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Abstract: Longitudinal studies represent one of the principal research
strategies employed in medical and social research. These studies are the
most appropriate for studying individual change over time. The prematurely
withdrawal of some subjects from the study (dropout) is termed nonrandom
when the probability of missingness depends on the missing value. Nonran-
dom dropout is common phenomenon associated with longitudinal data and
it complicates statistical inference. Linear mixed effects model is used to
fit longitudinal data in the presence of nonrandom dropout. The stochastic
EM algorithm is developed to obtain the model parameter estimates. Also,
parameter estimates of the dropout model have been obtained. Standard
errors of estimates have been calculated using the developed Monte Carlo
method. All these methods are applied to two data sets.
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1. Introduction

Longitudinal studies represent one of the principal research strategies em-
ployed in medical and social research. The defining feature of such studies is that
subjects are measured repeatedly through time. A pervasive problem associated
with longitudinal data studies is the missing values. Missing values arise in lon-
gitudinal data whenever one or more of measurement sequences for participating
subjects are incomplete, in the sense that the intended measurements are not
taken, lost, or otherwise unavailable. The missing data pattern is termed dropout
when some subjects leave the study prematurely, i.e. any missing value is never
followed by an observed value.

Let n be the number of time points and Yi be n × 1 vector of intended mea-
surements for the ith subject, which would have been obtained if there were no
missing values. This vector can be partitioned to Yi,obs and Yi,mis, where Yi,obs

are the measurements that actually obtained and Yi,mis are the missing measure-
ments. Let Y be the complete set of measurements which can be partitioned
as Y = (Yobs, Ymis), where Yobs are the obseved data and Ymis are the missing
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values. Finally, let R denote a set of indicator variables each takes the value of 1
for elements of Y fall into Yobs and the value of 0 for those fall into Ymis.

Missing data analyses usually base on assumptions about the process that
creates the missing values. The missing data process can be classified to three
different categories (Rubin, 1976). The missing data mechanism is defined as
missing completely at random (MCAR) if the probabilty of the missingness does
not depend on the measurements. The missing data mechanism is defined as
missing at random (MAR) if the probability of missingness does not depend on
the unobserved measurements. The missing data mechanism is defined as non-
random if the the probabilty of missingness depends on unobserved measurements
and may be on the observed measurements. Hence, the missing data mechanism
is nonrandom if R is dependent on Ymis and may be on Yobs.

In the selection model (Heckman, 1976), the joint distribution of the com-
plete data Y and R can be factorized as f(Y,R|θ,Ψ) = f(Y |θ)P (R|Y,Ψ), where
Ψ denotes the vector of the parameters that govern the missingness process; θ
stands for the other model parameters and f(R|Yobs, Ymis,Ψ) is the distribution
that describes missing data mechanism. Diggle and Kenward (1994) propose a
selection model for continuous longitudinal data with nonrandom dropout. This
model assumes that the probability of dropout for the ith subject at time tdi

depends on the history of the measurements up to and including time tdi
,

P [Di = di|history] = Pdi
[Hidi

, Y ∗
idi

; Ψ],

where Di is a random variable such that 2 ≤ di ≤ n identifies the dropout
time and di = n + 1 identifies no dropouts, Hidi

= (Yi1, ..., Yidi−1) denotes the
observed history up to time tdi−1 and Y ∗

i = (Y ∗
i1, ...Y

∗
in) denotes the complete

vector of intended measurements. The joint probability density function for an
incomplete sequence with dropout at time di is

f(Yi|θ,Ψ) = fidi−1
(Yi)

di−1∏
k=2

[1 − Pk(Hik, Y
∗
ik,Ψ)]P (Yidi

= 0|Hidi
, Yidi−1 �= 0),

where fidi−1
(Yi) denotes the joint probabiltiy density function of the first (di −1)

elements of Yi. Hence, the log-likelihood function for data consist of m subjects
is

�(θ,Ψ) = �1(θ) + �2(Ψ) + �3(θ,Ψ), (1.1)

where

�1(θ) =
m∑

i=1

log[fidi−1
(Yi)],



Mixed Models for Longitudinal Data with Dropouts 449

�2(Ψ) =
m∑

i=1

di−1∑
k=1

log[1 − Pk(Hik, Y
∗
ik,Ψ)],

�3(θ,Ψ) =
∑

i:di≤n

logP (Di = di|Yi, θ,Ψ),

and
P (Di = di|Yi) =

∫
Pk(Hik, Yik,Ψ)fik(Yik|Hik; θ)dYik.

