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Abstract: The detection of slope change points in wind curves depends
on linear curve-fitting. Hall and Titterington’s algorithm based on smooth-
ing is adapted and compared to a Bayesian method of curve-fitting. After
prior spline smoothing of the data, the algorithms are tested and the er-
rors between the split-linear fitted wind and the real one are estimated. In
our case, the adaptation of the edge-preserving smoothing algorithm gives
the same good performance as automatic Bayesian curve-fitting based on a
Monte Carlo Markov chain algorithm yet saves computation time.
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1. Introduction

This study is aimed at the improvement of the aircraft autopilot concep-
tion process. The autopilot allows landings in bad weather conditions and must
guarantee passengers safety, touchdown comfort, and precision. We study in par-
ticular the influence of wind during automatic landing. We focus on the effect
of the linear wind components in the last 30 seconds to show that they are a
decisive factor in touchdown precision. This is achieved by comparing simulated
landings with either a real wind or its piecewise linear approximation. This has
led us to develop a method of split-linear fitting based on slope change detection
adapted to our data. This method is similar to those proposed by Jones (1998)
which aim at predicting the influence of discrete gusts on linear systems.

Slope change detection is associated with edge and peak detection. Two kinds
of method can be adapted : a classic one, based on smoothing and a Bayesian
one based on Monte Carlo Markov Chains. Hall and Titterington (1992) pro-
posed an edge-preserving smoothing algorithm. It is based on edge detection by
comparisons of three smoothings. The aim of this method is to compute, for
each given point, three smoothed estimates of the function, based on the data to
the right, to the left and on both sides of the point. Each discontinuity is asso-
ciated with a local maximum of the difference between the three fits. Wu and
Chu (1993) took this algorithm and modified it using kernel smoothing instead
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of smoothing by linear combinations of observations. Loader (1996) showed con-
vergence properties of this kind of change point estimate adapted to the search
for one discontinuity in a function. Müller and Song (1997) improved this kind of
algorithm to increase the convergence rate of one discontinuity estimate. Green
(1995) and Denison et al. (1998) applied reversible Monte Carlo Markov Chains
and Bayesian model determination to curve-fitting, including, in particular, piece-
wise linear polynomial fitting. The automatic Bayesian curve-fitting algorithm
proposed by Denison et al. (inspired by Green’s (1995) algorithm) determines
the number and the position of the slope change points, knots, by the estimation
of their joint posterior distribution.

Our aim here is to derive an efficient split-linear fitting algorithm. Unlike
other studies, the quality of fit is not measured by the usual residual squared
error. The criteria to be met are estimation of a parsimonious model by detecting
only the significant slope changes in the curve and achievement of the same
landing properties with the real wind and with the split-linear approximation.
This is an important feature of this paper, which especially involves adaptations
of the algorithms which consist in prior smoothing of the data and algorithm
refinements.

A variation on Hall and Titterington’s (1992) method is computed on samples
of noise-free wind data measured during flight tests. The results are compared
with those obtained with the automatic Bayesian curve-fitting algorithm. Deni-
son et al. (1998) algorithm is taken here as benchmark but considered as too com-
putational expensive for real application. The Hall and Titterington’s method
consists in computing and comparing three smoothings. The local extremes of
the difference between the three smoothings are used as estimates of slope change
points. Moreover kernel smoothing is here replaced by spline smoothing to im-
prove the quality of the fitting as further detailed. The proposed variation is
based on a single slope sign change detection by slope comparisons. These slope
comparisons are combined with smoothing comparisons to localize other slope
changes between the previously detected ones.

Tests and comparisons show that the performances of the two methods are
similar. Differences between touchdown with real wind and touchdown with
split-linear fit are estimated with a complex simulation program. This allows us
to perform free-choice but time-costly landing simulations. Implementation is
carried out using S-plus(1997).

