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Modeling Panel Time Series with Mixture Autoregressive Model
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Abstract: This paper considers the mixture autoregressive panel (MARP)
model. This model can capture the burst and multi-modal phenomenon in
some panel data sets. It also enlarges the stationarity region of the tra-
ditional AR model. An estimation method based on the EM algorithm is
proposed and the assumption required of the model is quite low. To illus-
trate the method, we fitted the MARP model to the gray-sided voles data.
Another MARP model with less restriction is also proposed.

Key words: EM algorithm, finite mixture model, gray-sided voles data,
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1. Introduction

Panel time series data are collections of similar time series variables. A general
linear dynamic model for a panel time series {Xjt}, j = 1, . . . ,M , t = 1, . . . , Tj

is given by

Xjt = φ0j +
p∑

k=1

φkjXjt−k + ηt + λj + βT Wjt + εjt, (1.1)

where t denotes time and j indicate the individuals. Moreover, ηt represents ef-
fects for all of the series and λj denotes the individual impact of each of the series.
The other variables consist of the vector of explanatory variables Wjt and the error
term εjt. The latter are assumed to be independent identically distributed. For
details, see Hsiao (1986, p. 71) and Hjellvik and Tjφstheim (1999). Panel data
have now become more and more important both in the natural science and in
macroeconomic study. For instance, gray-sided voles data are yearly observations
from ninety-one different positions. In macroeconomics, two very famous data
sets are the National Longitudinal Survey of Labor Market Experience (NLS) and
the Michigan Panel Study of Income Dynamics (PSID). Traditionally, in panel
data, there are many different individuals observed through time, but the number
of observations of each individual is relatively small. In many situations, time
series data display non-linear features such as flat stretches, bursts and change
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points. At the same time, there could also be many missing datum points and
outliers inside a time series data set. These are no exceptions for panel time
series data. All these non-linearity and missing information make the modeling
of panel time series more difficult than ordinary time series data. Many papers
tried to overcome the difficulties in panel data modeling. Hjellvik and Tjφstheim
(1999) treated the common factor ηt in model (1.1) as nuisance parameters and
estimated them by averaging the observations across all the series at fixed time
point t. Fu et al. (2002b) assumed that the series were contemporaneously cor-
related and proposed a contemporaneous correlated threshold model for panel
data analysis. In the nonparametric and semiparametric literature, Hjellvik et
al. (2004) considered a nonparametric estimation and testing procedure of the
nonlinearity for panel data. Lin and Ying (2001) and Fan and Li (2004) sug-
gested to model the panel data with semiparametric method. Recently, Jin and
Li (2005) considered the modeling of a contemporaneously correlated panel data
with partial linear regression model. These papers partly solved the problem of
change points, nonlinearity and intercorrelation. However, other features such as
flat stretches, bursts and multi-modality are still untouched.

Le et al. (1996) introduced the Gaussian mixture transition distribution
(GMTD) model. With this model, one can capture the flat stretches, bursts
and outliers in regression analysis. Wong and Li (2000) extended GMTD model
to time series analysis and suggested the mixture autoregressive model (MAR)
to catch the multi-modal phenomena. An N -component univariate MAR model
is defined almost surely by equation (1.2).

F (xt|Ft−1) =
N∑

i=1

πiΦ
(

xt − φi0 − φi1xt−1 − · · · − φipixt−pi

σi

)
, (1.2)

where F (xt|Ft−1) is the conditional cumulative distribution function of Xt given
the past information, evaluated at xt. The σ-field Ft−1 denotes the past in-
formation set up to time t − 1 and the function Φ(·) denotes the cumulative
distribution function of the standard normal distribution and the summation of
the probability

∑N
i=1 πi = 1. For details, see Wong and Li (2000). From our

experience, many panel time series appeared to be multi-modal. For example,
Figure 1 shows four typical series in the gray-sided voles data. The four series are
stationary but it is quite obvious that they are multi-modal. Hence, developing
a mixture model to capture the multi-model characteristics in panel time series
would be of importance.

This paper is arranged as follows. In section 2, we propose the panel mixture
autoregressive model which assumes that all the panels have the same mixture
probability πi, i = 1, . . . , N and one of the components has a common autoregres-
sive structure. We develop an estimation method based on the EM algorithm. In



Panel Time Series and Mixture Autoregressive Model 427

section 3, a simulation experiment with different series length was performed to
check our model and the estimation method. The minimum sample size require-
ment needed for the application of our model is also suggested. The gray-sided
voles data are studied in section 4 as a real example of the application of our
model. In section 5, we will relax the restriction that the series has the same
mixture probabilities and extend the MARP model to a more flexible model.
Lastly, we will draw some conclusions in section 6.

2. Model and Estimation

Our N -component finite mixture autoregressive model for a panel time series
(MARP) Xjt, j = 1, . . . ,M , t = 1, . . . , Tj in conditional cumulative distribution
function (CDF) form, is given by

F (Xjt|Ft−1) =
N−1∑
i=1

πiΦ
(

Xjt − φ0ij −
∑p

k=1 φkijXj,t−k

σij

)

+πNΦ
(

Xjt − φ0N − ∑p
k=1 φkNXj,t−k

σNj

)
, (2.1)

where i = 1, . . . , N is the index of the components, j = 1, . . . ,M is the index of
the series, t = 1, . . . , Tj is the time index, k is the index of the lags and p is the
autoregressive order. Here, we assume that the order of each component in each
series is the same. If the orders p′ij are not the same, we can set p = maxij{p′ij}
and those φkij = 0 when k > p′ij. In the conditional CDF, the random variable
Xjt is evaluated at xjt given the past information up to time t − 1 which is
denoted by Ft−1. The random variable Xjt is taken from the ith component
with probability πi where

∑N
i=1 πi = 1 and πN = 1 − π1 − · · · − πN−1. For

identifiability we assume π1 � π2 � · · · � πN (see McLachlan and Peel (2000),
2000). This assumption is only for the theoretical purpose and is not used as
the restriction in our model estimation. As usual, Φ(·) denotes the cumulative
distribution function of the standard normal distribution. Although we assume
that the order p are the same, however, the series length Tj are not assumed to
be same. In panel data analysis, the data often have some common features. For
example, in section 4 of this paper, we studied the gray-sided voles data which
were collected from different positions in Hokkaido, Japan. It is reasonable to
believe that the different series would follow some common pattern. To capture
the common structure among the series, we assume that the last component in
each of the series has the same coefficients φkN , k = 0, . . . , p. The error terms
εijt are assumed to be mutually independent and from the normal distribution
N(0, σ2

ij). Although the noises of each component are assumed to be Gaussian,
the composition noise of each series by finite mixture are non-Gaussian and can
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display more flexibility in modeling. This gives us much freedom to fit some
complicated data set.

