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Abstract: In multivariate regression, interest lies on how the response vector
depends on a set of covariates. A multivariate regression model is proposed
where the covariates explain variation in the response only in the direction of
the first principal component axis. This model is not only parsimonious, but
it provides an easy interpretation in allometric growth studies where the first
principal component of the log-transformed data corresponds to constants of
allometric growth. The proposed model naturally generalizes the two—group
allometric extension model to the situation where groups differ according to
a set of covariates. A bootstrap test for the model is proposed and a study
on plant growth in the Florida Everglades is used to illustrate the model.

Key words: Bootstrap test, canonical correlation, principal components,
reduced rank regression.

1. Introduction

In multivariate regression, interesting and interpretable results are possible
if the model can incorporate the dependencies between the response variables
as well as the dependencies of the response variables on the predictor variables.
Full rank multivariate regression models are often used in practice where each
response variable is fitted separately (e.g., Johnson and Wichern, 1998, p.420). If
the most of the variability in the p-dimensional fitted values from a multivariate
regression lie in a lower dimensional space, then reduced-rank regression models
provide a more parsimonious modeling of the data (e.g., Anderson, 1951, 1999;
Reinsel and Velu, 1998) where the fitted values are constrained to lie in a lower
dimensional space. In this paper, we consider a rank one multivariate regression
model where the line containing the fitted values coincides with the first principal
component axis of the response variables.

This work was motivated by modeling the dependency of allometric growth of
plants in the Florida Everglades on soil characteristics. Allometric growth models
are used to quantify the relationship between the size and shape of organisms
(e.g., Hills 1982; Jolicoeur, 1963; Klingenberg, 1996; Klingenberg and Froese,
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1991; Mosimann, 1970). The allometric model stipulates that parts of the plant
grow at constant relative rates. Rates of allometric growth, as suggested by
(Jolicoeur, 1963), are estimated using the eigenvector of the covariance matrix of
the log—transformed measurements associated with the largest eigenvalue. The
first eigenvector is then regarded as the allometric direction for modeling rates of
growth of the different parts of the plant.

In studies of two related groups (e.g. males and females) an allometric exten-
sion model (Hills, 1982; Bartoletti, Flury and Nel, 1999) holds when one group
is an extension of the other group along a common allometric axis. In Section 2
we show that the multivariate regression model with fitted values constrained to
lie along the first principal component axis of the response distribution provides
a natural generalization to the two-group allometric extension model to the situ-
ation where groups differ according to a set of covariates. In Section 3 we discuss
the estimation of the allometric extension model for regression. A bootstrap test
for the allometric extension model in regression is proposed in Section 4 and the
test is applied to the plant data in Section 5. The paper is concluded in Section
6.

2. Allometric Extension for Multivariate Regression

In growth studies of two groups (e.g. males and females), one group may
be an extension of the other group along a common allometric axis. The two—
group allometric extension model states that the two groups share a common first
principal component axis and the two groups are lined up along this common axis
(Hills, 1982). The allometric extension model generalizes easily to more than two
groups (e.g. closely related species). Schnute (1984) defines a closely related
model based on a mixture model for bivariate data yielding a trend line which is
similar to the line of allometric direction.

Let pq and py denote the mean vectors for the two groups with corresponding
covariance matrices W1 and Wo. Let ,6(11) and ,6’52) denote the normalized eigenvec-
tors of each respective covariance matrix associated with the largest eigenvalue.
Formally, the allometric extension model can be stated as follows (Flury, 1997,
Section 8.7):

B =By = £py” (2.1)
and
ny — o = 00, for some d € R. (2.2)

