regression analysis is
consistent with their result, so we include these four covariates in our study.

Data were collected during 1988-1992 with 10 age classes being identified.
In our study, we focus on the age classes which contain age 65+ (65 and older).
This age group is of particular interest because COPD occurred much more often,
and is a frequent cause of death of our retirees. We show how to fit the Poisson
regression model using Markov chain Monte Carlo methods (i.e., the Metropolis-
Hastings sampler), and obtain both the posterior modal map and posterior mean
map by an output analysis from the Metropolis-Hastings sampler. Using the
COPD we compare the two types of maps empirically.

Our main objective of this paper is to show how to construct the posterior
modal map and to compare it with the posterior mean map of the COPD data for
white males age 65+. We describe the Poisson-gamma regression model (Chris-
tiansen and Morris 1997) in Section 2, and for illustration we show how well it
fits the COPD data using the Metropolis-Hastings algorithm. In Section 3 we
describe how to construct the posterior modal map using an output analysis from
the Metropolis-Hastings sampler. In Section 4 we present a data analysis on the
COPD data and compare the posterior mean map and the posterior modal map.
Section 5 has concluding remarks.

2. A Hiearchical Bayesiab Regression Model

In this section we describe the Poisson-gamma hierarchical Bayesian model,
how to fit it using the Metropolis-Hastings sampler and the goodness-of-fit using
a Bayesian cross validation analysis. Let λi denote the mortality rate for the ith

HSA, i = 1, . . . , � where � = 798.

The observations consist of the number of deaths di and the population size
ni of the ith HSA, i = 1, . . . , �. To link the di and the ni to the mortality rates
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λi, we assume that

di | λi
ind∼ Poisson(niλi), i = 1, . . . , �. (2.1)

Under this model the maximum likelihood estimator of λi is ri = di/ni, i =
1, . . . , �, the observed mortality rate.

It is standard to estimate the λi by “borrowing strength” across the 798 HSAs.
Thus, letting x∼ i = (1, xi1, . . . , xi,p−1)′ denote the vector of (p− 1) covariates and
an intercept, we assume that

λi | α, β∼
ind∼ Gamma(α,αe

−x∼ ′
i
β
∼ ). (2.2)

Observe that in this model log(E(λi | α, β
∼

)) = x∼
′
iβ∼

and
√
α is the coefficient

of variation of the λi. Letting λ∼ denote the vector of mortality rates, the joint
density for the λi given α, β

∼
is

π(λ∼ | α, β
∼

) =
�∏

i=1


(αe

−x∼ ′
i
β
∼ )αλα−1

i exp{−αe−x∼
′
i
β
∼ λi}

Γ(α)


 .

We wish to maximize π(λ∼ | α, β
∼

) after incorporating the uncertainty in α and β
∼

to obtain the posterior modal map.
This model is attractive because of the conjugacy in which the conditional

posterior density of the λi is the simple gamma distribution. This permits us to
construct Rao-Blackwellized estimators of the λi. Such an estimator has smaller
mean square error than its empirical counterpart (Gelfand and Smith 1990).
This makes it convenient to construct the posterior modal map. In the standard
generalized linear model in which the log(λi) follow a normal linear model, it
is not possible to obtain simple Rao-Blackwellized estimators of the λi; only
empirical estimators can be easily obtained.

We take the shrinkage prior as the prior density for α

π(α) = 1/(1 + α)2, α > 0.

One might prefer π(α) = a0/(a0 + α)2, α > 0 where a0 is the prior median of α,
but we have found that inference is nonsensitive to the choice of a0. We use a
multivariate normal density as the prior for β

∼

β
∼
∼ Normal(µ

∼ 0
, κ0∆0),

where µ
∼ 0

, ∆0 and κ0 (i.e., a variance inflation factor ), are to be specified.
We show how to specify µ

∼ 0
and ∆0 using a weighted least squares analysis in
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Appendix A. Christiansen and Morris (1997) use a prior density of the form
π(α) = a0

(a0+α)2 , but their prior specification for β
∼

is noninformative (i.e., a flat
prior).

