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Abstract: In the case-parents trio design for testing candidate-gene associ-
ation, the distribution of the data under the null hypothesis of no associa-
tion is completely known. Therefore, the exact null distribution of any test
statistic can be simulated by using Monte-Carlo method. In the literature,
several robust tests have been proposed for testing the association in the
case-parents trio design when the genetic model is unknown, but all these
tests are based on the asymptotic null distributions of the test statistics. In
this article, we promote the exact robust tests using Monte-Carlo simula-
tions. It is because: (i) the asymptotic tests are not accurate in terms of
the probability of type I error when sample size is small or moderate; (ii)
asymptotic theory is not available for certain good candidates of test statis-
tics. We examined the validity of the asymptotic distributions of some of
the test statistics studied in the literature and found that in certain cases
the probability of type I error is greatly inflated in the asymptotic tests.
In this article, we also propose new robust test statistics which are statisti-
cally more reasonable but without asymptotic theory available. The powers
of these robust statistics are compared with those of the existent statistics
in the literature through a simulation study. It is found that these robust
statistics are preferable to the others in terms of their efficiency and robust-
ness.

Key words: Asymptotic distribution, case-parents design, disease-gene as-
sociation, exact robust test, Monte-Carlo simulation.

1. Introduction

In testing the association between a candidate gene and a disease, the case-
parents trio design proposed by Schaid and Sommer (1993) has been extensively
studied in recent years. The case-parents trio design is the scheme that the
disease-affected children (cases) and their parents are ascertained, and then the
genotypes of the cases and the parents are obtained. Statistical models were de-
veloped based on the genotype relative risks defined by ratios of penetrances of
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the candidate-gene genotypes and the conditional probabilities of case genotypes
given parental mating types. Various test procedures were proposed and stud-
ied for testing the candidate-gene association under different assumptions on the
underlying genetic mechanism. Schaid and Sommer (1993) proposed score tests
when the underlying genetic mechanism is determined by one of the four genetic
models, i.e., additive, recessive, multiplicative and dominant models. Note that
the score test is asymptotically optimal when the underlying genetic model is
correctly specified. In practice, however, the underlying mode of inheritance is
unknown for complex diseases. For this situation, using a score test may lose
substantial power when the genetic model is mis-specified. Hence, it is neces-
sary to consider some robust tests which are independent of model assumptions.
Schaid (1999) considered an un-constrained likelihood ratio test (LRT) proce-
dure, Zheng, Freidlin and Gastwirth (2002) studied a test procedure which they
coined as MAX3, and Zheng, Chen and Li (2003) proposed a restricted version
of likelihood ratio test (RLRT).

The robust test procedures (MAX3 and RLRT) mentioned above are based
on the asymptotic distributions of the test statistics. However, under the null
hypothesis of no association, the distribution of the data in the case-parents de-
sign is completely known. By this fact, the exact null distribution of any test
statistic can be simulated by Monte-Carlo methods. Since we are now armed with
computing facilities of great capacity, Monte-Carlo methods are feasible and we
can substitute computer powers for asymptotic theories. In this article, we con-
sider the exact robust tests using Monte-Carlo methods with case-parents design
data. There are three persuasive reasons for this. (i) An asymptotic theory only
provides an approximation to the null distribution of a test statistic, the accu-
racy of the approximation depends on sample size, and how large the sample
size must be for the approximation to be satisfactorily accurate is unknown in
most of cases. But the Monte-Carlo method simulates the exact null distribu-
tion, it can be made arbitrarily accurate by simply increasing simulation size. (ii)
Asymptotic theory is not always available for every test statistic, especially, in
cases where the regularity conditions for classical theory are not satisfied. The
Monte-Carlo method, however, is not subject to such regularity conditions. (iii)
Though, in principle, the exact null distribution can be determined without re-
sorting to Monte-Carlo simulation, as in the case of Fisher’s exact test, it is only
feasible when the sample size is small. In the trio design, data consist of three
informative parental mating types. The expected sample sizes of the informative
mating types are unbalanced. Even the total sample size of the three informative
mating types is relatively large, e.g. 1,000, the expected sample sizes for some
informative mating types could still be small, which affects adversely the validity
of asymptotic distributions of some test statistics. On the other hand, with a
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total sample size 1,000, the determination of the exact null distribution without
resorting to Monte-Carlo simulation is practically impossible.