The specific problem and the data transformations are explained in Section
2. The algorithms will be presented in Section 3. The numerical results and
the comparison between the methods are explored further in Section 4. We will
conclude by a brief discussion in Section 5.
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2. Aeronautical Context and Data Transformations

We aim to decompose wind speed evolution into linear components to study
later their own influence on the behaviour of an aircraft autopilot. The stage of
the flight we are interested in is the final approach, specifically the last 30 seconds
before touchdown when wind perturbations are critical because of the imminence
of the landing. Split-linear fit of wind curves will help to confirm the idea that
the linear components of the wind are the main factor towards unusual landings.
Then il will be possible to discriminate between severe landing due to particular
external conditions and bad tuning of the autopilot. Moreover, the split-linear
fit of real flight winds will add to the wind databases usually used for landing
simulations.

Only the longitudinal wind component Wx(t) along the runway axis is con-
sidered. Landing quality is estimated by the distance in meters between the
beginning of the runway and the touchdown on the runway axis (XTP ). Our
sample of data consists of 59 winds measured during flight tests. As we focus
on the latest 30 seconds before landing, each wind recording is a time serie of
N=240 points sampled every 1

8th of a second.
Simulation software allows us to perform landing simulations. This is con-

vienent since the criterion to be met is expressed in term of error between touch-
down performance (XTP ) instead of the usual residual square error. This soft-
ware is used to set the different values of the parameters and to evaluate the
algorithms. The difficulty we have to cope with, is that it cannot be included in
an optimisation or a cross validation program.

Direct applications of the following algorithms on raw data are not satisfac-
tory. Successful computations have been carried out using smoothed wind curves.
We aim to determine only the significant slope change points and avoid finding
too many knots. Experiments with raw data lead to non-significant point detec-
tion when using Hall and Titterington’s algorithm and to difficulties in setting up
the prior distribution of the number of knots in the Bayesian algorithm. More-
over, the estimated errors between touchdowns with the split-linear fits of raw
data are too large.

So a necessary first step consists in clearing winds of non significant infor-
mation. That is, components which do not change the touchdown. It may be
measurement noise as well as some frequency components which do not disturb
the aircraft during the flight. To be more specific, high frequencies have little
influence on our aircraft trajectory because of its inertia. Smoothing splines are
used to get rid of the high frequencies and allows the slope change detection to
be efficient. Note that Fourier methods are not applicable here since the data are
neither stationary nor periodic.
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Let v(ti) be the cubic spline fit of the velocity values {(ti, wi), i = 1, . . . , N}:
N∑

i=1

(wi − v(ti))2 + λ

∫ b

a
(v′′(t))2dt where wi = Wx(ti), ∀i = 1, . . . , N

The smoothing parameter λ governs the trade-off between smoothness and
goodness of fit and is usually estimated by cross validation. In our particular
case, we aim at keeping only the significant components of the wind towards the
landing. Therefore goodness of fit is estimated here by the error between the real
XTP touchdown with raw data and the one with smoothed data. This criterion
replaces the usual residual error minimization. Empirical cross validation has led
us to choose λ = 10−5 as the largest smoothing parameter minimizing error mean
and scatter (4% error maximum).

3. Split-linear Fitting Algorithms

The aim is to detect the slope change times t∗j among the times {t1, t2, . . . , tn}.
The split-linear algorithms are detailed in this section. They are applied on
smoothed wind data as previously explained in Section 2. Observations are de-
noted (ti, wi) whereas the values of the smoothed wind curves are denoted by vi.

Since one matching condition is to detect only significant slope changes, each
method implies the search for the optimum values of the different parameters
which govern the precision.

3.1 Variation on Hall and Titterington algorithm

The features of this algorithm inspired by Hall and Titterington (1992) are
as follows:

1. The smoothed wind curve is split into intervals Ik, k = 1, . . . ,K.

2. In each interval, the slope ak of the best straight line is estimated by ordi-
nary least-squares.

3. The consecutive slopes ak and ak+1 are compared.
If ak.ak+1 < 0, a point of slope sign change t∗j is detected.

4. If the interval [t∗j , t
∗
j+1] is larger than Tmin, points of single slope change t∗∗j

are sought by the comparison of three smoothings further detailed.

5. Since every t∗j , t∗∗j has been detected, the split-linear fitting of the smoothed
wind curves is carried out by linking the v∗j = v(t∗j ) or v(t∗∗j ).
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Linear least-squares model (step 1. and 2.)