Then the joint posterior distribution of all the parameters given d∼ is

π(λ∼ , α, β∼ | d∼) ∝
�∏

i=1


(niλi)die−niλi(αe

−x∼ ′
i
β
∼ )αλα−1

i exp{−αe−x∼
′
i
β
∼ λi}

Γ(α)




× e
− 1

2
(β
∼
−µ
∼ 0

)′∆−1
0 (β

∼
−µ
∼ 0

)

(1 + α)2
. (2.3)

We note that this joint posterior density is a conditional density, but within the
Bayesian paradigm, we do not call it a conditional posterior density. However, if
in addition to the data, there is further conditioning on one or more parameters,
Bayesians call this conditional density a conditional posterior density.

In Christiansen and Morris (1997) PRIMM is used to evaluate (2.3). Our
method for constructing the posterior modal map requires a sampling-based
method. So we use the Metropolis-Hastings sampler to fit the model; see Chib and
Greenberg (1995) for a pedagogical discussion. We used the diagnostics reviewed
by Cowles and Carlin (1996) to study convergence (i.e., we used the trace plots
and autocorrelations) and we used the suggestion of Gelman, Roberts and Gilks
(1996) to monitor the jumping probability in each Metropolis step. The jumping
probability is obtained by counting the number of times the Markov chain moves
from one state to another divided by the number of iterations after convergence;
Gelman, Roberts and Gilks (1996) suggest that the jumping probability should
be between .25 and .50.

To run the Metropolis-Hastings sampler, we just need the conditional pos-
terior density of the λi, α and β

∼
. The condition posterior density for the λi is

simple, and it is convenient to record that

λi | α, β∼ , di ∼ Gamma(α+ di, ni + αe
−x∼ ′

i
β
∼ ) (2.4)

and the conditional posterior density for α and β
∼

is

π(α, β
∼
| λ∼ , d∼) ∝

e
− 1

2
(β
∼
−µ
∼ 0

)′∆−1
0 (β

∼
−µ
∼ 0

)

(1 + α)2

�∏
i=1

(αe
−x∼ ′

i
β
∼ )αλα−1

i exp{−αe−x∼
′
i
β
∼ λi}

Γ(α)
. (2.5)
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We draw α and β
∼

simultaneously from the joint conditional posterior density
using a Metropolis step with an independence chain. We obtain a proposal density
for the Metropolis step by approximating π(α, β

∼
| λ∼ , d∼ ) by πa(α, β∼ | λ∼ , d∼ ) where

πa(α, β∼ | λ∼ , d∼ ) = g1(α | β
∼
, λ∼ , d∼ )g2(β∼ | λ∼ , d∼ ),

g1(α | β
∼
, λ∼ , d∼) and g2(β∼ | λ∼ , d∼ ) are given in Appendix B. The Metropolis ratio is

ψ(α, β
∼

) = π(α, β
∼
| λ∼ , d∼ )/πa(α, β∼ | λ∼ , d∼).

To compute our maps, we first need a random sample from the joint pos-
terior density of Ω = (α, β

∼
). We obtain a random sample Ω(h), h = 1, . . . ,M

(M = 1000) from the Metropolis-Hastings sampler. We ran the Metropolis-
Hastings sampler for 5500 iterations, and we used a “burn in” of 500 iterations.
Then, we picked every 5th from the remaining 5000 to make the autocorrela-
tions among the iterates negligible. A further check on the jumping rate of the
Metropolis-Hastings sampler shows the jumping probability is around 0.40 for
all our activities. Also all the autocorrelations and numerical standard errors are
small enough. Tuning of the Metropolis step is obtained by varying the parameter
κ1; see Appendix B. We found that κ1 = 1.50 works fine.

Table 1: Sensitivity of inference about the mortality rates to the spec-
ification of κ0: Comparison of Average (AVG) and standard deviation
(STD) of posterior means (PM) and standard deviations (PSD) of the
mortality rates for the 798 HSAs by κ0

PM PSD
κ0 AVG STD AVG STD

10 38.713 6.090 2.876 1.084
100 38.713 6.089 2.876 1.084
500 38.714 6.090 2.876 1.084
1000 38.713 6.089 2.875 1.084
10000 38.714 6.089 2.875 1.084
100000 38.714 6.090 2.876 1.084

Note: AVG and STD must be multiplied by 10−4; κ0 is the variance
inflation factor.