It should be remarked here that, by an exact test, we mean the critical value or
the p-value of the test is determined by the true null distribution rather than the
asymptotic distribution of the test statistic, which differs from what are called
exact tests by other authors. For example, Cleves, Olson and Jacobs (1997)
considered exact transmission-disequilibrium tests, and Schaid (1999) considered
exact tests for the case-parents design. However, what they referred to as an
exact test is a special test whose critical region consists of points of small prob-
abilities, that is, any point in the critical region has a probability smaller than
any point outside the critical region. Simulation methods are also considered by
other authors. For instance, Lazzeroni and Lange (1998) considered a simulation
method for TDT. But their simulation method is based on permutation in stead
of the exact null distribution. In this article, we propose exact robust tests of
which the asymptotic distributions are not available for the test statistics. We
conduct extensive Monte-Carlo simulations to compare the power and robustness
of various tests.

The article is arranged as follows. In section 2, the background of the case-
parents design is given and various test statistics are discussed including the new
ones we propose. In section 3, the method of exact test using Monte-Carlo simu-
lation is described, and the issue on the validity of the asymptotic approximations
is addressed. In section 4, the results on the power comparison of various test
statistics are presented. Conclusions are given in section 5.

2. Background

Suppose the candidate-gene of concern has two different alleles denoted by A
and a, which can form three possible genotypes aa, Aa and AA. One of them
has higher risk than the other. Denote the penetrances by

f0 = Pr(disease|aa), f1 = Pr(disease|Aa), f2 = Pr(disease|AA),

which are probabilities of developing disease conditional on the genotype. By
taking aa as the base genotype, the relative risks of genotypes Aa and AA are
defined as r1 = f1/f0 and r2 = f2/f0 respectively. Genetic models can be spec-
ified using the genotype relative risks. A genetic model is called recessive (rec),
additive (add), multiplicative (mul), or dominant (dom) if r1 = 1, r1 = (1+r2)/2,
r2 = r2

1, or r1 = r2, respectively. The null hypothesis of no association refers to
that the disease status is independent of the genotypes. In terms of the relative
risks, the null hypothesis can be stated as H0 : r1 = r2 = 1, i.e., f0 = f1 = f2,
that is, individuals with different genotypes have the same risk to develop the
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disease. Given parental mating types, the conditional probabilities of case geno-
types can be derived in terms of r1 and r2, which provides the foundation for
testing association between candidate-gene and disease in the case-parents de-
sign. For a gene with two alleles, there are six possible combinations of parental
genotypes referred to as mating types: 1) AA × AA, 2) AA × Aa, 3) AA × aa,
4) Aa×Aa, 5) Aa× aa, and 6) aa× aa. The possible case (offspring) genotypes
of each mating type are given in Table 1 (second column). For example, the
case genotype can only be AA for mating type 1), since both parents can only
transmit an A allele to the offspring. For mating type 2), there are two possible
case genotypes: Aa (one parent transmits A and the other transmits a) and AA
(both parents transmit A). Note that for mating types 1), 3) and 6), each of them
can produce only one possible genotype for the offsprings. Since whether or not
there exists association between the disease and the candidate gene is reflected
by whether or not the probabilities of different case genotypes are different given
a parental mating type, mating types 1), 3) and 6) are non-informative. The
third column of Table 1 consists of counts for different combinations of genotypes
of trios. The conditional probabilities of case genotypes given parental mating
types are given in columns 4 to 8 of Table 1 in terms of r1 and r2: column 4 for
general genetic model (no assumption of relationship between genotype relative
risks) and columns 5 to 8 for the four particular genetic models mentioned earlier.
The conditional case genotype probabilities can be obtained as follows. Let g0,
g1 and g2 stand for case genotypes aa, Aa and AA, respectively. Let D and MT
stand for disease and mating type, respectively. Denote by Pr(gi|MT,D) the
conditional probability of case genotype gi given mating type MT . Then by the
Bayes formula we have

Pr(gi|MT,D) =
Pr(gi,D|MT )
Pr(D|MT )