Diggle and Kenward (1994) suggest modelling the probability of dropout as a
logistic linear specification, i.e.

logit{P (Hik, Yik; Ψ)} = Ψ0 + Ψ1Yik +
k∑

j=2

ΨjYi,k+1−j. (1.2)

Many methods were developed to handle missing data problems in literature.
The EM algorithm (Dempester, Laird and Rubin, 1977) is a common approach
for parameter estimation in the incomplete data setting. However, calculating
the conditional expectation required in the E-step, may be infeasible in many
situations. A possible alternative is to perform the expectations via simulation.
This is the general idea of the stochastic EM algorithm (Celuex and Diebolt,
1985).

At each iteration of the stochastic EM algorithm the missing data is imputed
with a single draw from the conditional distribution of the missing data given
the observed data and the current parameter estimates. This imputation of the
missing values is based on all our current information about θ, and hence provides
us with a plausible pseudo-complete data. Once we have a pseudo-complete data,
we can directly maximize its log-likelihood to obtain updated estimates. The
whole process is iterated for sufficient number of iterations. If the iterations
converge, the final output of the stochastic EM algorithm is a sample from the
stationary distribution π(.). The mean of this sample, after discarding the first
early points as a burn-in period, is considered as an estimate for θ. This mean is
called the stochastic EM estimate and denoted by θ̃.

Due to dropout, the number of measurements varies between subjects. Hence,
analysis of longitudinal data requires statistical models which can accomodate
this aspect. Also, the intercorrelation between measurements on one subject
must be taken into account to draw valid statistical inference. The linear mixed
model is a possible candidate for such analysis.
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2. Linear Mixed Model

The linear mixed model (Laird and Ware, 1982) assumes that the response
vector Yi for the ith subject satisfy the linear regression model

Yi = Xiβ + Zibi + εi, (2.1)

where Yi is the ni × 1 vector of observations for the ith subject, Xi is a design
matrix, or set of explanatory variables, β is a p× 1 vector of population- specific
parameters describing the average trends (fixed effects), Zi are ni × q matrix of
known covariates, bi are a q × 1 vector of subject-specific parameters describe
how the ith subject deviate from the population average (random effects). The
residuals εi are assumed to be independent normally distributed with zero means
and covariance matrix Σi, usually assumed to be σ2Ini .

Inference for linear mixed effects model can be made using the marginal distri-
bution of the response Yi, assuming that the bi are independent random variables
with common distribution function g(bi), called the mixing distribution. The
mixing distribution is assumed to be normal with zero means and a variance-
covariance matrix D of order q × q. It is common to assume that εi and bi are
independent. According to the model (2.1), marginally Yi is normally distributed
with mean vector µi = Xiβ and covariance matrix Vi = ZiDZ

′
i + Σi. The ele-

ments of the matrix Vi are known functions of q unknown covariance parameters.
Assume that a vector α contains these covariance parameters, and so the model
parameters, θ, are β and α. It is common to assume that Σi = σ2Ini . A good
review of linear mixed models, in the context of longitudinal data, can be found
in Cnaan, Laird and Slasor (1997) and Molenberghs and Verbeke (2001).

In the context of longitudinal data, many methods for fitting linear mixed
models are available. For nonrandom missingness, in the likelihood context,
Ibrahim, Chen and Lipsitz (2001) derive a computationally feasible E-step, of
the EM algorithm, by integrating out the random effects and use the Monte
Carlo EM (MCEM) algorithm (Wei and Tanner, 1990) to obtain ML estimates.
They use Gibbs sampler to implement the imputation of missing values. They
don’t estimate Ψ (missingness parameters), they consider it as nuisance param-
eter. Stubbendick and Ibrahim (2003) propose a selection model for estimating
parameters in presence of nonrandom missing responses and covariates. Param-
eters are estimated via maximum likelihood using the Gibbs sampler and the
Monte Carlo EM algorithm.