We have specified the values of µ
∼ 0

and ∆0 in our analysis, and therefore a
sensitivity analysis, which we studied through the variance inflation factor κ0, is
relevant. For various large values of κ0 we have computed the posterior mean
(PM) and posterior standard deviation (PSD) for the 798 mortality rates. Then,
we took the average (AVG) and the standard deviation (STD) of the 798 values
of the PMs and the PSDs respectively. The results are presented in Table 1.
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For the six values of κ0 from 10 to 100,000, there are virtually no changes. The
results indicated that we can actually use noninformative priors (see Christiansen
and Morris 1997) for a condition about propriety of the posterior density which
is automatic in our model. In our empirical work we set κ0 = 10, 000 (i.e.,
essentially a noninformative prior).

An alternative Metropolis-Hastings sampler can be obtained. We have inte-
grated out the λi to obtain the joint posterior density of α and β

∼
, and applied

a procedure similar to the one for the conditional posterior density of α and β
∼

in our current sampler. One can see that this procedure would save a little time
in computation (i.e., the λi are drawn only in the output stage). Unfortunately,
it was difficult to tune this version of the Metropolis-Hastings sampler (i.e., high
correlations persist and we could not get autocorrelations down). It is possible to
use a resampling method (not Markov chain Monte Carlo) to fit the model here,
but we did not explore it.

Finally, we consider a measure, based on standardized cross-validation resid-
uals, to assess the fit of the model. Let d∼ (i) denote the set of all the di except
di itself. Then letting ri = di/ni, we define the cross-validation residual as
ARESi = ri − E(ri | d∼ (i)

), and the standardized cross-validation residual as

DRESi = ARESi/SD(ri|d∼ (i)
). (2.6)

That is, the ith observed ri is “held out” and compared with its point estimator,
E(ri|d∼ (i)), which is evaluated without using the observed di. We use the cross-
validation residuals as a measure of concordance of the data with the model. In
Figure 1 we have presented residual plots. Figure 1 (a) DRES versus predicted
value shows that the Poisson-gamma regression model fits reasonable well with
few possible outliers. Figure 1 (b) ARES versus standard deviation has bands
at ARES ± 2SD and the points are mostly within these bands (see Nandram,
Sedransk and Pickle 1999), indicating again that the Poisson-gamma regression
model provides a good fit to the COPD mortality data for white males 65+.

3. Construction of the Posterior Modal Map

Our objective in this section is to show how to construct the posterior modal
map. But we also show how to construct the posterior mean map for comparison.

Note that the posterior density of λ∼ is
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Figure 1: Residual plots of (a) DRES versus predicted value (b) ARES versus
standard deviation.
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π(λ∼ | d∼) =
∫

Ω
π(λ∼ | d∼ ,Ω)π(Ω | d∼)dΩ (3.1)

where the conditional posterior density of π(λ∼ | d∼ ,Ω) =
∏�

i=1 π(λi | di,Ω) and

λi | di,Ω
ind∼ Gamma

(
α+ di, ni + αe

−x∼ ′
i
β
∼

)
. (3.2)

Here Ω is p+ 1 dimensional vector, not too large, but λ∼ is a � dimensional vector
(i.e., � = 798, very large). As described in Section 2 we have a random sample
λ∼

(1), . . . , λ∼
(M) from π(λ∼ | d∼). We now need to find the point λ∼

∗ that maximizes
π(λ∼ | d∼) in (3.1). Note that it is impossible to maximize π(λ∼ | d∼) in (3.1) directly
(i.e., we need to integrate over the posterior density of Ω, π(Ω | d∼) which does not
exist in closed form). So that we can not use standard analytical optimization
techniques (e.g., calculus). Our procedure calculates π(λ∼ | d∼) at each of the points
λ∼

(1), . . . , λ∼
(M), and chooses the point that gives the largest π(λ∼ | d∼). Thus the

problem simply reduces to evaluating π(λ∼ | d∼) at each of the points λ∼
(1), . . . , λ∼

(M).
But first we show how to construct the posterior mean map using Rao-

Blackwellized estimators for the λi. It is desirable to find these Rao-Blackwellized
estimators because they have the smallest mean squared error (see Gelfand and
Smith 1990). Letting ri = di/ni, i = 1, . . . , � denote the observed mortality rate

and Λi = ni/(ni + αe
−x∼ ′

i
β
∼ ), using (3.2) the conditional posterior mean of λi is

E(λi | α, β∼ , di) = Λiri + (1 − Λi)e
x∼

′
i
β
∼ .

As expected, this is a weighted average of the observed mortality rate and the
prior mortality rate. It follows that the posterior mean (unconditional) of λi is

µi = E(λi | d∼) = EΩ|d∼
{Λiri + (1 − Λi)e

x∼
′
i
β
∼ }.