The size of the K intervals governs the trade-off between accuracy of the
method and calculation time. In our case, tests lead us to select 4-points intervals.
In each interval, the piecewise linear least-squares model is fit to the data :

vi = akti + bk, ∀i ∈ [t4(k−1)+1, t4k] ∀k = 1, . . . ,K.

Smoothing comparison (step 4.)

The bandwidth parameter h has to be chosen for each smoothing. It deter-
mines how large is the neighbourhood of each point used to calculate the three
smoothings.

For each point in [1+h,N−h], left, right and centre smoothing are computed.
Hall and Titterington propose smoothers such as particular linear combinations
of the observations around each point. This smoothing has been tested and gave
worse results on our data than spline smoothing. So spline smoothing has been
chosen for left and right smoothing whereas centre smoothing is obtained by
averaging.

Let fr(i) be the value of the right smoothing at the point i computed on
(tk, vk), k ∈ [i, i + h]. Let fl(i) be the value of the left smoothing at the point
i computed on (tk, vk), k ∈ [i − h, i]. Let fm(i) be the mean of the {vk, k ∈
[i − h, i + h]}.

For the two spline smoothings, the smoothing parameter λ has to be chosen.
Moreover, the bandwidth h has to be large enough to avoid side-effects of the
smoothing. But since 2h points are lost for the slope change detection, a trade-off
has to be sought.

These two parameters λ and h can be optimized by cross validation. In our
case, we have to choose prior satisfactory empirical values and perform the choice
further as regards the numerical results in Section 4.

The diagnosis is made by estimating for each point i ∈ [1 + h,N−h], the
difference d1 defined by d1(i) = |fr(i) + fl(i) − 2fm(i)|. If the point i is a slope
change point then this difference will be a local maximum.

Note that since the data are smoothed before the algorithm is applied, fr(i) �
fl(i), ∀i ∈ [1 + h,N−h]. So d1(i) can be replaced arbitrarily by d2(i) = |fr(i) −
fm(i)|. The detection of the local maxima is made by the comparison of each
point with its two neighbours. A point i is a local maximum if :

|fr(i) − fm(i)| > |fr(j) − fm(j)| for j = i − 1 and i + 1

Each local maximum of d2 noted i is associated with a slope change point
t∗∗j = t(i).
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In brief, the parameters to set are : the number of intervals K, the optional
Tmin, the smoothing parameter λ and the bandwidth h.

3.2 Bayesian automatic curve-fitting

Recall here that we aim at identifying the slope change times t∗j among the ti.
Therefore, the algorithm of Denison et al. is applied on our data so as to obtain
a split-linear fit and only modified to obtain the final knots. The Bayesian basis
of the algorithm is briefly described here according to Denison’s et al. (1998) and
Green’s (1995) articles.

The piecewise polynomial model to fit is as follows:

vi = fK,1(ti)+ εi =
1∑

n=0

βn,0(ti− t∗0)
n
+ +

K∑
j=1

β1,j(ti− t∗j)+ + εi, i = 1, . . . , N. (3.1)

The dimension K of the true model is unknown as well as θ(K) = (t∗1, . . . , t∗K , σ2)
representing knots positions and variance of the model error. Inference about K
and θ(K) is based on the joint distribution of (K, θ(K), v). The best (K, θ(K)) are
assumed to maximize the posterior distribution p(K, θ(K)/v) = 1

Z p(K)p(θ(K)/K)p(v/K, θ(K)).
The coefficients βn,j in (3.1) are then estimated by least-squares minimization.

Since an analytic or numerical expression of this complicated distribution is
impossible, samples of the joint posterior distribution have to be simulated.

Denison et al. (1998) propose the design of three types of move (addi-
tion,deletion and movement of a knot) between the subspace ΘK for θK which
allows us to explore all the subspaces, searching for the (K, θK) which minimizes
MSE = 1

n

∑N
i=1(vi − fK,1(ti))2. Each move is chosen with a specific probability

which depends on the prior distribution of K.
The prior probability of the dimension K of the model is assumed to be a

Poisson distribution with parameter λp:

p(K) =
λK

p exp(−λp)
K!

, K = 0, 1, 2, . . .