=
Pr(gi|MT )Pr(D|MT, gi)∑
j Pr(gj |MT )Pr(D|MT, gj)

=
Pr(gi|MT )Pr(D|gi)∑
j Pr(gj |MT )Pr(D|gj)

=
fiPr(gi|MT )∑
j fjPr(gj |MT )

where Pr(D|MT, gi) = Pr(D|gi) because the disease status only depends on the
genotype gi and Pr(gj |MT ) can be obtained by the Mendelian rule: a parent
transmits his or her two alleles to a offspring equally likely. For example, Pr(g1 =
Aa|MT = AA × Aa) = 1/2, Pr(g1 = AA|MT = Aa × Aa) = 1/4 and Pr(g1 =
Aa|MT = Aa × Aa) = 1/2.

In the case-parents trio design, the cases (affected children) and their parents
are ascertained and their genotypes are obtained. The data from the design
consists of the numbers of case genotypes for each parental mating type. Let
nk, k = 2, 4, 5 be the total number of cases with the k th parental mating type.
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Tabel 1: Conditional probabilities of case genotypes given parental mating
types for various genetic models

Pr(case genotype|mating type, disease)
Parental General REC ADD MUL DOM
Mating Case r1 = 1 r1 = r r1 = r r1 = r
Type Genotype Count (r1, r2) r2 = r r2 = 2r − 1 r2 = r2 r2 = r

1) AA × AA AA n12 1 1 1 1 1

2) AA × Aa AA n22
r2

r1+r2

r
r+1

2r−1
3r−1

r
r+1

1
2

Aa n21
r1

r1+r2

1
r+1

r
3r−1

1
r+1

1
2

3) AA × aa Aa n31 1 1 1 1 1

4) Aa × Aa AA n42
r2

r2+2r1+1
r

r+3
2r−1
4r

r2

(r+1)2
r

3r+1

Aa n41
2r1

r2+2r1+1
2

r+3
1
2

2r
(r+1)2

2r
3r+1

aa n40
1

r2+2r1+1
1

r+3
1
4r

1
(r+1)2

1
3r+1

5) Aa × aa Aa n51
r1

r1+1
1
2

r
r+1

r
r+1

r
r+1

aa n50
1

r1+1
1
2

1
r+1

1
r+1

1
r+1

6) aa × aa aa n60 1 1 1 1 1

Then n2 = n21 + n22, n4 = n40 + n41 + n42 and n5 = n50 + n51. Let n =
n2 + n4 + n5. Given (n2, n4, n5), the numbers of cases with the three informative
parental mating types, (n21, n22), (n40, n41, n42) and (n51, n52) are conditionally
independent and follow binomial or trinomial distributions with cell probabilities
given in Table 1. The likelihood function of (r1, r2) is therefore given by

L(r1, r2) =
rn21+n41+n51
1 rn22+n42

2

(1 + r1)n5(1 + 2r1 + r2)n4(r1 + r2)n2
. (2.1)

In the remainder of this section, we discuss various test statistics for testing the
null hypothesis of no association based on the above likelihood function.

When the alternative hypothesis is specified as one of the four genetic models
mentioned in the last paragraph, Schaid (1999) studied the likelihood ratio test
(LRT) and Schaid and Sommer (1993) considered the score test for each of the
four models. They also showed that the score statistics for the additive model
and the multiplicative model are the same. These score statistics are given below:

Zrec = (4n22 + 4n42 − 2n2 − n4)/
√

4n2 + 3n4, (2.2)
Zdom = (n4 + 2n5 − 4n40 − 4n50)/

√
3n4 + 4n5, (2.3)
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Zadd = Zmul

= (n22 + 2n42 + n51 − n21 − 2n40 − n50)/
√

n2 + 2n4 + n5. (2.4)

It is noted that the score statistic Zadd for the additive model is also the
statistic of the transmission disequilibrium test (Spielman, McGinnis and Ewens,
1993). Under the null hypothesis, the score statistics follow asymptotically stan-
dard normal distributions. The critical values of the score tests can therefore
be determined by the standard normal distribution. When the high risk allele
(either A or a) is specified, a one-sided test is to be carried out. If the allele
status is unspecified, a two-sided test is to be carried out.