Note that because of the conditioning (posterior) on the data, µi is a function of
the data. The Rao-Blackwellized estimator of µi is

µ̂i = M−1
M∑

h=1

{Λ(h)
i ri + (1 − Λ(h)

i )e
x∼

′
i
β
∼

(h)

} (3.3)

where Λ(h)
i = ni/(ni +α(h)e

−x∼ ′
i
β
∼

(h)

) and Ω(h) = (α(h), β
∼

(h)), h = 1, . . . ,M are the
M iterates obtained from the Metropolis-Hastings sampler. The posterior mean
map is obtained by mapping the µ̂i in (3.3) for all 798 HSAs.

The method for constructing the posterior modal map is computationally
intensive, but it follows easily from the output of the Metropolis-Hastings sampler
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already described. Again letting λ∼ denote the vector of all 798 λi, we need the
mode of the joint posterior density, π(λ∼ | d∼). Naturally, this is a very complex
optimization problem because there are 798 variables, and π(λ∼ | d∼) does not exist
in closed form. Fortunately, we do not need to optimize π(λ∼ | d∼) directly.

The procedure is to obtain the value of the posterior density π(λ∼ | d∼) at each of
the M = 1000 iterates λ∼

(h), h = 1, . . . ,M obtained from the Metropolis-Hastings
sampler (i.e., at λ(h) we compute π(λ∼

(h) | d∼), the ordinate of the posterior density
at λ(h) which we denote by Ch, h = 1, . . . ,M). The posterior modal map consists
of the values of λ∼

(h∗) that maximize Ch among the M values λ∼
(h), h = 1, . . . ,M .

Note that for this procedure we only use the iterates (λ∼
(h),Ω(h)), h = 1, . . . ,M

and further sampling is not required.
Thus, we describe how to obtain the posterior ordinate ch at λ∼

(h) for any
h, h = 1, . . . ,M . First, we note that

ch = π(λ∼
(h) | d∼) = EΩ|d∼

(π(λ∼
(h) | d∼ ,Ω))

and a Rao-Blackwellized estimator of ch is

ĉh = M−1
M∑

k=1

π(λ∼
(h)|d∼ ,Ω(k)) (3.4)

where π(λ∼
(h) | d∼ ,Ω(k)) =

∏�
i=1 π(λ(h)

i | di,Ω(k)) and

π(λ(h)
i | d∼ ,Ω(k)) =

{ni+α(k)e
−x∼ ′

i
β
∼

(k)

}di+α(k)
[λ(h)di+α(k)−1

i exp{−(ni+α(k)e
−x∼ ′

i
β
∼

(k)

)λ(h)
i )}]/Γ(di+α(k)).

Thus, the algorithm for constructing the posterior modal map has the follow-
ing three steps.

(a) Perform the Metropolis-Hastings sampler to obtain M iterates (λ∼
(h),Ω(h)),

h = 1, . . . ,M .

(b) Compute the ordinate ĉh of the posterior density at each of h = 1, . . . ,M
iterates.

(c) Sort the ĉh, h = 1, . . . ,M in increasing order. The posterior modal map is
obtained by taking λ∼

(h∗), where h∗ corresponds to the maximum of the ch.

To make inference, (a) has to be performed anyway. Both (b) and (c) are easy
to perform.

For the COPD data in our procedure the joint mode has roughly 382 HSAs
with modes bigger than means and 416 have modes smaller than means. Our
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objective in the modal map is to provide the map of the mortality rates corre-
sponding to the coordinates of the point where the joint posterior density of the
mortality rates is the highest. For highly dispersed and sparse data, the posterior
distribution of the rate is often skewed. Therefore, the posterior mean can be
different from the posterior mode, leading to an inaccurate representation by the
posterior mean map.

4. Data Analysis and Map Comparison

In this section we analyze the COPD data, white males age 65+, using the
Poisson regression model. More importantly, we compare the posterior modal
map and the posterior mean map.

In Table 2 we present the posterior mean (PM), posterior standard deviation
(PSD) numerical standard error (NSE) and the 95% credible intervals for the
regression coefficients. First, the NSEs are very small indicating that the compu-
tation is doing well, and thus the results are trustworthy. The PSDs are all small
when compared with the PMs.