The purpose of this paper is to fit the linear mixed model, in the presence
of nonrandom dropouts, for continuous longitudinal data. The Diggle-Kenward
selection model is adopted. Hence, we rely on the log-likelhood function defined
in Eq. (1.1). The underlying model has many parameters to be estimated, the
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θ and Ψ. It would seem then, estimation using the standard techniques, the
EM algorithm for example, is difficult to implement. Also, in the E-step of the
EM algorithm, the integrations are intractable. To overcome these difficulties,
the stochastic EM algorithm is developed to obtain parameter estimates. Also,
the Monte Carlo method (Ip, 1994) is developed to find standard errors of pa-
rameter estimates. The rest of the paper is organized as follows. In Section 3,
the stochastic EM algorithm is developed to carry out inference for linear mixed
model. Also, the Monte Carlo method is developed to obtain standard errors.
Finally, in Section 4, two examples are presented and inference is conducted using
the proposed techniques.

3. The Stochastic EM Algorithm

The stochastic EM algorithm is developed to obtain the parameter estimates.
The elegance of the stochastic EM algorithm actually lies in its simplicity. The
stochastic EM algorithm has many advantages. The main advantage of this al-
gorithm is that it avoids evaluating the integrations, in the E-step of the EM
algorithm. In the S-step these integrations are evaluated using simulation, so
no need for numerical integrations. In the current setting, we have to evaluate
the integrals included in the log-likelihood function in Eq. (1.1). This compli-
cates the M-step of the EM algorithm, which is not the case with the developed
stochastic EM algorithm. Also, the stochastic EM algorithm can recover multi-
modality of the likelihood surface (Ip, 1994). The deterministic M-step and the
stochastic S-step generate a homogeneous, ergodic and irreducible Markov chain
which converges to its stationary distribution faster than the usual long chains of
conditional stochastic draws used in many Gibbs sampling schemes. The S-step
prevents the sequence {θ(t)} from staying near an unstable stationary point of
the likelihood function. Thus, the stochastic EM algorithm avoids the cases of
slow convergence observed for the EM algorithm. Moreover, the stochastic EM
algorithm can avoid the saddle points or the insignificant local maxima. This
property of the stochastic EM algorithm may lead to an improvement over the
deterministic EM algorithm in terms of convergence to a good stationary point
(Ip, 1994). A relatively recent review of the EM algorithm and its extensions is
in McLachlan and Krishnan (1997) and references therein.

The complete data for the ith subject are Yi,obs, Yi,mis, Ri. The joint proba-
bility density function f(Yi,obs, Yi,mis, Ri|θ,Ψ) can be factorized as

f(Yi,obs, Yi,mis, Ri|θ,Ψ) = f(Yi,obs, Yi,mis|θ)f(Ri|Yi,obs, Yi,mis; Ψ).

Let the early first missing value for the ith subject is denoted as yi,mis. We argue
that in nonrandom dropout setting, and depending on the dropout model (1.2),
if this value is imputed then, given its value, the remaining missing values can be
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assumed as missing at random. Using this idea, given that yi,mis for each subject
is filled in, any optimization procedure for incomplete data can be used.

In the nonrandom dropout setting, the two steps of the stochastic EM algo-
rithm, at the (t + 1)th iteration, are developed as follows:

• S-Step: The first missing value of each subject is simulated from the con-
ditional distribution f(yi,mis|Yi,obs, Ri, θ

(t),Ψ(t)). This distribution does not
have a standard form, hence it is not possible to use the direct simulation.
To overcome this problem, an accept-reject procedure is proposed to simu-
late the missing values yi,mis. This procedure mimics the dropout process.
It is as follows:

1. A candidate value, y∗, is generated from the conditional distribution
function f(yi,mis|Yi,obs, θ

(t)) which is normal distribution.

2. Calculate the probability of dropout for y∗, according to the dropout
model (1.2), where the parameters Ψj are fixed at the current values
Ψ(t)

j . Let us denote this probability as P ∗
i .