As mentioned in Section 1, when the underlying genetic model is unknown, the
use of any of the above score tests Zrec, Zadd and Zdom may lose substantial power
when the model is mis-specified. This is because these three tests correspond to
three extreme cases. Robust tests are therefore desirable. That a test is robust is
in the sense that its power is not affected much by the underlying genetic model.
The use of robust tests was introduced in Gastwirth (1985) and Freidlin, Podgor
and Gastwirth (1999) in a general context. In the context of case-parents trio
design, when the genetic model is unspecified under the alternative hypothesis
but the allele risk status is specified, say, A is specified as the high risk allele,
several test statistics which share certain robust properties have been proposed
in the literature. Zheng et al. (2002) considered the MAX3 statistic given by

MAX31 = max{Zrec, Zadd, Zdom}. (2.5)

The asymptotic distribution of MAX31 is determined by the joint asymptotic
distribution of Zrec, Zadd and Zdom. Note that Zadd = (c1Zdom + c2Zrec)/(2c3),
where c1 = (3n4 + 4n5)1/2, c2 = (4n2 + 3n4)1/2 and c3 = (n2 + 2n4 + n5)1/2.
Therefore the asymptotic distribution of MAX31 is indeed determined by the
joint asymptotic distribution of Zdom and Zrec. They derived the exact cor-
relation between Zrec and Zdom under the null hypothesis, which is given by
ρ = n4/{(3n4+4n5)(3n4+4n2)}1/2. Though there is no closed form for the asymp-
totic distribution of MAX31, the distribution can be simulated easily. Zheng et
al. (2003) studied a restricted likelihood ratio test (RLRT). Note that when A is
specified as the high risk allele, we have r2 ≥ r1 ≥ 1. It is then more reasonable
to consider the likelihood ratio test under this restriction. The test statistic for
the RLRT is given by

RLRT1 = 2 log
{

max
(r1,r2)∈T1

L(r1, r2)/L(1, 1)
}

, (2.6)

where L(r1, r2) is the likelihood function given in (2.1), and T1 is the cone on r1

-r2 plane determined by the restriction r2 ≥ r1 ≥ 1. By a result from Self and
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Liang (1987), the asymptotic distribution of RLRT1 is a mixture of a degenerated
distribution at zero and two chi-square distributions with degrees of freedom 1
and 2.

In practice, it is more realistic that both the genetic model under the alterna-
tive hypothesis and the risk status of the alleles cannot be specified. In this case,
the MAX31 statistic can be extended straightforwardly to the case of unspecified
allele risk status as follows:

MAX32 = max {|Zrec|, |Zadd|, |Zdom|} . (2.7)

Moreover, the range of (r1, r2) is the union of the cone T1 and the triangle T2

determined by the restriction 0 ≤ r2 ≤ r1 ≤ 1. Let T = T1
⋃

T2. Note that T is
not a cone, hence, differs from the parameter space considered by Self and Liang
(1987). It is then natural to consider the restricted likelihood ratio test with the
alternative that (r1, r2) ∈ T \ {(1, 1)}. The test statistic for this RLRT is given
below:

RLRT2 = 2 log
{

max
(r1,r2)∈T

L(r1, r2)/L(1, 1)
}

. (2.8)

We can also consider, as a test statistic, the maximum of the four LRT statistics
obtained by restricting to each of the four genetic models. We refer to this statis-
tic as MLRT1 when the range of (r1, r2) is confined to T1, as MLRT2 otherwise.
All these robust statistics (MAX32, RLRT2, MLRT1, and MLRT2), though aris-
ing naturally, have not been considered in the literature yet. A difficulty with
these statistics is that we cannot find appropriate approximations to the null dis-
tributions of these statistics. But, exact null distributions of these robust tests
have not been examined.