Table 2: Posterior means (PM), standard deviations (PSD), numeri-
cal standard errors (NSE) and 95% credible intervals for the regression
coefficients

Covariate PM PSD NSE Interval

Intercept -5.948 0.072 0.014 (-6.088, -5.781)
Lung cancer rate 0.008 0.001 0.000 (0.006, 0.010)
Population Density -0.497 0.108 0.022 (-0.726, -0.278)
Elevation 0.004 0.001 0.000 (0.002, 0.005)
Annual rainfall -0.401 0.101 0.021 (-0.593, -0.160)

NOTE: The NSEs are obtained using the batch means method with
batches of length 25 from the output sample of 1000 iterates.

Lung cancer rate and elevation have positive effects on mortality. HSAs where
more people smoke tend to have a higher COPD mortality (see Morris and Mu-
nasinghe 1994) and extreme climatic conditions aggravate existing asthma and
bronchitis (Bates 1989), as is living at high altitudes because of the reduced
oxygen supply (Schoene 1999).

Population density and annual rainfall have negative effects on mortality.
Those places with a high population density usually have better medical services,
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Figure 2: A comparison of the posterior mean and modal maps for COPD,
white males age 65+, top: Posterior modal map; bottom: Posterior mean map.

and when there is an emergency, people living in a remote area are more likely to
be delayed by the long travel to the nearest hospital (see Nandram, Sedransk and
Pickle 1999). Repeated exposure to particulate matter and other air pollutants,
primarily from traffic exhaust and coal-burning power plants, can aggravate ex-
isting lung conditions and can even cause death (English, Neutra, Scalf, Sullivan
Waller and Zhu 1999, Sunyer, Schwartz, Tobias, Macfarlane, Garcia and Anto
2000). In particular, small airborne particles such as SO2 found in urban air
pollution can be deposited deep in the lungs, causing severe pulmonary effects
(Schwartz and Neas 2000 and Sunyer, Schwartz, Tobias, Macfarlane, Garcia and
Anto 2000). Aerosolized toxins and viruses can be inhaled in dusty environments,
causing pulmonary effects (National Center for Health Statistics). Rainfall, on
the contrary, can lower the density of airborne particles and dust in the air, thus
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Figure 3: Histogram of the ratio of the posterior mean tates to posterior modal
rates for the 798 HSAs

lower the chance of contracting a pulmonary disease.
Next, we compare the posterior modal map and the posterior mean map. In

Figure 2 we present the choropleth maps based on the mean quintiles in which
the mortality rate is per 1,000 white males 65+. The two maps are mostly
similar especially on the eastern half of the United states. Most of the differences
are noticeable on the western half of the United states. We have studied the
differences in these two maps in greater detail.

First, we compute the ratio of µ̂i in (3.3) to λ(h∗), the joint modal rates
obtained from our algorithm, namely

Ri = µ̂i/λ
(h∗)
i .

We have presented the distribution of the ratios for the 798 HSAs in Figure
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3. The distribution is roughly symmetric and the five number summaries are
0.80, 0.97, 1.01, 1.05, 1.26.

We have also studied the coefficient of skewness for each of the λi for the 798
HSAs (i.e., for each HSA the iterates from the Metropolis-Hastings sampler are
used to estimate the coefficient of skewness). Then we drew the histogram of the
798 sample coefficients: the five number summaries are −0.16, 0.08, 0.15, 0.21, 0.45;
only 43 of the 798 HSAs have negative skewness. In fact, the individual posterior
modal and posterior mean of the λi are very close. We have drawn the map
corresponding to the individual modes, and we have found virtually no difference
when compared with the posterior mean map. This is expected because the 95%
credible interval for α is (19.49, 36.54); thereby making the posterior means
approximately the same as the individual posterior modes. As we have pointed
out, the problem of mapping the individual posterior mode is not our objective,
and mapping the overall posterior mode should be the objective of a scientist
who uses the Bayesian paradigm.

Table 3: Cross-tabulation of the 798 HSAs by modal and mean quintiles
of the mortality rates

Mode
Mean 1.91 − 3.29 3.29 − 3.71 3.71 − 4.02 4.02 − 4.43 4.43 − 6.61

1.91 − 3.36 133 24 3 0 0
3.36 − 3.70 24 91 38 7 0
3.70 − 4.00 2 38 68 45 7
4.00 − 4.35 1 6 48 75 30
4.35 − 6.61 0 1 3 33 121

In Table 3 we have cross classified the 798 HSAs according to which quintile
they belong to in the mean map and the modal map. It is good that many of
the HSAs lie along the diagonal of the 5 × 5 table. But there is a substantial
number of the HSAs off the diagonal. Of the 160 HSAs in the first mean quintile,
there are 24 HSAs in the second modal quintile, and of the 158 in the fifth mean
quintile, there are 33 in the fourth modal quintile. There are greater changes for
the second, third and fourth quintiles. For example, for the third quintile (i.e.,
the middle one) there are 68 in the third modal quintile and 92 off diagonal.