Model (2.1) assumes that the mixture probabilities are the same across the
panel. It seems that this condition is a bit strict. In time series, to compensate
the internal dependence of the data set, we often require a bit longer series than
that in the independent case so that we can obtain good parameter estimates.
However, in traditional panel time series data, each of the series contains only a
few observations. For example, in the gray-sided voles data, each series contains
only 31 observations. This sample size is also a bit small for statistical analysis
even in the independent cases. To obtain accurate estimation, it is reasonable
to assume that all these series have the same mixing probability so that we can
use all the information we can obtain. When series length is a bit longer, we can
remove this assumption. We will relax this restriction in Section 5.

Another advantage of the MARP model is that this model will widen the
regions of the first order and second order stationarity. Wong and Li (2000)
proved that the necessary and sufficient condition for the first order is that the
roots z1, . . . , zp of the equation 1−∑p

k=1(
∑N−1

i=1 πiφkij)z−i−∑p
k=1 πNφkNz−i = 0

all lie inside the unit circle. The necessary and sufficient condition of second order
stationarity is |∑N−1

i=1 πiφ
2
1ij + πNφ2

1N | < 1. For details, see Wong and Li (2000).
These results show that the mixture of non-stationary process and stationary
process can be stationary.

Let θij = (φ0ij , . . . , φpij, σ
2
ij)

T , θj = (θT
1j , . . . ,θ

T
N−1,j)

T , θNL = (φ0N , . . .,
φpN , σ2

N1, . . ., σ2
NM )T and θ = (θT

1 , . . . ,θT
M ,θT

NL)T . Here the subscript L in θNL

stands for “last” component so that we can avoid the confusion of the parameters
in the component. Let π = (π1, . . . , πN )T . Let Zjt = (Z1jt, Z2jt, . . . , ZNjt)T ,
Zj = (ZT

j1,Z
T
j2, . . . ,Z

T
jTj

)T and Z = (ZT
1 , . . . ,ZT

M )T . The vector Zjt contains
the unobservable random variable Zijt where Zijt = 1 when at time t, in the
jth series, the Xjt comes from the ith component of the conditional distribution
function and Zijt = 0 otherwise. Then the parameters are naturally divided into
two groups, θ and π with Z together. With the help of Zijt, we can rewrite model
(2.1) as (2.2).

Xjt =
N−1∑
i=1

Zijt(φ0ij +
p∑

k=1

φkijXj,t−k + εijt) + ZNjt(φ0N +
p∑

k=1

φkNXj,t−k + εNjt),

(2.2)
where εijt is the white noise process corresponding to the ith component of the
jth series. The {εijt} are also independent for i = 1, . . . , N , j = 1, . . . ,M and all
t. If we study equation (2.2) closely, we will find that the MARP model is actually
a mixture of N Gaussian AR models for each of the series. The conditional mean
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of series j is

E(Xjt|Ft−1) =
N−1∑
i=1

πi(φ0ij +
p∑

k=1

φkijxj,t−k) + πN (φ0N +
p∑

k=1

φkNxj,t−k).

Since the conditional mean depends on the past information of the time series,
the shape of the conditional distributions will change from time to time and can
be uni-modal or multi-modal. It can be proved that for a stationary mixture
autoregressive time series Xt, the marginal distribution of Xt is also a mixture
distribution. Due to this nature, the marginal distribution could be multi-modal if
the conditional distribution is multi-modal. McLachlan and Peel (2000) showed
some examples of uni-modal and multi-modal distributions in static situations
and Wong and Li (2000) demonstrated the presence of multi-modality in dynamic
situations. Note that for mixtures, the conditional mean could take the value at
a local minimum point of the conditional mixture density and therefore it could
be a misleading predictor of the future values.

Since Z is the vector of unobservable random variables, maximizing the log-
likelihood function directly from the samples would be difficult. To overcome this
difficulty, Dempster et al. (1977) suggested the EM algorithm which substitutes
the unobservable variables by their expectations and then maximize the log-
likelihood function. Using the expectation and maximization iteratively, one can
obtain the estimates of the parameters when they converge. To use the EM
algorithm, we should first find the log-likelihood function. The conditional log-
likelihood of the jth series involving Zijt is given by

lj =
Tj∑

t=p+1

ljt

=
Tj∑

t=p+1

{
N∑

i=1

Zijt log(πi) − 1
2

N∑
i=1

Zijt log(σ2
ij) −

N∑
i=1

Zijtε
2
ijt

2σ2
ij

}
,

The global conditional log-likelihood function given Z for the entire panel is

l =
M∑

j=1

lj =
M∑

j=1

Tj∑
t=p+1

ljt

=
M∑

j=1

Tj∑
t=p+1

{
N∑

i=1

Zijt log(πi) − 1
2

N∑
i=1

Zijt log(σ2
ij) −

N∑
i=1

Zijtε
2
ijt

2σ2
ij

}
. (2.3)

Since the first derivatives of the log-likelihood with respect to the interested
parameters can be obtained straightforwardly, we skip them here. With the first
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derivatives, we can apply the EM algorithm. The iterative procedure of the EM
algorithm can be divided into two steps – E-step and M-step respectively.

E-step In this step, the parameter vector θ are assumed to be known. Then
the missing data Z will be estimated by their conditional expectation re-
specting to θ and the observation vector X = (XT

1 , . . . ,XT
M )T where Xj =

(Xj1, . . . ,XjTj )
T . Let τijt denote the conditional expectation of Zijt. Sim-

ilar to Le et al. (1996) and Wong and Li (2000), the τijt can be expressed
as

τijt =
πi/

√
σ2

ij · exp{−ε2
ijt/(2σ

2
ij)}∑N

i′=1 πi′/
√

σ2
i′j · exp{−ε2

i′jt/(2σ
2
i′j)}

, (2.4)

where i = 1, . . ., N , j = 1, . . ., M , t = 1, . . ., Tj and εijt has the same
meaning as before.