3. Exact Tests and Validity of Asymptotic Distributions

As discussed in the last section, the data from a case-parents design, (n21, n22),
(n40, n41, n42) and (n51, n52), follow binomial or trinomial distributions while con-
ditioning on the numbers of cases with the three informative parental mating
types. The cell probabilities of these distributions given in Table 1 are deter-
mined by r1 and r2. Under the null hypothesis of no association, r1 = r2 = 1.
Therefore, the cell probabilities of the binomial and trinomial distributions are
completely determined under the null hypothesis. Specifically, (n21, n22) fol-
lows the binomial distribution B(n2, 1/2), (n40, n41, n42) follows the trinomial
distribution Mul(n4, 1/4, 1/2, 1/4) and (n50, n51) follows the binomial distribu-
tion B(n5, 1/2). As a consequence of this fact, the null distribution of any
test statistic can be simulated and exact test can be carried out. Let N =
(n21, n22, n40, n41, n42, n51, n52). For any test statistic S(N ), its null distribution
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Table 2: The expected sample sizes n2, n4 and n5, conditional on the
total sample size n = 100 for various genetic models and allele frequen-
cies

Genetic model Allele freq Expected sample sizes
(r1, r2) p n2 n4 n5

NULL (1, 1) .01 0.01 1.00 98.99
.10 1.10 9.89 89.01
.30 11.39 26.58 62.03
.50 33.33 33.33 33.33

REC (1, 2) .01 0.02 1.25 98.74
.10 1.60 12.00 86.40
.30 15.21 29.58 55.21
.50 40.00 33.33 26.67

ADD (2, 3) .01 0.02 1.33 98.65
.10 1.76 12.68 85.56
.30 16.30 30.43 53.26
.50 41.67 33.33 25.00

MUL (2, 4) .01 0.02 1.49 98.49
.10 2.07 13.99 83.94
.30 18.27 31.98 49.75
.50 44.44 33.33 22.22

DOM (2, 2) .01 0.01 1.16 98.82
.10 1.44 11.31 87.25
.30 14.04 28.65 57.31
.50 38.10 33.33 28.57

can be simulated as follows. Given n2, n4, and n5, we generate N from the above
binomial and trinomial distributions for m times. Here m is the simulation size
and is determined by the accuracy we desire for the simulated null distribution to
approximate the theoretical null distribution. Denote these simulated values by
N i, i = 1, . . . ,m. Then the theoretical null distribution of S(N ) is approximated
by

FS(s) =
1
m

m∑
i=1

{S(N i) ≤ s}.

The accuracy of this approximation does not depend on the sample sizes n2, n4

and n5. In principle, the approximation can be made arbitrarily accurate by
simply increasing the simulation size m.

Although the exact test described above can be carried out no matter whether
or not an asymptotic null distribution of the test statistic is available and whether
or not the sample sizes are large, one might still prefer an asymptotic test when
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the asymptotic null distribution of the test statistic is available because of its sim-
plicity. However, caution must be taken on the validity of the asymptotic distribu-
tions, especially when the sample sizes are small or moderate. In the case-parents
design, the validity of an asymptotic distribution is affected by the effective sam-
ple sizes n2, n4 and n5. These effective sample sizes are indeed random variables
and their expected values are greatly affected by the allele frequencies (Pr(A) = p
and Pr(a) = q = 1 − p) of the population. Under the assumption of Hardy-
Weinberg equilibrium, the genotype frequencies are determined by the allele fre-
quencies as: Pr(aa) = q2, Pr(Aa) = 2pq and Pr(AA) = p2. Given the total num-
ber n of cases with the three informative parental mating types (n = n2+n4+n5),
the expected values are given by E(nk) = npk/(p2 + p4 + p5), k = 2, 4, 5, where
p2 = 2p3q(r1 + r2)/R, p4 = p2q2(r2 + 2r1 + 1)/R, p5 = 2pq3(r1 + 1)/R and
R = p2r2 + 2pqr1 + q2. The conditional expected sample sizes of each informa-
tive parental mating type given n = 100 for various genetic models and allele
frequencies are given in Table 2. It can be seen from Table 2 that when p is small
the expected effective sample sizes are very un-balanced, say, when p = 0.3, the
expected sample sizes are 11, 27 and 62. When n increases, the proportion nk/n,
k = 2, 4, 5, will stay the same as in Table 2. This unbalancedness can affect ad-
versely the validity of the asymptotic distribution, as will be seen in the results
to be reported later.