In Table 4 we have presented some specific HSAs in which there are large
differences between the posterior modal map and the posterior mean map. The
HSA 480 (Chicot and Ashley counties in Arkansas) is in the first quintile (pink)
in the mean map but is in third quintile in the modal map (middle red). The
HSA 575 (Finney and Scott counties in Kansas) is in the fourth quintile (second
top red) in the mean map but only in the first quintile (pink) in the modal map.
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It is clear that while there are similarities between the modal map and the
mean map, there are important differences in some HSAs as well. Thus, it will
be beneficial to construct the posterior modal map in disease mapping because
it is the most likely representation of the mortality rates as discussed before.

Table 4: Examples of HSAs which have very different quintile classifica-
tion in the modal and mean maps

Quintile
Mean Mode HSA Code HSA Name

1 3 480 Chicot and Ashley, AR
495 Denton and Cooke, TX
662 Clay, KS

2 4 3 Sussex, DE and Wicomico, MD
605 Stark and Golden Valley, ND
613 Red Willow, NE and Decatur, KS
642 Cloud and Republic, KS

3 5 471 Jackson (Pascagoula) and George, MS
481 Hale and Floyd, TX
469 Woodward and Ellis, OK
399 Jackson, WI
661 Harper and Kingman, KS
669 Barber, KS
607 Henry and St. Clair, MO

4 1 575 Finney and Scott, KS

4 2 356 Williams and Defiance, OH

3 1 524 Collingsworth, TX

NOTE: As an example, HSAs 480, 490, 662 fall in the first quintile for
the mean map and in the third quintile for the modal map.

5. Concluding Remarks

We have shown how to (a) fit the model of Christiansen and Morris (1997)
(b) construct the posterior mean map and (c) construct the posterior modal
map. In fact (c) is our key contribution. We obtain (c) using an output analysis
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from the Metropolis-Hastings sampler and (b) is done in order to compare the
posterior modal map with the posterior mean map. We have shown that there are
differences between the posterior mean map and the posterior modal map. One
example, the HSA 575 , consisting of the Finney and Scott counties in Kansas, is
in the fourth quintile in the mean map, but only in the first quintile in the modal
map.

We make one remark. A possible posterior modal map can be obtained by
finding the posterior modal rate for each area. Then these can be mapped for
all areas to provide a choropleth map. However, this has not been our intention
because from the Bayesian point of view this is not the map with the highest
posterior probability. Among the set of 1000 maps obtained from Metropolis-
Hastings sampler our procedure finds the one that maximizes the joint posterior
density over the 798 health service areas. We have repeated our procedure with
10,000 maps, and we have found minor changes. We believe that this procedure
of finding the posterior modal map is novel.

The simple Poisson regression model has wide applicability for rare events.
The conditional conjugacy in the Poisson-gamma regression model provides some
simplification in our analysis. Each λi has a gamma conditional posterior density,
and they are independent. This helps in finding the mode of the joint posterior
density. With nonconjugacy, (e.g., a Poisson-normal model) there will be diffi-
culty in finding the mode of the joint posterior density. The models of Nandram,
Sedransk and Pickle (1999, 2000) and Waller, Carlin, Xia and Gelfand (1997) are
of the Poisson-normal type. The Poisson-gamma regression is relatively robust,
so that one should not bother too much with the conjugacy of the Poisson sam-
pling process and the gamma prior distribution. It is possible to add more sources
of variation and more stages in the hierarchical Poisson-gamma model. Finding
the posterior modal map in both the Poisson-gamma and Poisson-normal models
in more complex problems needs further research.

Appendix A: Specification of µ
∼ 0

and ∆0

Letting λ̃i = di/ni, an estimator of λi is

λ̂i =
{

λ̃i, di > 0
d̄/n̄, di = 0,

where n̄ =
∑�

i=1 ni/� and d̄ =
∑�

i=1 di/�. By the Poisson assumption, given λi,

E{log(λ̃i)} ≈ λi and V ar{log(λ̃i)} ≈ 1/(niλi).