M-step In this step, we replace Zijt by its conditional expectation τijt. There-
fore, πi can be estimated by the mean of τijt, j = 1, . . ., M .

π̂i =

∑M
j=1

∑Tj

t=p+1 τijt∑M
j=1(Tj − p)

.

We estimate the parameter vector θ by maximizing the global log-likelihood
function l. This can be done by setting the first derivatives to zero and then
solve the system of equations. The system can be simplified as follows. Let

σ̂2
ij =

∑Tj

t=p+1 τijtε
2
ijt∑Tj

t=p+1 τijt

=

∑Tj

t=p+1 τijt(Xjt − φ̂0ij −
∑p

k=1 φ̂kijXj,t−k)2∑Tj

t=p+1 τijt

, (2.5)

where (φ̂011, φ̂111, . . . , φ̂p,N−1,M) is determined by another system of equa-
tions:

(
Tj∑

t=p+1

τijt)φ̂0ij +
p∑

k=1

(
Tj∑

t=p+1

τijtXj,t−k)φ̂kij =
Tj∑

t=p+1

τijtXjt, (2.6)

(
Tj∑

t=p+1

τijtXj,t−k′)φ̂0ij +
p∑

k=1

(
Tj∑

t=p+1

τijtXj,t−kXj,t−k′)φ̂kij

=
Tj∑

t=p+1

τijtXjtXj,t−k′, (2.7)
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where i = 1, . . . , N−1, j = 1, . . . ,M , k′ = 1, . . . , p. For the Nth component,
since the φki are common to all the series, the estimation equations are a
bit different from (2.5) — (2.7). By pooling all available information, we
can write the equation system of φ̂0N , . . ., φ̂pN , σ̂2

N1, . . ., σ̂2
NM as follows:

σ̂2
Nj =

∑Tj

t=p+1 τNjtε
2
Njt∑Tj

t=p+1 τNjt

=

∑Tj

t=p+1 τNjt(Xjt − φ̂0N − ∑p
k=1 φ̂kNXj,t−k)2∑Tj

t=p+1 τNjt

, (2.8)

M∑
j=1

[∑Tj

t=p+1 τNjt

σ̂2
Nj

]
φ̂0N +

p∑
k=1





 M∑

j=1

∑Tj

t=p+1 τNjtXj,t−k

σ̂2
Nj


 φ̂kN




=
M∑

j=1

[∑Tj

t=p+1 τNjtXjt

σ̂2
Nj

]
, (2.9)

M∑
j=1

[∑Tj

t=p+1 τN,j,t

σ̂2
Nj

]
φ̂0,N +

p∑
k=1





 M∑

j=1

∑Tj

t=p+1 τN,j,tXj,t−k

σ̂2
N,j


 φ̂k,N




=
M∑

j=1

[∑Tj

t=p+1 τN,j,tXj,t

σ̂2
N,j

]
, (2.10)

Studying the system of equations carefully, we find that, by fixing j, to the
ith component, equations (2.6) and (2.7) contain p+1 linear equations with
p + 1 unknown variables φ0ij , . . ., φpij. Hence, the parameters of the ith
component in the jth series, i = 1, . . . , N − 1 can be solved separately from
the other components. Let Aij be the matrix below:


∑Tj

t=p+1 τijt
∑Tj

t=p+1 τijtXj,t−1 · · · ∑Tj

t=p+1 τijtXj,t−p∑Tj

t=p+1 τijtXj,t−1
∑Tj

t=p+1 τijtXj,t−1Xj,t−1 · · · ∑Tj

t=p+1 τijtXj,t−pXj,t−1

...
...

. . .
...∑Tj

t=p+1 τijtXj,t−p
∑Tj

t=P+1 τijtXj,t−1Xj,t−p · · · ∑Tj

t=p+1 τijtXj,t−pXj,t−p




and let φ̂ij and bij be

φ̂
T
ij =

[
φ̂0ij , φ̂1ij , . . . , φ̂pij

]

bT
ij =


 Tj∑

t=p+1

τijtXjt,

Tj∑
t=p+1

τijtXjtXj,t−1, . . .

Tj∑
t=p+1

τijtXj,tXj,t−p


 .
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Then equations (2.6) and (2.7) and the solution of the system can be written
in matrix form as in (2.11) and (2.12) respectively.

Aij φ̂ij = bij , (2.11)

φ̂ij = A−1
ij bij, (2.12)

and therefore σ2
ij can be easily evaluated with equation (2.5).

The analysis of panel time series often encounter the difficulty that the number
of observations in each time series is limited. Many researchers pooled the data
from different series which shared a common structure, see for instance, Hjellvik
and Tjφstheim (1999), Stenseth et al. (1999), Yao et al. (2000) and Fu et al.
(2002a). They obtained more accurate results with the increase of the sample size.
For the parameters of the Nth component, they also have common parameters
φkN , k = 1, . . . , p. Hence, we pooled the observations Xjt and τNjt, j = 1, . . . ,M
to estimate φkN , k = 0, . . . , p. Equations (2.8) — (2.10) form a (1 + p + M)-
equation system with 1+p+M unknown variables. Since this equation system is
nonlinear, a numerical method is needed to find the roots of the system. However,
by substituting (2.8) to (2.9) and (2.10), the latter two equations contain only
1 + p unknown variables which will be easier to solve than directly solving the
1+p+M equations together since p is much smaller than M in most of the cases.

To obtain estimates of the parameters, we iterate the E-step and M-step until
convergence. The performance of the EM algorithm will be shown in Section 3.
Louis (1982) proposed the missing information principle by which the observed
information matrix I can be computed by subtracting Im, the missing information
matrix from Ic, the complete information matrix.