For the test statistics of which asymptotic distributions are available, the
validity of the asymptotic distributions for given sample sizes can be verified by
comparing with the simulated exact null distributions. In the remainder of this
section, we report some results on the comparison between the exact and the
asymptotic null distributions for the test statistics Zrec, Zadd, Zdom and MAX31.
For total sample size n = 100, 500 and 1, 000, the effective sample sizes n2, n4

and n5 are calculated using the A allele frequencies p = 0.01, 0.1, 0.3 and 0.5
under the null hypothesis r1 = r2 = 1. For each set of effective sample sizes so
obtained, the exact critical values for a one-sided size α = 0.05 test are simulated
for the four statistics. The simulation size m = 10, 000. The asymptotic critical
values for MAX31 are also obtained by simulation. These critical values are
given in Table 3. For the three score statistics, the critical values are to be
compared with 1.645 which is the critical value for the asymptotic test. In Table
3, those exact critical values that differ from the corresponding asymptotic critical
values by at least 0.05 are marked with an asterisk. While, generally speaking,
the asymptotic critical values provide reasonably accurate approximations to the
exact critical values, there are a few cases where the asymptotic critical values
differ substantially from the exact critical values. The problem is most prominent
with the statistic Zrec, especially when the allele frequency p is small.

To further investigate the properties of the exact null distribution of Zrec
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Table 3: The simulated exact and asymptotic critical values of score
statistics and MAX31 for tests of size α = 0.05 (simulation size m =
10, 000)

MAX31

n p Zrec Zadd Zdom Exact Asymp.
100 .01 1.8898∗ 1.6751 1.6439 1.8898∗ 1.9749

.10 1.9612∗ 1.6772 1.6998∗ 1.9612 1.9932

.30 1.5689∗ 1.6570 1.6454 1.9651 2.0179

.50 1.6181 1.6432 1.6181 1.9882 2.0394
500 .01 1.9415∗ 1.6429 1.6529 1.9415 1.9674

.10 1.6590 1.6387 1.6443 2.0494∗ 1.9886

.30 1.6343 1.6526 1.6430 2.0072 2.0206

.50 1.6698 1.6416 1.6541 2.0362 2.0412
1,000 .01 1.7056∗ 1.6461 1.6471 1.9082∗ 1.9684

.10 1.5986 1.6459 1.6427 2.0025 1.9887

.30 1.6559 1.6471 1.6414 2.0030 2.0187

.50 1.6421 1.6440 1.6272 2.0173 2.0432

Note: The asymptotic critical value of size α = 0.05 test for
score statistics is 1.645.

when the allele frequency p is small, we simulated the exact null distribution of
Zrec with p = 0.01, n = 100, 500, 1, 000 and 10, 000 by a simulation of size m =
10, 000. The simulated results reveal that the probability mass of the exact null
distribution concentrates on only a few points. For n = 100, the probability mass
concentrates on three points. For n = 500, the probability mass concentrates
on five points. Even for n = 1, 000, the probability mass concentrates on only
eight points. This suggests that the null distribution is quite discrete so that a
continuous approximation such as the standard normal distribution might not be
appropriate. The simulated null distributions are presented in Table 4. For each
n, the left column gives the points at which there is a positive mass, the right
column gives the corresponding probabilities. For n = 10, 000, only the upper
tail of the distribution is presented. Also shown in Table 4 are the type I errors
when the asymptotic critical value 1.645 is used. It can be seen that the true
type I error is greatly inflated when the asymptotic test is carried out.

4. Comparison of Test Statistics

With the feasibility of exact tests, we have a much richer repertoire of test
statistics for testing gene-disease association in a case-parents design. In this
section, we compare, under some specified alternative hypotheses, the powers of
the following test statistics: Zrec, Zadd, Zdom, MAX31, MLRT1 RLRT1, MAX32,
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Table 4: The simulated null distribution of Zrec when p = .01 based on
10,000 replications

Total sample size n
100 500 1,000 10,000

Zrec % Zrec % Zrec % Zrec∗ %
-1.134 37.14 -1.387 20.45 -1.706 8.65 1.655 3.18
0.378 50.52 -0.277 41.85 -0.853 26.64 1.970 1.92
1.890 12.34 0.832 28.85 0.000 33.31 2.286 1.21

1.941 8.04 0.853 20.72 2.601 0.57
3.051 0.81 1.706 8.50 2.916 0.28

2.558 1.83 3.230 0.28
3.411 0.33 3.546 0.08
4.264 0.02 3.862 0.01

Type I
Error** 0.1234 0.0885 0.1068 0.0753

* Only upper tail of the null distribution is reported.
* Type I error is calculated when 1.645 is used as the critical value.