Using the prior density for the λi, E(λi | α, β∼ ) = e
x∼

′
i
β
∼ and E{log(λi) | α, β∼ } ≈
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x∼
′
iβ∼

. Thus, we assume that

log (λ̂i) = x∼
′
iβ∼

+ ei, ei
ind∼ Normal{0, γ2/(niλ̂i)}, i = 1, . . . , �, (A.1)

where γ2 is an unknown scale factor.
We compute weighted least square estimators in (A.1). Let Y∼ = (log λ̂1, . . . , log

λ̂�)′, X = (x∼ 1, . . . , x∼ �)
′ and W = diagonal(n1λ̂1, . . . , n�λ̂�). Then, the least square

estimator of β
∼

is

β̂
∼

= (X ′W−1X)−1(X ′W−1Y ) (A.2)

and Cov(β̂
∼

) is estimated by

Ĉov(β̂
∼

) = (X ′W−1X)−1γ̂2 (A.3)

where γ̂2 = (Y −Xβ̂
∼

)′W−1(Y −Xβ̂
∼

)/(n − p).

Finally, we specify µ
∼ 0

and ∆0 by taking µ
∼ 0

= β̂
∼

in (A.2) and ∆0 = κ0Ĉov(β̂∼ )
in (A.3), where κ0 is a variance inflation factor. By experimentation, we choose
κ0 to be large so that the prior density for β

∼
is proper and barely informative.

For our data analysis, after a sensitivity analysis, which reveals nonsensitivity to
κ0, we choose κ0 = 10000.

Appendix B: A multivariate proposal density for (α, β
∼

)

We obtain a proposal density for the conditional posterior density of (α, β
∼

)
using the multivariate normal density in which the mean is taken to be the mode
and the variance is the negative inverse Hessian matrix. Taking the logarithm of
the conditional posterior density, we have

∆(α, β
∼

) =
�∑

i=1

{
(α− 1) log λi − αe

−x∼ ′
i
β
∼ λi + α(log (α) − x∼

′
i
β
∼

) − log Γ(α)
}

−2 log(1 + α) − 1
2
(β
∼
− µ

∼ 0
)′∆−1

0 (β
∼
− µ

∼ 0
). (B.1)

We obtain the modal values, α̂ and β̂
∼

, of α and β
∼

in (B.1) using the Nelder-
Mead algorithm. Thus, the mean of the conditional posterior density of (α, β

∼
) is

(α̂, β̂
∼

). Thus, we next construct a surrogate for the variance using the Hessian
matrix.

Letting ψ′(·) denote the trigamma function, the second derivative of ∆(α, β
∼

)
with respect to α is

d =
∂2∆
∂α2

=
�∑

i=1

{
1/α − ψ′(α)

}
+ 2/(1 + α)2,
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the second derivative, Hβ
∼

, with respect to β
∼

is

Hβ
∼

= −[∆−1
0 + α

�∑
i=1

λie
−x∼ ′

i
β
∼ x∼ i

x∼
′
i
]

and the second derivative with respect to both α and β
∼

is

c∼ = −
�∑

i=1

(1 − λie
−x∼ ′

i
β
∼ )x∼ i.

Then, an approximation for the covariance matrix of (α, β
∼

) in the conditional
posterior density is

Σ =



σ2

α ν∼
′

ν∼ ∆β
∼


 = −κ1



d c∼

′

c∼ Hβ
∼



−1

, (B.2)

where κ1 is a tuning constant. We complete the process for the approximation
by replacing (α, β

∼
) in (B.2) by the modal estimates, (α̂, β̂

∼
), to obtain Σ̂ with

components σ̂2
α̂, ν̂∼ and ∆̂ˆβ

∼
.

Finally, the multivariate proposal density is obtained by taking

α | β
∼
∼ Gamma(a, b) and β

∼
∼ Normal(β̂

∼
, ∆̂ˆβ

∼
)

with a = µ̃2/σ̃2 and b = µ̃/σ̃2 where µ̃ = α̂+ν̂∼
′∆̂−1

ˆβ
∼

(β
∼
−β̂

∼
) and σ̃2 = σ̂2

α̂−ν̂∼ ′∆̂−1
ˆβ
∼

ν̂∼ .
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