I = Ic − Im

= E

(
− ∂2l

∂θ2

∣∣∣∣ θ,X
)

ˆθ
− var

(
∂l

∂θ

∣∣∣∣θ,X
)

ˆθ
. (2.13)

Since the variance matrix of the estimates θ̂ equals to the inverse of the observed
information matrix I, equation (2.13) can be used to find the theoretical large
sample variance of the estimates. All the entries in Ic and Im are available from
the authors. Model selection is an important problem in time series modeling.
However, since the length of each series in the panel data is often very short, a
high order model is not preferred. Setting the order p = 1 and the number of
components N = 2 will be a wise choice. Hence, we will not pursue this problem.
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3. Simulation Study

To investigate the performance of the proposed estimation procedure, we do
a Monte Carlo simulation 1. As mentioned before, for a panel data set which the
length of each series is short, a low order model is preferred. Hence, we simulated
the data set from a twenty-series panel model. Each series is a two-component
AR(1) mixture time series. The model is

Xjt = Z1jt(φ01j + φ11jXj,t−1 + ε1jt) + Z2jt(φ02 + φ12Xj,t−1 + ε2jt). (3.1)

where Z1jt = 1 with probability π1 if Xjt is from the first component of jth
series. Otherwise, Z1jt = 0. The noise terms ε1jt and ε2jt followed two zero-
mean normal distributions with variances σ2

1j and σ2
2j . The parameter values

of φ01j , φ11j , σ2
1j and σ2

2j for j = 1, . . . , 20 are listed in Table 1 respectively.
The mixture probability π1 = 0.4 and π2 = 1 − π1 = 0.6. The parameters of
the common structure φ02 and φ12 were 1.5 and -0.5 respectively. We did four
experiments with different series length to study the finite sample properties of
the proposed estimation method. The series lengths Tj are around 1100, 100, 50,
30 in these four experiments respectively. Each experiment was replicated 1000
times. The results are listed in Table 2.

Table 1: True values of the parameters of model (3.1)

φ0,1,1 φ0,1,2 φ0,1,3 φ0,1,4 φ0,1,5 φ0,1,6 φ0,1,7 φ0,1,8 φ0,1,9 φ0,1,10

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.5 -0.4 -0.2
φ0,1,11 φ0,1,12 φ0,1,13 φ0,1,14 φ0,1,15 φ0,1,16 φ0,1,17 φ0,1,18 φ0,1,19 φ0,1,20

0.2 0.4 0.5 0.6 0.8 1.0 1.2 1.4 1.6 1.8
φ1,1,1 φ1,1,2 φ1,1,3 φ1,1,4 φ1,1,5 φ1,1,6 φ1,1,7 φ1,1,8 φ1,1,9 φ1,1,10

-0.2 0.4 0.6 -0.8 -0.2 0.4 0.6 -0.8 -0.2 0.4
φ1,1,11 φ1,1,12 φ1,1,13 φ1,1,14 φ1,1,15 φ1,1,16 φ1,1,17 φ1,1,18 φ1,1,19 φ1,1,20

0.6 -0.8 -0.2 0.4 0.6 -0.8 -0.2 0.4 0.6 -0.8
σ2

1,1 σ2
1,2 σ2

1,3 σ2
1,4 σ2

1,5 σ2
1,6 σ2

1,7 σ2
1,8 σ2

1,9 σ2
1,10

1.5 1.0 1.5 2.0 2.5 1.5 1.0 1.5 2.0 2.5
σ2

1,11 σ2
1,12 σ2

1,13 σ2
1,14 σ2

1,15 σ2
1,16 σ2

1,17 σ2
1,18 σ2

1,19 σ2
1,20

1.5 1.0 1.5 2.0 2.5 1.5 1.0 1.5 2.0 2.5
σ2

2,1 σ2
2,2 σ2

2,3 σ2
2,4 σ2

2,5 σ2
2,6 σ2

2,7 σ2
2,8 σ2

2,9 σ2
2,10

1.5 1.5 1.5 1.5 1.0 2.5 2.0 1.0 2.0 1.5
σ2

2,11 σ2
2,12 σ2

2,13 σ2
2,14 σ2

2,15 σ2
2,16 σ2

2,17 σ2
2,18 σ2

2,19 σ2
2,20

1.5 1.5 1.5 1.5 1.5 1.0 1.5 1.5 1.5 2.0

1The simulation programs of model (3.1) and model (5.4) can be obtained from the authors
upon request
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Table 2: Estimation results of the simulation of model (3.1) with different series
length (1000 replications)

1000 < Tj < 1100 80 < Tj < 100 40 < Tj < 50 20 < Tj < 30

True est. std. est. std. est. std. est. std.
π1 0.4 0.4130 0.1219 0.4161 0.1727 0.4128 0.2152 0.4176 0.2190
φ0,1,1 -1.8 -1.7796 0.1814 -1.7395 0.3689 -1.7504 0.5213 -1.6795 0.7798
φ0,1,2 -1.6 -1.5796 0.2097 -1.5674 0.3617 -1.5927 0.4470 -1.5651 0.7040
φ0,1,3 -1.4 -1.3786 0.2150 -1.3993 0.3890 -1.4126 0.5583 -1.3520 0.7759
φ0,1,4 -1.2 -1.1942 0.1097 -1.1681 0.4026 -1.2137 0.5345 -1.1683 0.6963
φ1,1,1 -0.2 -0.1863 0.1671 -0.1803 0.2229 -0.1802 0.2791 -0.2069 0.3215
φ1,1,2 0.4 0.4106 0.1149 0.3901 0.1602 0.3801 0.2515 0.3482 0.3320
φ1,1,3 0.6 0.6020 0.0486 0.5655 0.1577 0.5601 0.2492 0.5013 0.3783
φ1,1,4 -0.8 -0.7760 0.2339 -0.7569 0.2768 -0.7471 0.3135 -0.7698 0.3614
φ0,2 1.5 1.4795 0.1996 1.4788 0.2124 1.4711 0.2121 1.4786 0.2565
φ1,2 -0.5 -0.4949 0.2096 -0.4906 0.2123 -0.4817 0.2352 -0.4915 0.2613
σ2

1,1 1.5 1.4765 0.2167 1.4393 0.6091 1.3311 0.8478 1.0632 0.8469
σ2

2,1 1.5 1.4914 0.1844 1.5168 0.4058 1.5376 0.5951 1.5585 0.8670
σ2

1,2 1.0 0.9825 0.1366 0.9396 0.4003 0.8358 0.5085 0.6733 0.6045
σ2

2,2 1.5 1.4896 0.1853 1.4506 0.4065 1.4649 0.5962 1.5440 0.9301
σ2

1,3 1.5 1.4779 0.1997 1.3741 0.5592 1.2166 0.7496 1.0009 0.9090
σ2

2,3 1.5 1.4838 0.1829 1.4750 0.4177 1.4585 0.5711 1.4538 0.7959
σ2

1,4 2.0 1.9709 0.2824 1.8740 0.7762 1.6414 0.9245 1.4004 1.1049
σ2

2,4 1.5 1.4875 0.1843 1.4592 0.4405 1.4789 0.5385 1.4912 0.8455

Only the results of series 1–4 and the common structure are shown in this table.
Other estimates of the parameters can be obtained from the authors.
est. means the average value of the estimates
std. means standard deviation of the estimates.