The following notation allows the generalization of the two-group allometric
extension model to the multivariate regression setting: let X denote a g—variate
random vector of regressors and let Y denote a p—variate response vector. The
multivariate regression analogue of allometric extension will be defined in terms
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of the conditional distribution of Y given X. It will be assumed throughout this
paper that the same set of regressor variables are used to model each response
variable. Form the (p + ¢) x 1 random vector (Y', X')" with mean p = (py, p,)’
and partitioned covariance matrix

wa:y d):m:
We will assume that the conditional expectation of Y given X is linear as is

the case for the multivariate normal distribution and, more generally, elliptical
distributions. The multivariate linear regression model can be expressed as:

BY|X] = py + $y0ths (X — p1y)- (2.3)

To generalize (2.2) to the multivariate regression setting, we require that the
conditional means F[Y|X = X;]| and E[Y|X = x3| for arbitrary values x; and
x2 of X line up along a common axis and this axis needs to coincide with the
first principal component axis of Y.

Definition. Let 8, denote the eigenvector of 1, associated with the largest
eigenvalue. The conditional distribution of Y given X follows an allometric
extension model for multivariate regression if

E[Y[X = x1] — E[Y|X = x;] = 6, (2.4)

where x; and x9 are arbitrary values of X and d € R is a constant that may
depend on both x; and xs.

The allometric extension model for multivariate regression states that the
fitted values of the regression of Y on X must all line up on the first principal
component axis of Y. In other words, the variability in Y explained by X is along
the first principal component axis of Y only.

A convenient characterization of the allometric extension model is given by
the following result. Suppose %, and t,, are both of full rank. Let H =
81,89, .. ,,Bp] denote the orthogonal matrix of eigenvectors of 1, correspond-
ing to the ordered (largest to smallest) eigenvalues. Partition H as H = [3; : Hs]
where Hy is the p x (p — 1) matrix of the second through pth eigenvectors. It
is easy to show that the allometric extension model for multiple regression is
equivalent to

From (2.5) it follows that
\Pyx = Blala
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for some a € R9. If the allometric extension model for multivariate regression
holds, then the components of X are uncorrelated with all but the first principal
component of Y.

Note that the allometric extension model for multivariate regression is a spe-
cial case of a reduced rank regression with rank equal to one with the additional
constraint that the line containing the fitted values from the multivariate regres-
sion coincides with the first principal component axis of Y. In particular, from
(2.5), it follows that

Cov(EY|X]) = (2'®;;2)B, ).

Thus, the covariance matrix for the conditional mean of Y given X has only one
non-zero eigenvalue with corresponding eigenvector 3;. If Y and X have a joint
normal distribution, then the covariance matrix of the conditional distribution
of Y given X is ¢, — 1,byx¢;xl1/)xy. If the allometric extension model for mul-
tivariate regression holds as well, then the covariance matrix for the conditional
distribution of Y given X can be written

Wy, — (2", 2)8,0). (2.6)

From (2.6) it follows that 3, is an eigenvector for the conditional distribution of
Y given X which provides a generalization of (2.1) from the two-group model.
The allometric extension model for regression is illustrated in Figure 1.

Allometric Extension for Multivariate Regression
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Figure 1: An illustration of the allometric extension
model for multivariate regression.
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3. Estimating the Allometric Regression Model

A straightforward approach to estimating the parameters of the allometric
extension model is to fit a full-rank regression in the usual way and then project
the fitted values onto the first principal component axis of the sample covariance
matrix of Y. Let S denote the sample covariance matrix and partition S as

S S
S — [ Pw yzv) )
< Sxy Sxx
and let f)’l denote the eigenvector of S,, associated with the largest eigenvalue of

Syy-
Consider the regression model

Y =CX+e,

where Y has been centered at zero. If a reduced-rank regression of rank one
holds, then the coefficient matrix C can be factored as

C = C,Cy,

where C; is a p x 1 vector and Cy is a 1 X ¢ vector. C; can be estimated
using the eigenvector of S, S;.}S,, associated with the largest eigenvalue. Cs is
then estimated using Cl'sny;; (e.g., Reinsel and Velu, 1998). In other words,
fitting the reduced-rank regression model amounts to projecting the usual least-
squares coefficient matrix Sny;xl onto the space spanned by the first eigenvector
of SyzS72Say.-