Two examples are taken here to illustrate the sensitivity to λp. Few values of
λp are tested on the two raw and on the two smoothed winds. The final number
of knots after 10000 iterations is plotted against the different values of λp. The
two top panel of Figure 1 corresponds to the raw data and the other two to the
smoothed data.
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Figure 1: This Figure depicts the influence of λp on the final number of knots
K obtained for two raw and smoothed winds. The difficulty to set λp for raw
data leads us to use prior spline smoothing on our data.

These plots confirm that the Denison et al. (1998) algorithm gives better
performance on “smooth” curves and show that the value of λp is impossible to
set for raw data.

The algorithm of Denison et al. can be summarised in three steps as follows:

1. Initialisation : choose λp knots uniformly among the ti and set k equal to
the number of interior knots.

2. Choice of the type of move : generate u uniformly and compare it to bk and
dk to choose a birth, death or move transition.

3. Iteration : repeat step 2 until the MSE no longer decreases.

In brief, the parameters to be set for this algorithm are the smoothing pa-
rameter λ and the parameter λp of the prior distribution of K.
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Note that the quality of fit is measured by the MSE since, as already explained,
it is impossible to replace the criterion by the one we focus on, that is difference
between touchdown with the fitted wind curves and the real ones. However,
verifications are carried out (see estimation of error in Section 4.) to ensure that
the fits were satisfactory according to our criterion.

4. Practical Comparisons

In this section, both algorithms are applied on the wind data described in
Section 2. The test sample is composed of all 59 available winds. Each algorithm
is tested separately at first and then a numerical comparison is carried out. The
variation on Hall and Titterington’s algorithm is compared to the Bayesian ap-
proach. The Bayesian approach is here considered as a benchmark whose quality
is well-known but computational costly.

Graphic comparisons are made between raw data and split-linear fitting to
check the quality of the methods. Then touchdown are simulated with the two
kinds of wind, the errors are estimated and compared so as to choose the best
algorithm.

The tests of the algorithm inspired by Hall and Titterington’s one are carried
out with empirically best values of the different parameters to be set. To carry out
a fair comparison with the Denison’s one, we have to focus on the final number of
knots K (slope change point) as we are searching for a parsimonious linear-fits.
The comparison protocol is as follows:

1. Choose the maximum number of knots allowed Kmax (in our case, Kmax =
20 since too close slope changes do not have any physical meaning).

2. For each wind, check that the number Kclass < Kmax (Kclass is the number
of knots obtained by the classic algorithm).

3. For each wind, set λp (parameter of the Poisson distribution of the number
of knots) such as |Kclass − KBayesian| ≤ 3 with KBayesian number of knots
given by the Bayesian linear curve-fitting algorithm.

4. Carry out the graphical comparisons for each wind.

5. Carry out the numerical comparisons for each wind by simulating the XTP

impact obtained with the two split-linear fits.

4.1 Graphic comparisons

Test of the variation on Hall and Titterington’s algorithm
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The parameters are set to the best empirical ones (λ = 10−5 and h = 15
points). Further results in Section 4.2 will show that they also are the best as
regards to error minimization.

Figure 2 et 3 illustrate the interest of the adaptation performed on the Hall
and Titterington’s algorithm.
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Figure 2: Example of an unsatisfactory graphic comparison between the raw
data and the split-linear fitting obtained with the Hall and Titterington’s algo-
rithm. At least five slope changes are forgotten at times 15, 190 and between
times 210 and 250.
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Figure 3: Example of a satisfactory graphic comparison between the raw data
and the split-linear fitting obtained with the variation on Hall and Tittering-
ton’s algorithm. This corresponds to Figure 2. Every slope sign changes are
detected.

Test of the Bayesian automatic curve-fitting algorithm

The graphic example shown in Section 4.1 (Figure 3) is then compared to the
results given by the Denison et al. algorithm on the same wind. The comparison
protocol is followed. Kclass is estimated then λp is chosen such that |Kclass −
KBayesian| ≤ 3.

For the wind shown here as an example, Kclass = 15, KBayesian = 13 for
λp = 0.15.
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Figure 4: The raw data and the split-linear fit obtained on smoothed data with
the Bayesian algorithm are plotted. This Figure is associated with Figure 3.