MLRT2 RLRT2. We consider two situations: (a) the allele risk status is specified
and (b) the allele risk status is unspecified. In the first situation, Zrec, Zadd, Zdom,
MAX31, MLRT1 and RLRT1 are compared. To fix point, allele A is assumed
to be the high risk allele. In the second situation, Zrec, Zadd, Zdom, MAX32,
MLRT2 and RLRT2 are compared. In the comparison, the total sample size is
taken as n = 200, the allele frequency p is taken as p = 0.01, 0.1, 0.3 and 0.5,
and the following five alternative hypotheses are considered: (i) (r1, r2) = (1, 2),
a recessive model, (ii) (r1, r2) = (1.5, 1.5), a dominant model, (iii) (r1, r2) =
(1.5, 2.25), a multiplicative model, (iv) (r1, r2) = (1.5, 2.0), a additive model and
(v) (r1, r2) = (1.3, 2.3), a model which does not fall into the four categories of
genetic models. The effective sample sizes n1, n2, n3 are taken as their conditional
expectations under each of the five models. In all cases, the size of the test is
fixed at α = 0.05 and the simulated exact critical value is used so that the type
I error for all the tests are controlled at the same level. The power of each test
statistic at a given alternative hypothesis is simulated with a simulation of size
m = 10, 000.

The simulated powers of the test statistics for situations (a) and (b) are given
in Tables 5 and 6 respectively. By comparing the powers in these two tables, we
observe the following features. (i) If the genetic model is correctly specified under
the alternative hypothesis, the score statistic derived by assuming the specified
genetic model is generally more powerful than the other test statistics. (ii) The
performance of the MLRT and RLRT statistics in both situations are comparable.
They are robust in the sense that their powers are only smaller than the score
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Table 5: The powers at five specified alternatives of one-sided tests using six
test statistics (total sample size n = 200 and simulation size m = 10, 000)

p (r1, r2) Zrec Zadd Zdom MAX31 MLRT1 RLRT1

.01 (1.0, 2.0)1 0.2610 0.0552 0.0547 0.0676 0.2626 0.2543
(1.5, 1.5)2 0.0995 0.8810 0.9032 0.8106 0.9119 0.8932
(1.5, 2.25)3 0.1979 0.8881 0.8998 0.8136 0.9165 0.9032
(1.5, 2.0)4 0.1692 0.8849 0.8965 0.8110 0.9127 0.8974
(1.3, 2.3)5 0.2401 0.6005 0.6104 0.4711 0.6883 0.6620

.10 (1.0, 2.0) 0.6111 0.1962 0.0784 0.4810 0.4872 0.4941
(1.5, 1.5) 0.0980 0.8563 0.8883 0.7936 0.8035 0.8094
(1.5, 2.25) 0.4377 0.9232 0.8939 0.8635 0.8770 0.8845
(1.5, 2.0) 0.3083 0.8992 0.8869 0.8439 0.8584 0.8689
(1.3, 2.3) 0.4658 0.7608 0.6207 0.6602 0.6950 0.7252

.30 (1.0, 2.0) 0.9145 0.6804 0.1245 0.8834 0.8881 0.8915
(1.5, 1.5) 0.0878 0.6717 0.8244 0.7047 0.7569 0.7200
(1.5, 2.25) 0.6432 0.9465 0.8700 0.9163 0.9334 0.9299
(1.5, 2.0) 0.4407 0.9030 0.8608 0.8627 0.8766 0.8700
(1.3, 2.3) 0.8782 0.9255 0.6325 0.9228 0.9228 0.9253