Table 3: Theoretical large sample standard errors of model (3.1) with length
about 1100

π1 0.0884 φ0,2 0.1863 φ12 0.1915
φ0,1,1 0.1743 φ1,1,1 0.1503 φ0,1,11 0.0892 φ1,1,11 0.0915
φ0,1,2 0.1615 φ1,1,2 0.1005 φ0,1,12 0.1322 φ1,1,12 0.1589
φ0,1,3 0.1597 φ1,1,3 0.0517 φ0,1,13 0.0971 φ1,1,13 0.1204
φ0,1,4 0.1027 φ1,1,4 0.1732 φ0,1,14 0.1027 φ1,1,14 0.1123
φ0,1,5 0.1238 φ1,1,5 0.1621 φ0,1,15 0.1039 φ1,1,15 0.1023
φ0,1,6 0.1317 φ1,1,6 0.1017 φ0,1,16 0.1857 φ1,1,16 0.2075
φ0,1,7 0.1293 φ1,1,7 0.1124 φ0,1,17 0.1524 φ1,1,17 0.2291
φ0,1,8 0.0915 φ1,1,8 0.2027 φ0,1,18 0.1417 φ1,1,18 0.1108
φ0,1,9 0.0979 φ1,1,9 0.2301 φ0,1,19 0.1398 φ1,1,19 0.1813
φ0,1,10 0.1203 φ1,1,10 0.1029 φ0,1,20 0.2145 φ1,1,20 0.1210
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From the results in Table 2, we can find that the estimation results are very
good when series length was longer than 100. In the case that series length was
shorter than 30, the estimate method was still applicable, though the standard
errors were a bit large. In this extreme case, one can obtain acceptable results
by applying our model. Therefore, the lower bound of the series length to apply
our model and estimation method seems to be about 30. When better result is
required, a series length of about 50 for each of the series is recommended.

Using the information matrix (2.13), we also calculated the theoretical stan-
dard error for the case that the length of each series is about 1100. The results
for the φ̂ s and π̂ are listed in Table 3. The results for the σ̂2 s are similar and we
choose not to list them. The results are in general close to the empirical standard
errors in Table 2 suggesting the accuracy of (2.13) in large samples. Hence, our
estimation procedure seems useful and can provide good results.

4. A Real Example

This data set consists of the number of yearly trapped gray-sided voles (Clethri-
onomys rufocanus) in ninety-one different stations in forested regions of northern
Hokkaido, Japan. Hokkaido, the northen-most island of Japan displays simi-
lar bio-geographically feature as the neighboring Asian mainland more than the
other Japanese islands (Tatewaki 1958; Kondo 1993). The average temperature
in August and February is above 20◦C and below −7◦C. The amount of snow
in the winter is largely correlated to the distance to the sea shore. The forests
in which the voles were trapped were under the management of the Forestry
Agency of the Japanese Government. Among them, 76 % is indigenous forests
and 24 % is planted forest. The gray-sided vole is a forested habitat mammal
which can be found in both types of forests. The observation period spanning
from 1962 to 1992, over 31 years. This data set has been widely studied in math-
ematical ecology and panel data literature such as Bjornstard et al. (1996) and
Stenseth et al. (1996). The ninety-one series can be divided into three groups
with 16, 41 and 34 series in group one, two and three respectively. For details, see
Hjellvik and Tjφstheim (1999) and Hjellvik et al. (2004). Figure 2 shows the se-
ries in group two after logarithm transformation. Hjellvik and Tjφstheim (1999)
developed an autoregressive model with an intersection term to interpret the cor-
relation among these panels. Hjellvik et al. (2004) developed a nonparametric
estimation method to model the intercorrelation and a test to check the linearity
assumption. Jin and Li (2005) assumed that the different series were correlated
contemporaneously and proposed a semiparametric model to fit the data set. All
these papers did not take the multi-modal phenomenon into account. Stenseth
et al. (1996) tested the linearity of the data set and found that it was rejected
at 5 % level. But they still employed linear models to fit the data. However,
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after the linear fitting, they found a clear indication of bimodality which in fact
violate their underlying assumption. The histogram (Figure 1) of four typical
series partially shows the bimodal characteristics. In many biological papers (for
example, Bjornstard et al. (1996); Stenseth et al. (1996); Ota (1984) which
studied the gray-sided voles, it has been pointed out that the population of the
voles not only correlated with the previous population size but also correlated to
the distance from the Sea of Japan. The latter factor affects the climate directly
and the food of the gray-sided voles indirectly. The impact of these unobservable
factors will randomly vary from year to year and they often followed different
patterns. Hence, it seems appropriate to fit the data with MARP so that we can
catch these features.
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Figure 1: Histograms of four typical series in the gray-sided voles data. The
solid lines stand for the kernel smooth of the data with a Gaussian kernel.



Panel Time Series and Mixture Autoregressive Model 437

year

1965 1970 1975 1980 1985 1990

0
1

2
3

4

Figure 2: Logarithms of yearly caught gray-sided voles in group two (41 series)

Similar to Hjellvik and Tjφstheim (1999), we also used the series in group
two which contained 41 series. The length of each series was 31. Among the
1271 observations, there were 174 (13.7%) zeroes. Hjellvik and Tjφstheim (1999)
proposed the model (4.1)

Xjt =
p∑

k=1

φkXj,t−k + ηt + εjt (4.1)

to model the inter-correlation effect of this data set. Here φk denotes the common
autoregressive structure and ηt is the possibly nonlinear effect influencing all the
series at time t. In their analysis, they first treated ηt as nuisance parameters
and estimate them by the averages of Xit over i and kept t fixed. They discarded
the nonlinearity property since they believed that it was very weak. Clearly,
the assumption that all the series follows the same autoregressive model is too
restrictive and ignoring the nonlinearity may be inappropriate. Slightly loosening
the restriction of the model would help us to find new implicit pattern inside the
data. In fact, by ignoring ηt, model (4.1) is a special case of model (2.1) or (2.2)
if we set the probability πN = 1−∑N−1

i=1 πi = 1. Although we have increased the
number of parameters, we have gained much flexibility by relaxing the restrictive
assumption of model (4.1).