The graphical result seems to be less satisfactory than the one given by the
first algorithm. But as our criterion to be met is mainly to obtain the same XTP

touchdown with the split linear fit and the raw wind as explained in Section 4.2,
we carry out numerical comparisons.

4.2 Estimation of error

As previously said, the main criterion of satisfaction consists in the estimation
of error. The usual residual error minimization is then replaced by the minimiza-
tion of the difference between touchdown with raw data and the split-linear fit.
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A subset of 10 winds is extracted. A split-linear fit is estimated with each
algorithm using the same values of parameters as in Section 4.1. Then touchdown
simulations are computed comparing the value of XTP obtained with each raw
wind and its three fits. The errors are estimated in percent of the XTP calculated
with the raw wind.

The numerical comparisons are carried out in the same way as the graphic
comparisons. The comparison protocol is applied here. For each wind, Kclass is
estimated and λp is chosen such as |Kclass − KBayesian| ≤ 3.

Figure 5 depicts the boxplot of errors of the two algorithms. The performance
of these two methods are similar.
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Figure 5: Boxplots of errors of the two algorithms estimated in percents of the
XTP calculated with the raw wind. The results are similar. In the two cases,
the maximum error is less than 4.5%.

5. Discussion

The purpose was the split-linear fitting of time series of wind velocity before
touchdown. Two algorithms have been discussed in this article and compared
on real-life data issued from wind measurement during flight tests. We aimed at
determining all the significant slope changes in the wind curves. The criterion
to meet was the achievement of the same simulated touchdown with the raw
wind and its linear fit. Two kinds of approach have been considered. The algo-
rithm based on slope or smoothing comparisons (Hall and Titterington) has been
adapted and compared to a Bayesian curve-fitting algorithm used as a bench-
mark. This involved particularly the choice of best values for the parameters of
each method. For the first algorithm, the smoothing bandwidth and parameter
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had to be set while the prior distribution of the number of slope changes was
the main parameter to consider for the Bayesian algorithm. The main features
of this article is the interest of a prior smoothing of the data and the setting
protocol for all parameters. These settings have to be carried out empirically in
our case because of the specificity of the satisfactory criterion to meet. The per-
formance of these two methods are anyway satisfactory and similar. They both
proove that only a piecewise approximation of the smoothed wind must be taken
into account in further landing simulation processes. The choice between the two
methods can only be made according to the difficulty to arrange the parameters
and time calculation.

Acknowledgments

This research was carried on in collaboration between AEROSPATIALE-
MATRA-AIRBUS, the ANRT and the Probability and Statistics laboratory of
Paul Sabatier University in Toulouse, FRANCE. We are grateful to C.BES, J.
IRVOAS from AEROSPATIALE-MATRA-AIRBUS for their suggestions. We
thank D.DENISON for his help in the use of his algorithm and the referees for
their helpful comments.

References

Denison, D. G. T., Mallick B. K. and Smith, A. F. M. (1998). Automatic Bayesian
curve-fitting. J. R. Statistical Soc. B 60, 333-350.

Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika 82, 711-732.

Hall, P. and Titterington, D.M. (1992). Edge-Preserving and Peak-Preserving Smooth-
ing. Technometrics 34, 429-440.

Loader, C. R. (1996). Change point estimation using nonparametric regression. Annals
of Statistics 24, 1667-1678.

Müller, H. G. and Song, K. S. (1997). Two-stage change-point estimators in smooth
regression models. Statistics and Probability Letters 34, 323-335.

S-Plus (1997). S-PLUS 4 Guide to Statistics. Mathsoft.

Wu, J.S. and Chu, C. K. (1993). Kernel-type estimators of jump points and values of
a regression function. Annals of Statistics 21, 1545-1566.

Received March 25, 2005; accepted December 6, 2005.



Split-linear Fitting of Wind Curves 509

Philippe Besse Laboratoire de Statistique et Probabilites
UMR CNRS 583
Universite Paul Sabatier
31062 Toulouse cedex 9
France
philippe.besse@math.ups-tlse.fr

Nathalie Raimbault¯ Airbus France
31707 Blagnac cedec
France
nathalie.raimbault@airbus.com