For the allometric extension model for regression, the coefficient matrix can
be estimating by projecting the usual least-squares coefficient matrix onto the
space spanned by Bl, the first eigenvector of S,,. Define the projection matrix
P as L,

P = 3,8
Then the estimated coefficient matrix for the allometric extension model is given
by
PS,.S;.). (3.1)
An alternative estimation approach is to use normal theory maximum likeli-

hood. However, there do not appear to be closed form solutions and the likelihood
equations are extremely messy (details are not given here).
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4. Testing for Allometric Extension

This section describes a bootstrap test that can be used to determine if an
allometric extension model for multivariate regression is consistent with the data
or not. The null hypothesis of the test is that the allometric extension model holds
for the distribution. In an allometric study where the first principal component
corresponds to the direction of allometric growth, the bootstrap test will then
allow the investigator to determine if the regressor variables affect growth of the
plant or animal along this allometric axis, or if the regressor variables disturb the
allometric growth of the plant by altering the coefficients of allometric growth.

Using the notation from Section 2, define the p x p orthogonal matrix H =
[B1,Hy] whose columns are the eigenvectors of ¥,,. If Zy denotes the second
through pth principal components of Y, then Zs = H,Y (assuming Y has been
centered at zero). From (2.5), the hypothesis of allometric extension for multi-
variate regression is equivalent to the components of Zy being uncorrelated to
the components of X:

Hy:H¥,, =0.

If Hy were known, the normal theory likelihood ratio test (e.g., Anderson’s book,
p.394) is equivalent to

’HésyyHﬂ ’SM‘

| ,QSyyHQ HIQSyx |’
SacyH2 S:m:

(4.1)

and the asymptotic null distribution of n times the natural logarithm of (4.1)
would be chi-square with degrees of freedom equal to (p — 1)g. In practice the
eigenvectors of ¥, must be estimated. Let H, denote the matrix of eigenvectors
of Sy, associated with the second through pth ordered eigenvalues. Multiplying
the natural logarithm of (4.1) by n after replacing Hy with Hy leads to the
following test statistic (after simplifying using standard results for partitioned
matrices):

A=nln

H,S,, H

[|I:I/2(Syy - SywS;étlswy)I:Iﬂ

The finite sample and asymptotic distributions of (4.2) are unknown due to the
fact that Hs needs to be estimated.

A straightforward alternative to the parametric approach is to use a boot-
strap test which does not require the normality assumption. The basic idea is
to compute (4.2) using the raw data. Next, transform the raw data so that the
null hypothesis is approximately valid (Hall and Wilson, 1991). When testing a
hypothesis about the mean, this transformation involves centering the raw data
at the hypothesized value of the mean (see e.g., Westfall and Young, 1993). In the
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current setting, the null hypothesis concerns the covariance structure. In order to
transform the data so that the null hypothesis of allometric extension holds, the
data needs to be re-scaled (instead of centered) — details are below. Finally, the
re-scaled data is resampled and (4.2) is computed for the bootstrap samples. An
(approximate) p-value for the bootstrap test is computed as the the proportion
of the bootstraped test statistics that exceed the test statistic computed from the
raw data.

In order to describe how to re-scale the data so that the null hypothesis of
allometric extension holds, let BDB' denote the spectral decomposition of 1), the
covariance matrix of (Y’,X’)’. The matrix D is a diagonal matrix of eigenvalues
of 1» and B is the orthogonal matrix of eigenvectors of 9. Let P = 3,3, denote
the projection matrix for the eigenvector 3, associated with the largest eigenvalue
of ¥,,. Then from (3.1), the covariance matrix

- P Pv,,.
v (g T

is a covariance matrix that satisfies the allometric extension model. Let 1, =
BoDyBj|, denote the spectral decomposition of 1p,. Then we can transform the
original variables (Y, X’)" to have a covariance matrix equal to 1, by noting the
following;:

Cov[(B{Dy*)(D™/*B) (§ >]

— (B;D}/*) (D28 Cov[( . )I(BD 1D} *By)

= (ByDy*)(D~'/*B')y(BD~"/*)(Dy/*By)
— (ByDy/*)(D~'/?B')(BDB')(B'D~"/?)(Dy/*By)
= (ByDyH)I(Dy*By) = 9.