.50 (1.0, 2.0) 0.9951 0.9436 0.1579 0.9824 0.9814 0.9819
(1.5, 1.5) 0.1111 0.7533 0.9485 0.9028 0.9300 0.9321
(1.5, 2.25) 0.8677 0.9481 0.7555 0.9214 0.9118 0.9179
(1.5, 2.0) 0.6672 0.8645 0.6589 0.8187 0.8063 0.8182
(1.3, 2.3) 0.9663 0.9752 0.5579 0.9686 0.9665 0.9667

1 Recessive; 2 Dominant; 3 Multiplicative; 4 Additive; 5 Arbitrary

statistic optimal for the specified genetic model but are larger than or comparable
with all the other test statistics. (3) The MLRT and RLRT statistics are gen-
erally more powerful than the MAX3 statistics. We deliberately used the word
“generally” because there are a few discrepancies from the above statements in
the two tables. These discrepancies might be caused by the simulation errors.
It should be noticed that the performance of MAX3 is only slightly worse than
MLRT and RLRT but it is easier to compute. If one wishes to compromise the
power a little bit for the ease of computation, MAX3 is also a good choice for
testing the gene-disease association in case-parents design.

5. Conclusions

We draw briefly our conclusions in this section. For testing the gene-disease
association in case-parents trio designs, exact tests using any test statistics are
feasible because of our great computational capacity and the fact that the distri-
bution of the data under the null hypothesis of no association is completely
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Table 6: The powers at five specified alternatives of two-sided tests using six
test statistics (total sample size n = 200 and simulation size m = 10, 000)

p (r1, r2) Zrec Zadd Zdom MAX32 MLRT2 RLRT2

.01 (1.0, 2.0)1 0.3290 0.0517 0.0565 0.0649 0.0447 0.1110
(1.5, 1.5)2 0.2992 0.8105 0.8353 0.7129 0.8006 0.8601
(1.5, 2.25)3 0.3005 0.8221 0.8380 0.7214 0.8104 0.8731
(1.5, 2.0)4 0.2929 0.8241 0.8427 0.7281 0.8119 0.8736
(1.3, 2.3)5 0.3264 0.4905 0.4995 0.3667 0.4572 0.5954

.10 (1.0, 2.0) 0.4621 0.1092 0.0591 0.3462 0.3374 0.3483
(1.5, 1.5) 0.0565 0.7317 0.8131 0.7435 0.6924 0.7053
(1.5, 2.25) 0.2800 0.8437 0.8283 0.8097 0.7714 0.7872
(1.5, 2.0) 0.1911 0.7949 0.8088 0.7895 0.7476 0.7579
(1.3, 2.3) 0.3188 0.6213 0.5068 0.6187 0.5322 0.5922

.30 (1.0, 2.0) 0.8692 0.5282 0.0533 0.8753 0.8317 0.8350
(1.5, 1.5) 0.0714 0.5208 0.6723 0.5780 0.5888 0.5996
(1.5, 2.25) 0.5569 0.8926 0.7314 0.8586 0.8737 0.8762
(1.5, 2.0) 0.3548 0.7902 0.7213 0.7520 0.7735 0.7860
(1.3, 2.3) 0.8317 0.8329 0.4310 0.8544 0.8426 0.8599

.50 (1.0, 2.0) 0.9779 0.8907 0.0563 0.9781 0.9704 0.9620
(1.5, 1.5) 0.0697 0.6141 0.8894 0.6770 0.8991 0.8727
(1.5, 2.25) 0.7343 0.8997 0.5194 0.8085 0.8821 0.8789
(1.5, 2.0) 0.5185 0.7689 0.5071 0.6291 0.7554 0.7539
(1.3, 2.3) 0.9385 0.9481 0.2985 0.9467 0.9548 0.9476

1 Recessive; 2 Dominant; 3 Multiplicative; 4 Additive; 5 Arbitrary

known. In general, exact tests should be preferred to asymptotic tests, especially
when the effective sample sizes are quite unbalanced, which could have been
resulted from a small allele frequency. When the allele frequency is small, some
of the asymptotic tests differ substantially from their corresponding exact tests, as
demonstrated in our simulation study. The robust test statistics MLRT or RLRT
should be preferred to all the other test statistics because of their efficiency and
robustness unless one is particularly interested in testing a specific genetic model
or is quite certain what specific genetic model might be under the alternative
hypothesis.
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