3. A random variate U is simulated from the uniform distribution on the
interval [0, 1], then yi,mis = y∗ if U ≤ P ∗

i ; otherwise repeat step 1.

• M-Step: The M-step consists of two substeps, the logistic step (M1-step)
and the normal step (M2-step).

In the M1-step, the maximum likelihood estimates of the dropout param-
eters in model (1.2) are obtained using any iterative method for likelihood
estimation of binary data models (see, for example, McCullagh and Nelder,
1989).

In the M2-step, maximum likelihood estimates of the parameters β and
α are obtained using an appropriate optimization approach for incomplete
data, Jennrich-Schluchter algorithm (Jennrich and Schluchter, 1986) for
example. Note that by using this algorithm, the observed data for each
subject are redefined to be the originally observed data Yi,obs augmented
by the simulated value of yi,mis. The remainder of the sequence need not
be simulated because, given the simulated value, the setting become that
of MAR, with separable likelihood components.

When implementing the stochastic EM algorithm we need to check the conver-
gence of the resulting chain. Several convergence diagnostics have been proposed
in literature, see for example Brooks (1998) and Brooks and Roberts (1998)
for details. Some of these techniques depend on the chain output such as the
Gelman-Rubin method (Gelman and Rubin, 1992). This method is used to mon-
itor convergence of the stochastic EM iterations in this paper. This method is
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based on generating multiple, s ≥ 2, chains in parallel for v = 2p iterations.
For each chain, this method suggests starting from different points for which
the starting distribution is over-dispersed compared to the target distribution.
This method is separately monitoring the convergence of each scalar parameter
of interest by evaluating the Potential Scale Reduction Factor, (PSRF),

√
R̂ as

√
R̂ =

√
v − 1

v
+

1
v

B

W
,

where B/v is the between sequence variance and W is the average of within
sequence variances. This calculation depends on the last p iterations of each
sequence. The convergence is achieved if the PSRF is close to one which means
that the parallel Markov chains are essentially overlapping. If the PSRF is large,
then proceeding further simulation may be needed.

Louis (1982) derive an interesting identity relating the observed data log-
likelihood and the complete data log-likelihood:

−∂2�(θ, Yobs)
∂θ∂θ′

= E

(
−∂2�(θ|Yobs, Ymis)

∂θ∂θ′

∣∣∣∣ Yobs

)
− cov

(
∂�(θ|Yobs, Ymis)

∂θ

∣∣∣∣Yobs

)
.

Efron (1994) and Ip (1994) propose using simulation to find the two parts in the
right hand side of Louis’ formula (the Monte Carlo method). The main idea is to
simulate M identically independent distributed samples Z1, Z2, ..., ZM from the
conditional distribution of the missing values given the observed values. Then,
the two parts can be approximated by their empirical versions, i.e.

E

(
∂2�(θ|Yobs, Ymis)

∂θ∂θ′
|Yobs

)
≈ 1

M

M∑
j=1

∂2�(θ|Yobs, Zj)
∂θ∂θ′

,

and

cov
(

∂�(θ|Yobs, Ymis)
∂θ

|Yobs

)
≈ 1

M

M∑
j=1

(
∂�(θ|Yobs, Zj)

∂θ

)2

−

 1

M

M∑
j=1

∂�(θ|Yobs, Zj)
∂θ




2

,

where the parameter θ is fixed at θ̂.
In the nonrandom dropout setting the conditional distribution of the missing

data of the ith subject is f(Yi,mis|Yi,obs, Ri). Again the proposed accept-reject
procedure can be used to simulate from this distribution.
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4. Applications

4.1 The mastitis data

These data were analyzed by Diggle and Kenward (1994) using fixed effects
model and a different technique. Mastitis is an infection of the udder which
reduces milk yield of the infected animals. Data were available of milk yields in
thousands of liters of 107 dairy cows, from a single herd, in two consecutive years
such that, Yij, i = 1, ..107; j = 1, 2. In the first year, all animals were supposedly
free of mastitis and in the second year, 27 became infected (assumed missing).
The question of scientific interest was whether the occurrence of mastitis is related
to the yield that would have been observed if mastitis is not occurred. Initial
exploration of the data shows two patterns for the first 80 animals (completers).
First, as expected there is an increase in the milk yield from the first year to the
second year. Second, the variance between milk yield in the first year appears to
be smaller than the second year.