Similar to Hjellvik and Tjφstheim (1999), for convenience, we added a value
of one to each datum point and then took logarithm. After that, we fitted the
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Table 4: Estimation results of the gray-sided voles

j φ̂0,1,j φ̂1,1,j σ̂2
1,j σ̂2

2,j j φ̂0,1,j φ̂1,1,j σ̂2
1,j σ̂2

2,j

1 0.2316 0.2851 0.7044 0.3337 22 0.1631 0.4461 0.6014 0.5635
2 0.1843 0.0906 0.3005 0.6532 23 0.2495 0.4005 0.6388 0.7968
3 0.0376 0.3504 0.0409 0.6122 24 −0.4734 0.5391 0.4458 1.0540
4 0.6686 0.0746 0.9945 0.1613 25 0.3493 −0.0013 0.3050 0.5406
5 0.2995 −0.0047 0.6914 0.3446 26 −0.4661 0.3774 0.3937 0.8385
6 0.6382 −0.0046 0.6914 1.2020 27 0.2417 0.1789 0.4399 0.5613
7 0.4448 0.4903 0.4188 0.3593 28 0.3353 0.3591 0.6999 0.4249
8 0.7982 0.2304 0.5479 0.7458 29 0.7151 0.0979 0.5903 1.8287
9 1.6010 0.1459 1.7405 0.1468 30 0.6724 −0.2239 0.3860 1.5016

10 −0.0824 0.4068 1.0775 0.6044 31 0.4859 0.0354 0.2827 0.7723
11 0.0224 0.2350 0.2872 0.3846 32 0.0909 0.1715 0.3269 0.8516
12 −0.1211 0.3056 0.3751 0.4536 33 0.0033 −0.0196 0.0009 0.7933
13 0.3247 0.1342 0.2154 0.7005 34 0.0758 0.2526 0.3380 0.4760
14 0.2391 0.1559 0.5886 0.4502 35 0.5854 −0.2575 0.5418 0.6168
15 0.0203 0.2343 0.5318 0.4412 36 0.0871 0.0597 0.7440 0.6244
16 0.1733 0.3664 0.4733 0.3983 37 0.4881 0.2851 0.4114 0.6064
17 0.2834 0.1905 0.6145 1.5468 38 0.5064 0.4054 0.5948 0.4797
18 0.0248 0.1922 0.6376 0.7068 39 0.5129 −0.0687 0.4598 0.6776
19 0.4857 0.3052 0.5526 0.3914 40 0.0137 0.2387 0.3313 0.5982
20 0.0457 0.2364 0.2944 0.6779 41 0.1176 0.4271 0.5291 1.3643
21 0.5559 −0.2377 0.7167 0.6099

φ̂0,2 1.1513 φ̂1,2 0.6402 π̂ 0.3015

data with model (2.2). In fact, we only used the first 30 observations in each
series to fit our model. The last observation in all the series are used to check
the coverage of our model. Table 4 shows the result. Since all these voles were
found on the same island, it was reasonable to believe that they should follow
some common pattern which were modeled by the common mixture component
whereas the regional variations may be reflected by the individual component.
From the results in Table 4, we found that the autoregressive coefficients of the
common structure are significantly different from those of the first component in
each of these 41 series which suggested that equation (2.1) could be an appropriate
model. Together with the result of π̂ = 0.3015, we believed that the mixture
phenomenon was quite significant which was consistent with the histogram plots
(Figure 1) of these series. An interpretation of the result is that the data follow
the common component about 70 % of the time whereas in the other 30 % time,
the dependent structure follows a pattern which is dictated by the environment,
possibly the food supplies. From our analysis, we found that among these 41
series, the individual components showed three different patterns. The twenty-
first, thirtieth and thirty-fifth series displayed negative autocorrelation in the
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individual components. These suggested that the regional factors of these three
districts may have negative effect on the number of the voles. It is possible that
the strict survival environments could not support too many voles. The other
twenty-nine series showed positive autocorrelation in the individual components
suggesting that the environment could be relatively good. The food might be
sufficient and competition within species might be mild. The remaining nine
series had insignificant autocorrelation with the previous observation. The φ11j

were around zero suggesting that the number of voles is a constant.
To compare our model with the one of Hjellvik and Tjφstheim (1999), we

checked the coverage of the one-step forecasting. Since our model was a bit com-
plicated, we had to use simulation to find the empirical quantiles. For example,
let X1,30 be the thirtieth observation of the first series. From the results in Ta-
ble 4, we knew that X1,31 would follow a mixture distribution. It would come
from the N(0.2316 + 0.2851X1,30 , 0.7040) distribtyion with probability 0.3015
and come from the N(1.1513 + 0.6402X1,30 , 0.3337) distribution with probability
0.6985. Note that all Xjt have been log-transformed. Therefore, we can generate
a random number U following a uniform (0,1) distribution. If U was smaller than
0.3015, we picked X̃1,31 from the first normal distribution as a simulated X1,31.
Otherwise, we picked X̃1,31 from the second normal distribution. Repeating this
10,000 times, we obtained a sample following the mixture distribution. The em-
pirical 95% predictive interval was obtained by (a, b) where a was the empirical
2.5% quantile and b was the empirical 97.5% quantile. With the same method, we
obtained the empirical predictive intervals for all these 41 series. Comparing to
the corresponding interval, we found that there were 3 last observations among
these 41 series outside 95% one-step ahead predictive intervals, a coverage of
about 7.3%. Considering the small sample size, this coverage was still very near
the nominal 95%. There were 3 different model orders in Hjellvik and Tjφstheim
(1999), one, two and three respectively. In general, higher order model would
be more accurate than lower order model. Hence, comparing our model with
their model whose order was three could be more cogent than comparing to the
other two. By checking the coverage of their model, we found that there was
no observation outside the 95% intervals. This indicated that their model leads
to conservative predictive intervals. Another commonly used method for model
comparison is BIC (Schwarz, 1978). This criterion adds heavier penalty than
AIC (Akaike, 1974). Since the number of parameters are large, using BIC can
be a challenge to our model. Although panel data are multivariate time series,
since the residual of our model were hard to define due to the characteristics of
the finite mixture, we used a simpler version of BIC which was the same as that
in the univariate case,
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BIC = −2 log(maximum likelihood) + log(number of data points)
×(number of estimated parameters).