Therefore, left multiplying the (p + ¢)-dimensional vector (Y’,X’)" by (B()Dé/ %)
(Dfl/ 2B’) yields a distribution satisfying the allometric extension model.

To perform the bootstrap testing, one simply re-scales the raw data using
the sample counterparts of the above matrices and then resamples the data. In
particular, let (y;,x}),7 = 1,...,n, denote the raw data and let S denote the
sample covariance matrix. Let BDB' denote the spectral decomposition of S
where B is an orthogonal (p+q) x (p+ q) matrix and D is a diagonal matrix of
ordered eigenvalues of S. Let
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Denote the spectral decomposition of Sy by
Sy = BoDoBl,.
The bootstrap testing procedure is given in the following steps:
Bootstrap Testing Procedure

1. Compute )\, the test statistic using (4.2).

2. Re-scale the raw data so that the null hypothesis of allometric extension
(approximately) holds by computing:

(Yi0> _ 36]5(1]/21571/2]3/ (yz> :
X0 X

fori=1,...,n.

3. Obtain a bootstrap sample (sampling with replacement) from the re-scaled
data (y},x},)" and compute the test statistic (4.2), call it A*.

4. Repeat step (3) N times for some large value of N (say N = 10,000)
generating bootstrap test statistics A7, j =1,...,N.

5. A bootstrap p-value is then computed by the proportion of A7 that exceed
A

This bootstrap procedure is quite easy to implement using standard statis-
tical software because it only requires the computation of the eigenvectors and
eigenvalues of the sample covariance matrix. Code for the bootstrap test is avail-
able using the R-software (Ihaka and Gentelman, 1996) from the authors upon
request.

A simulation study was conducted to evaluate the performance of the boot-
strap testing procedure. Multivariate normal data was simulated using the Gauss
software for a wide variety of parameterizations and sample sizes. The power of
the bootstrap test was estimated based on 1000 simulated data sets. For each sim-
ulated data set, the bootstrap test described above was performed for N = 1000
bootstrap samples. Ideally, the p-value distribution when simulating under the
null hypothesis of an allometric extension model should be uniform (0,1). The
actual p-value distribution under the null hypothesis is approximately uniform
with deviations from uniformity in the direction of a conservative test (i.e., the
probability of a type I error is smaller than specified using the usual significance
levels). Under the null hypothesis, the p-value distribution coincided more closely
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Power Curves for Bootstrap Test
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Figure 2: Power curves for bootstrap test. Simulation results for
the bootstrap test of the allometric extension model.