Table 1: Parameter estimates of the mixed effects model for the mastitis data

Parameters Estimates Standard Errors p-value

β0 5.76 0.0000 <0.0001
β1 0.35 0.0147 <0.0001
d11 0.54 0.0368 <0.0001
d12 0.02 0.0357 0.9715
d22 0.72 0.0685 0.0001
σ2 0.33 0.0369 <0.0001
Ψ0 0.19 0.1283 0.1507
Ψ1 2.07 0.0673 <0.0001
Ψ2 -2.33 0.0894 <0.0001

The linear mixed effects model (2.1) is fitted for these data. The design matrix
Xi is chosen as

Xi =
(

1 0
1 1

)
.

The fixed effects parameters vector is of dimention 2 where β = (β0, β1). The
covariance matrix is Vi = ZiDZ

′
i + σ2I, where

D =
(

d11 d12

d12 d22

)
,

and Zi = Xi. The dropout process is modelled using logistic regression as in
Eq. (1.2). The linear mixed model for the yield and the dropout model are



Mixed Models for Longitudinal Data with Dropouts 455

incorporated to give the log-likelihood function in Eq. (1.1). The developed
stochastic EM algorithm is used to find the parameter estimates. The number
of iterations is fixed at 2000 iterations and the calculations are based on the last
1000 iterations. The results are presented in Table 1.

It is noticed from the results in Table 1 that variability within individuals
(σ2 = 0.33) is less than the variability between individuals in the first year, d11,
or in the second year, d22. In addition the variance between individuals in the
second year is greater than the one in the first year. Diggle and Kenward (1994)
observed that in nonrandom models, dropout tends to depend on the increment
(i.e., the difference between the current and previous measurements, Ydi

−Ydi−1).
According to the obtained estimates, the dropout model is as

logit[P(dropout)] = 0.19 + 2.07Y1 − 2.33Y2,

where Y1 denotes the first observation and Y2 denotes the missing one. So, this
model can be rewritten as

logit{P(dropout)} = 0.19 + 0.26Y1 − 2.33(Y2 − Y1).

The model suggests that the larger the decrease in milk yield between the two
years, the higher the probability of getting disease. This means that the animals
with greater decrease in yield over the two years have a higher probability of
getting mastitis. The parameter β0 represent the population average of the first
year response, whereas β1 represent the population average increment of the
second year over the first year.

Standard errors have been obtained using the proposed Monte Carlo method
and results are shown in Table 1. Statistical inference about the unknown pa-
rameters can be obtained through the standard errors of parameter estimates.
Based on the results displayed in Table 1, we can conclude that the null hy-
pothesis H0 : Ψ2 = 0 cannot accepted. This may be believed as an evidence for
non-random dropout process.

For diagnosing convergence we apply the Gelman-Rubin method using 3 se-
quences with different starting points. The shrink factor,

√
R̂, has been calcu-

lated for each one of the 9 parameters. The results are close to 1 with larger
value 1.08 for d11 and smaller value 0.99 for β0. This means that the generated
sequences have converged properly.

4.2 The rats data

These data were analysed by Molenberghs and Verbeke (2001), also in Verbeke
and Molenberghs (2004), in which 50 male Wistar rats were randomized to either
a control group (15 rats) or one of the two treatment groups. The two treatment
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groups are low dose (18 rats) or high dose (17 rats) of the drug Decapeptyl, which
is an inhibitor for testosterone production in rats. The primary aim of the study
was to investigate the effect of the inhibition of the production of testosterone in
male Wistar rats on their craniofacial growth. The research question is: how does
craniofacial growth depend on testosterone production? The height of the skull
is one of the responses of interest. Height is measured as the distance (in pixels)
between two well-defined points on X-ray pictures of the skull. The treatment
started at the age of 45 days, and measurements were taken every 10 days, with
the first observation taken at the age of 50 days. The measurements were intended
to the age of 110 days. Many rats do not survive anaesthesia and therefore drop
out before the end of the study, only 22 of them survived to the end of study. This
experiment is balanced: the same number of repeated measurements is planned
for all participating subjects, at fixed time points.