The values of the log-likelihood were -1082.10 and -1310.27 for our model and
that of Hjellvik and Tjφstheim (1999) respectively. The BICs were 2680.22 and
2715.40 respectively for these two different models. Although the difference be-
tween the two BICs are not very large, it is an evidence that our model better
fits the data.

5. Extension

In this section, we relax the assumption that the mixture parameters πi are
common to every series. For simplicity, we only show the two component and
order one case. The more general cases can be extended straightforwardly. For
notation consistency, we still use three indices as the subscripts of the parameters.
The model is modified as

F (Xjt|Ft−1) = π1jΦ
(

Xjt − φ01j − φ11jXj,t−1

σ1j

)

+π2jΦ
(

Xjt − φ02 − φ12Xj,t−1

σ2j

)
, (5.1)

where π1j + π2j = 1 for each j, j = 1, . . . ,M . The conditional log-likelihood
functions, for each j given Zj which has the same meaning as section 2, are

lj =
Tj∑

t=p+1

{
2∑

i=1

Zijt log(πij) − 1
2

2∑
i=1

Zijt log(σ2
ij) −

2∑
i=1

Zijtε
2
ijt

2σ2
ij

}
,

where ε1jt = Xjt−φ01j −φ11jXj,t−1 and ε2jt = Xjt−φ02−φ12Xj,t−1. The global
conditional log-likelihood function given Z is

l =
M∑

j=1

Tj∑
t=p+1

{
2∑

i=1

Zijt log(πij) − 1
2

2∑
i=1

Zijt log(σ2
ij) −

2∑
i=1

Zijtε
2
ijt

2σ2
ij

}
.

Since the first derivatives of the log-likelihood function l can be obtained straight-
forwardly, we skip them here.

We show the estimation method with the EM algorithm briefly since the
method is almost the same as the one in section 2.
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Table 5: True values of the parameters of model (5.4)

φ0,1,1 φ0,1,2 φ0,1,3 φ0,1,4 φ0,1,5 φ0,1,6 φ0,1,7 φ0,1,8 φ0,1,9 φ0,1,10

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.5 -0.4 -0.2
φ0,1,11 φ0,1,12 φ0,1,13 φ0,1,14 φ0,1,15 φ0,1,16 φ0,1,17 φ0,1,18 φ0,1,19 φ0,1,20

0.2 0.4 0.5 0.6 0.8 1.0 1.2 1.4 1.6 1.8
φ1,1,1 φ1,1,2 φ1,1,3 φ1,1,4 φ1,1,5 φ1,1,6 φ1,1,7 φ1,1,8 φ1,1,9 φ1,1,10

-0.2 0.4 0.6 -0.8 -0.2 0.4 0.6 -0.8 -0.2 0.4
φ1,1,11 φ1,1,12 φ1,1,13 φ1,1,14 φ1,1,15 φ1,1,16 φ1,1,17 φ1,1,18 φ1,1,19 φ1,1,20

0.6 -0.8 -0.2 0.4 0.6 -0.8 -0.2 0.4 0.6 -0.8
σ2

1,1 σ2
1,2 σ2

1,3 σ2
1,4 σ2

1,5 σ2
1,6 σ2

1,7 σ2
1,8 σ2

1,9 σ2
1,10

1.5 1.0 1.5 2.0 2.5 1.5 1.0 1.5 2.0 2.5
σ2

1,11 σ2
1,12 σ2

1,13 σ2
1,14 σ2

1,15 σ2
1,16 σ2

1,17 σ2
1,18 σ2

1,19 σ2
1,20

1.5 1.0 1.5 2.0 2.5 1.5 1.0 1.5 2.0 2.5
σ2

2,1 σ2
2,2 σ2

2,3 σ2
2,4 σ2

2,5 σ2
2,6 σ2

2,7 σ2
2,8 σ2

2,9 σ2
2,10

1.5 1.5 1.5 1.5 1.0 2.5 2.0 1.0 2.0 1.5
σ2

2,11 σ2
2,12 σ2

2,13 σ2
2,14 σ2

2,15 σ2
2,16 σ2

2,17 σ2
2,18 σ2

2,19 σ2
2,20

1.5 1.5 1.5 1.5 1.5 1.0 1.5 1.5 1.5 2.0
π1,1 π1,2 π1,3 π1,4 π1,5 π1,6 π1,7 π1,8 π1,9 π1,10

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.20 0.25 0.30
π1,11 π1,12 π1,13 π1,14 π1,15 π1,16 π1,17 π1,18 π1,19 π1,20

0.35 0.40 0.45 0.50 0.20 0.25 0.30 0.35 0.40 0.45

E-step Suppose the parameter vector θ is known, then

τijt =
πij/

√
σ2

ij · exp{−ε2
ijt/(2σ

2
ij)}∑2

i′=1 πi′j/
√

σ2
i′j · exp{−ε2

i′jt/(2σ
2
i′j)}

, (5.2)

where i = 1, 2, j = 1, . . . ,M and t = 1, . . . , Tj .

M-step Suppose that the missing data are known. The estimates of the param-
eters θ can then be obtained by maximizing the log-likelihood function l.
The M-step equations become

π̂ij =

∑Tj

t=p+1 τijt

Tj − p
. (5.3)

The estimation equations of the other parameters are the same as those in
section 2.

Following the missing information principle Louis (1982), the information
matrix equation (2.13) still holds. We skip the derivation of the entries in Ic and
Im since the method is just the same except for those entries involving πij .
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Table 6: Estimation results of the simulation of model (5.4) with different series
length (1000 replications)

1000 < Tj < 1100 80 < Tj < 100 40 < Tj < 50 20 < Tj < 30

True est. std. est. std. est. std. est. std.