with a uniform (0,1) distribution as the sample size increased or as the dimen-
sionality of the data decreased, or as the correlation between the first principal
component of the response and the regressors increased. The power of the boot-
strap test was evaluated simulating data from distributions where the allometric
extension model does not hold. The results of the power study are summarized by
the power curves shown in Figure 2. In all cases, the power was computed using a
significance level 0.05. The left panel of Figure 2 shows the results of simulating
a bivariate response (p = 2) with two regressors (¢ = 2). The right panel of
Figure 2 is based on p = 4 response variables and ¢ = 3 regressors. In each panel,
power curves for sample sizes of n = 50 and 100 are shown. The first principal
component of the response had a variance of 4 in the left panel and a variance of
6 in the second panel. The other principal component(s) of the response(s) had
a variances of 2 and 3 in the left and right panels respectively. The regressors
had unit variance in all cases and the covariance of the first principal component
with the regressors was 0.5 in all cases. The power curves in Figure 2 were gener-
ated by increasing the covariance from 0 (where the null hypothesis of allometric
extension holds) to 0.9 in increments of 0.1 between the regressors and the 2nd
through pth principal components of the response. As this covariance increases,
the model moves further away from the allometric extension model and therefore
the power of the test increases which is evident from the curves in Figure 2. The
bootstrap test is slightly less powerful in the higher dimensional simulation (right
panel of Figure 2) compared to the lower dimensional simulation. These power
curves show that the bootstrap test is quite powerful even when the correlation
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between the regressors and the 2nd—pth principal components of the response are
moderate. For example, in the left panel of Figure 2 with n = 50, the power
of the test is 0.947 when the 2nd principal component has a correlation of 0.42
with each of the regressors whereas, in the right panel, the power is 0.942 when
the correlation between the 2nd—4th principal components of the response have
a correlation of 0.4 with the regressors. Further details on the simulation results
are available from the authors.

As mentioned in the previous section, the maximum likelihood estimators of
the covariance matrix in the allometric extension model for multivariate regres-
sion are intractable and the likelihood equations are very messy. Therefore, a
likelihood ratio test for the allometric extension model is not pursued.

5. Application

The ecological balance of nutrient-limited areas such as the Florida Ever-
glades can be jeopardized by anthropogenic nutrient enrichment. In order to
detect and monitor the presence of nutrient contamination in the Everglades, a
study was conducted to examine variation in plant morphology that results from
soil characteristics. In particular, the negative effects of phosphorus enrichment
in the Everglades are a concern. This studied examined Sagittaria lancifolia and
Cladium jamaicense (or “sawgrass”) plants which are common in the Florida Ev-
erglades. Survey sites were randomly located throughout the Florida Everglades
and a sample of plants and soil measurements were obtained at each site in work
that involved the second author. Data were collected during the wet and dry
seasons.

Data on ny = 287 Sagittaria lancifolia plants were collected during the wet
season and ng = 298 plants during the dry season. For the sawgrass, there were
517 and 615 observations in the wet and dry seasons respectively. The response
variables were the log-transformed length and width of the leaves:

y1 = log(Lamina length)
y2 = log(Lamina width).

For the sawgrass, an addition response variable was measured:
y3 = log(rhizome diameter).

Using the previous notation, p = 2 for the Sagittaria lancifolia plants. The ¢ = 2
soil variables are

x1 = Total phosphorus in soil (units are micrograms,/gram)
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r9 = Percent ash-free dry weight of soil.

Ash-free dry weight is related to the amount of organic matter in the soil and
is useful for distinguishing mineral soils, called marl, and peat soils that are
higher in organic matter. The ash-free dry weight relates to the accessibility of
nutrient availability to plants. Variables z; and x were standardized since they
are measured on different scales. Also, the response variables y were all centered
at zero. Phosphorus is a nutrient that has a fertilizing effect on plants leading to
higher growth. Similarly, a regression of the leaf dimensions on ash-free weight
also shows a positive relationship.
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Figure 3: Fitted values of logarithms of leaf length and width from
a regression on soil ash-free weight and soil total phosphorus of
Sagittaria lancifolia plants. Plants were divided into two—groups:
above average values of phosphorus (triangles) and below average
values of phosphorus (circles).

We present first the results for the Sagittaria lancifolia plants. Figure 3
shows fitted values of log(Lamina length) and log(Lamina width) from a full-
rank regression on x; and xo for the wet season data. The fitted values tend to
cluster along a line indicating that a reduced-rank regression model with rank
1 may hold for the data. The plants were divided into two—groups based on
large (above average) and small (below average) phosphorus values. The large
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phosphorus group is plotted with a triangle and the small phosphorus group is
plotted with a circle. The two different plotting symbols indicate that the large
group appears to be an allometric extension of the small group (Bartoletti et al.,
1999). However, the large and small grouping is artificial. Because phosphorus
and the ash-free dry weight are continuous variables, the allometric extension
model for regression needs to be tested.
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Figure 4: Scatterplots of the log-leaf data for the wet and dry seasons for the
Sagittaria lancifolia plant data. The solid lines in the left and right frames are
the estimated first principal component axes for the raw data and the dashed
lines are the first principal component axes for the fitted values.