Verbeke and Molenberghs (2004) suggest the following model,

Yij = (β0 + b1i) + (β1Li + β2Hi + β3Ci + b2i)tij + εij ,

=




(β0 + b1i) + (β1 + b2i)tij + εij if low dose
(β0 + b1i) + (β2 + b2i)tij + εij if high dose
(β0 + b1i) + (β3 + b2i)tij + εij if control,

where Yi is a vector of order 7 containg the response values for the ith animal,
Li,Hi and Ci are indicator variables such that

Li =
{

1 if low dose
0 otherwise,

Hi =
{

1 if high dose
0 otherwise,

Ci =
{

1 if control
0 otherwise,

and tij = ln(1 + (Age − 45)/10) which is a transformation of the time scale.
The β0 can be interpreted as the average response at the start of the treatment
(independent of treatment) and β1, β2 and β3 as the average time effect for each
treatment group.

The design matrix Zi is then

Zi =
(

1 1 1 1 1 1 1
ti1 ti2 ti3 ti4 ti5 ti6 ti7

)′
.

The design matrix Xi is of order 7×4 where all the values of the first column are
one. The second, third and forth columns are tij for j = 1, ..., 7 if the subject is



Mixed Models for Longitudinal Data with Dropouts 457

in the low, high or control group, respectively. Otherwise, the column elements
are zeros.

The stochastic EM algorithm is used to obtain the parameter estimates of
this model in the presence of dropout. Also, the estimates standard errors have
been obtained using the Monte Carlo method. The results are shown in Table 2.
Although the parameter estimates using the stochastic EM algorithm are similar
to those obtained by Verbeke and Molenberghs (2004), we have got postive values
for the variance component (d22 in particular). They cannot obtain postive values
for the variance component d22 using restricted maximum likelihood method.
The parameter estimates of the dropout model (Ψ) suggest that the smaller the
height of the skull, the larger the probability of death due to the inhibition of
testosterone. It is also noted that there is much variability between rats at the
begining of the experiment and less variability within rats. Due to time effect for
each treatment group the variability between rats decreases.

Table 2: Parameter estimates of the mixed effects model for the rats data

Parameter Estimates Standard Errors p-value
β0 68.65 0.0028 <0.0001
β1 7.41 0.0053 <0.0001
β2 6.83 0.0061 <0.0001
β3 7.22 0.0082 <0.0001
d11 2.92 0.0101 <0.0001
d12 0.24 0.0668 0.0003
d22 0.84 0.3878 0.0308
σ2 1.52 0.0025 <0.0001
Ψ0 37.17 0.4039 <0.0001
Ψ1 0.07 0.0112 <0.0001
Ψ2 −0.53 0.0159 <0.0001

Convergence has been monitored in the same manner of the previuos example.
Two chains each of 2000 iterations have been used to implement Gelman-Rubin
method. The shrink factor is close to 1 for all parameters with larger value of
1.005. This indicates that convergence has been acheived.

5. Concluding Remarks

We fitted the linear mixed model to continuous longitudinal data with non-
random dropout. The estimation process depends on the marginal distribution
of the response variable. We assumed that the error terms are normally dis-
tributed, hence the marginal distribution of the response is normal. We consider
the Diggle-Kenward selection model. In this model, a probability dropout model
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is incorporated in the likelihood function. The fixed effects parameters, the vari-
ance components and the dropot parameters need to be estimated. The stochastic
EM algorithm (Celuex and Diebolt, 1985) is proposed and developed to obtain
parameter estimates. Also, the Monte Carlo method Eforn (1994) is developed
to obtain the standard errors.

We applied the proposed approaches to the mastitis data of diary cattle and
the rats data. The linear mixed model has been used to fit these data and
parameter estimates are obtained.

The approaches presented in this paper can overcome the drawbacks of other
algorithms such as the EM algorithm and the Monte Carlo EM algorithm. Also,
the implementation of the stochastic EM algorithm is easier.
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