The bootstrap test was run on the data for the wet and dry seasons. 50,000
bootstrap samples were obtained for each test using the bootstrap testing proce-
dure outlined in Section 4. For the wet season, only one of the 50,000 bootstrap
samples yielded a test statistic bigger than the observed test statistic for the raw
data giving a p-value of p = 0.00002. Thus, for the wet season, the allometric ex-
tension model for regression is clearly rejected. However, for the dry season, the
bootstrap p-value is p = 0.25413 indicating that the allometric extension model
for regression is consistent with the dry season data.

Figure 4 provides an illustration of the results. Each frame of Figure 4 shows
the raw log-leaf data for the wet (left frame) and dry (right frame) seasons. The
solid line in each frame is the estimated first principal component axis for the raw
plant data. The dashed line is the estimated first principal component axis for
the fitted values. Also plotted are the fitted values (indicated with large circles
and triangles corresponding to small and large levels of phosphorus). Under the
allometric extension model, the dashed and solid principal component axes would
exactly coincide. The discrepancy between the solid and dashed line is greater
for the wet season than for the dry season which gives some indication why the
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allometric extension model is less plausible for the wet season than for the dry
season as evidenced by the bootstrap test.

The bootstrap test for allometric extension was also run for the sawgrass
data which had three dependent variables (logarithms of leaf length, width and
rhizome). For the wet season, the bootstrap test yielded an estimated p-value
of p = 0.10314; for the dry season, the p-value is p = 0.00000. Therefore, the
allometric extension model for multivariate regression is consistent for the wet
season data but not for the dry season data, which is the reverse of the results
for the Sagittaria lancifolia plants.

The coefficients for the first principal component z; for the wet season saw-
grass data are 0.516,0.555, 0.653 which gives estimates of allometric growth rates.
The second principal component z, can be regarded as a comparison of length
and width with rhizome:

29 = —0.7231og(length) — 0.126 log(width) + 0.679 log(rhizome).
The third principal component z3 compares width with length and rhizome:
zg = 0.459log(length) — 0.823 log(width) + 0.336 log(rhizome).

Because the allometric extension model is consistent with the wet season sawgrass
data, it follows that phosphorus and ash-free dry weight explain variability in the
growth of the plants along the z; allometric axis only.

Table 1: Percentage of leaf variability explained by regression models.

Plant Model Wet Season  Dry Season
Sagittaria lancifolia  Full Rank Regression 17.29% 15.26%
Reduced Rank (rank = 1) 17.26% 15.24%
Allometric Extension 16.99% 15.21%
Cladium jamaicense  Full Rank Regression 36.37% 32.36%
(Sawgrass) Reduced Rank (rank = 1) 36.34% 32.19%
Allometric Extension 36.32% 31.80%

The percentage of variability in the responses accounted for by the regressors
in a multivariate regression can be computed as

R — tr(Sny;xley)
tr(Syy)

Table 1 gives the percentage of variability in the log-leaf measurements explained
by the full unrestricted regression model, a reduced rank regression model with

x 100%.
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rank equal to one and for the allometric extension model for both plants and
both season. The allometric extension model is the most restrictive of the three
models and therefore must have the lowest R? value. However, from Table 1, the
proportion of variability explained for the allometric extension model is essentially
the same as the full unrestricted model and the reduced rank regression model,
particularly in the cases where the bootstrap test indicated that the allometric
extension model holds (dry season for Sagittaria lancifolia and wet season for
sawgrass).

Below is the estimated covariance matrix for the dry season Sagittaria lanci-
folia plant data of (Z', X") where Z = (7, Z3)" are the two principal components
of the log-leaf measurements and X = (X7, X3)" corresponds to the standardized
ash-free weight and phosphorus measurements:

0.213  0.000  0.186  0.091
0.000  0.013 -0.008 —0.010
0.186 —0.008 1.000  0.476
0.091 —-0.010  0.476 1.000

The pairwise covariances between x1 and x5 with the second principal component
of the leaf measurements appear quite small as would be expected for a model
consistent with the allometric extension model.

It is interesting to also perform a likelihood ratio test for a reduced rank
regression (rrr) model of rank » = 1. The likelihood ratio test for testing if the
rank of the coefficient matrix is of rank r is

[ (]S(residual)]>*"/2
rrr — |Syy|

where S(residuals) is the residual sum of squares matrix from the reduced rank
model (Reinsel and Velu, 1998, p.50). Asymptotically, —2 log(j\m«) follows a
chi-squared distribution on (p —7)(¢ — r) degrees of freedom. For the Sagittaria
lancifolia plant data we have (p —1)(¢ — 1) = 1 degree of freedom. The observed
test statistics for the wet and dry seasons are x? = 0.834 and 0.489 respectively
indicating that a reduced rank regression with rank equal to one is consistent for
both the wet and dry season leaf data. As we have seen however, the more parsi-
monious model of allometric extension is consistent for the dry season data. Even
though we rejected the allometric extension model for the wet season, the less re-
strictive reduced rank regression of rank equal to one is not rejected. Also, Figure
4 shows that the allometric extension model for the wet season, although rejected
by the likelihood ratio test, nonetheless provides a fairly good approximation to
the observed data.
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6. Discussion

In the plant examples of Section 5, departures from the allometric extension
model may be of interest in identifying the effects of soil nutrient over-enrichment.
For instance, if nutrients in the soil and/or water alter the usual growth rates of
the plant, then the allometric extension model for multivariate regression will fail
to hold. Since the allometric extension model appears consistent with the data
from the dry season for the Sagittaria lancifolia plants and since phosphorus
has a fertilizing effect, we would expect to see larger leaves following the same
growth pattern in areas suffering from phosphorus contamination compared to
uncontaminated sites. Strong departures from the allometric extension in this
context may be evidence that the phosphorus is causing differences in the both
the size and shape of the leaves, possibly a deformation.

The model considered here is quite simple and many generalizations can be
pursued. A more restrictive one-dimensional model is that of isometric growth
where the fitted values are constrained to lie on the line determined by the unit
vector (1,1,...,1)’/\/p. Another interesting variation of the problem is to con-
sider models where the allometric extension model holds for a subset of the re-
sponse variables in a multivariate regression (Ivey et al., 2004). For higher di-
mensional data, one could easily modify the bootstrap test of Section 4 to test
if the fitted values lie in a lower dimensional subspace spanned by the first few
eigenvectors of the covariance matrix of the response distribution. In fact, one
can regard these models as special cases of common principal component models
(Flury, 1988) where some or all of the eigenvectors of ¥, ¥ W are constrained
to coincide with some of the eigenvectors of ¥,,. Common principal component
models for regression then would postulate that the covariance matrix for E[Y|X]
could be expressed as

T
U, W, =) (aj¥, ;)88
j=1

where 3; are eigenvectors of ¥, the a; € %7, and r is the rank of the model.

It would also be of interest to consider nonlinear generalizations of the reduced
rank models. Hastie and Stuetzle (1989) introduced principal curves as a nonlin-
ear generalization of principal component axes. If there is nonlinear structure in
the response distribution, then there may very well be nonlinear structure in the
fitted values as well after regressing the response on regressors. If the fitted values
fall on a curve, then one would have a nonlinear reduced rank regression model
of rank equal to one. If this curve coincides with the first principal curve of the
response distribution, then a nonlinear allometric extension model for regression
holds for the data.
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