π1,1 0.20 0.1947 0.1747 0.2023 0.2926 0.2453 0.3589 0.2639 0.4085
π1,2 0.25 0.2465 0.1776 0.2522 0.2851 0.2567 0.3487 0.2835 0.3653
π1,3 0.30 0.2985 0.1931 0.3130 0.3081 0.3105 0.3654 0.3023 0.3707
π1,4 0.35 0.3518 0.2173 0.3624 0.3538 0.3751 0.3975 0.4128 0.4438

φ0,1,1 -1.8 -1.7915 0.5097 -1.7824 0.8011 -1.6305 0.9471 -1.5808 1.0337
φ0,1,2 -1.6 -1.5915 0.4249 -1.6617 0.6294 -1.5183 0.8539 -1.5572 0.9045
φ0,1,3 -1.4 -1.3750 0.4146 -1.3692 0.6391 -1.4656 0.7931 -1.3687 1.0438
φ0,1,4 -1.2 -1.1673 0.4624 -1.2178 0.7686 -1.2021 0.8436 -1.0528 0.8822
φ1,1,1 -0.2 -0.1997 0.2346 -0.1729 0.5051 -0.2969 0.6099 -0.2499 0.7735
φ1,1,2 0.4 0.3960 0.2521 0.3994 0.4163 0.2542 0.6094 0.4026 0.7004
φ1,1,3 0.6 0.5868 0.2719 0.5778 0.4597 0.5193 0.6400 0.5471 0.7325
φ1,1,4 -0.8 -0.7944 0.2979 -0.7832 0.4414 -0.8012 0.5098 -0.8022 0.5641
φ0,2 1.5 1.4771 0.4427 1.4762 0.4571 1.4942 0.4717 1.5289 0.4325
φ1,2 -0.5 -0.4952 0.4236 -0.4946 0.3267 -0.4914 0.3891 -0.5012 0.4985
σ2

1,1 1.5 1.4583 0.5528 1.2002 0.9541 1.1046 0.9831 0.6277 0.9021
σ2

2,1 1.5 1.4907 0.4151 1.5357 0.5856 1.4229 0.7051 1.3662 0.8337
σ2

1,2 1.0 0.9812 0.4153 0.7376 0.7063 0.6664 0.8027 0.3581 0.7272
σ2

2,2 1.5 1.4790 0.4157 1.4826 0.6248 1.4025 0.6634 1.3075 0.7762
σ2

1,3 1.5 1.4924 0.4802 1.2603 0.8378 0.9745 0.8422 0.6980 0.9617
σ2

2,3 1.5 1.4818 0.4166 1.4297 0.5902 1.4036 0.7067 1.3772 0.8223
σ2

1,4 2.0 1.9812 0.5896 1.7268 0.9220 1.5535 0.9891 1.3507 1.0365
σ2

2,4 1.5 1.4713 0.4264 1.4709 0.6978 1.3687 0.7621 1.3320 0.8472

Only the results of series 1–4 and the common structure are shown in this table.
Other estimates of the parameters can be obtained from the authors.
est. means the average value of the estimates,
std. means standard deviation of the estimates.

To investigate the performance of model (5.1), we did a simulation study. The
underlying model considered was

Xjt = Z1jt(φ01j + φ11jXj,t−1 + ε1jt) + Z2jt(φ02 + φ12Xj,t−1 + ε2jt). (5.4)

where Z1jt = 1 with probability π1j if Xjt was from the first component of jth
series. Otherwise, Z1jt = 0. The parameter values of φ0ij , φ1ij , σ1j , σ2j and
π1j are listed in Table 5. The parameters of the common structure φ02 and φ12

were 1.5 and -0.5 respectively. It can be seen that the parameters are almost the
same as model (3.1) except the parameters π1j . We also did four experiments
with different series length to study the finite sample properties of the proposed
estimation method. The series length is also the same as before, say around
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1100, 100, 50 and 30 respectively. Each experiment was replicated 1000 times.
The results are listed in Table 6. From the results, we find almost the same
conclusion as Table 2. The difference is that the standard deviations of the φj

and σ2
ij estimates become larger in Table 6 than those in Table 2. However, the

bias of the estimates seems acceptable.

Table 7: Estimation results of the gray-sided voles with model (5.1)

j φ̂0,1,j φ̂1,1,j σ̂2
1,j σ̂2

2,j π̂j j φ̂0,1,j φ̂1,1,j σ̂2
1,j σ̂2

2,j π̂j

1 0.2401 0.2829 0.7194 0.3546 0.3179 22 0.1660 0.4471 0.6249 0.5714 0.3822
2 0.3329 0.0979 0.3106 0.6711 0.3742 23 0.2537 0.2759 0.6624 0.8143 0.3179
3 0.0424 0.3529 0.1270 0.6306 0.3231 24 -0.4686 0.5411 0.4561 1.0670 0.3061
4 0.6922 0.0865 1.0117 0.2473 0.3875 25 0.3542 0.0079 0.3095 0.5494 0.4500
5 0.3177 0.0074 0.7025 0.3572 0.3850 26 -0.4506 0.3902 0.4051 0.8546 0.3153
6 0.6506 -0.0033 0.7049 1.2178 0.3825 27 0.2474 0.1846 0.4477 0.5789 0.5125
7 0.4570 0.4927 1.4423 0.3664 0.3173 28 0.3408 0.3589 0.7159 0.4408 0.7014
8 1.3056 0.2304 0.7540 14.6978 0.9503 29 0.7302 0.1020 0.6046 1.8470 0.3193
9 1.6166 0.1460 1.7641 0.1638 0.9491 30 0.6959 -0.2143 0.3960 1.5187 0.2998

10 -0.0680 0.4106 1.0944 0.6156 0.3026 31 0.5034 0.1029 0.2946 0.7909 0.3726
11 0.0362 0.2435 0.2930 0.4026 0.3802 32 0.1047 0.1738 0.3360 0.8649 0.3125
12 -0.1077 0.3186 0.3846 0.4696 0.3093 33 0.0156 -0.0067 0.0003 0.8117 0.1929
13 0.3351 0.1479 0.2217 0.7145 0.3164 34 0.0820 0.2511 0.3474 0.4901 0.3187
14 0.2564 0.1611 0.6017 0.4578 0.3129 35 0.6089 -0.1784 0.5539 0.6284 0.3145
15 0.0439 0.3075 0.5416 0.4647 0.3183 36 0.1107 0.1372 0.7569 0.6480 0.3165
16 0.1798 0.3741 0.4838 0.4073 0.3144 37 0.4897 0.2865 0.4292 0.6191 0.3783
17 0.2968 0.1922 0.6291 1.5648 0.3187 38 0.9362 0.4045 1.1183 0.4975 0.9403
18 0.0418 0.2629 0.6424 0.7248 0.4433 39 0.5260 -0.0535 0.4713 0.6924 0.3081
19 0.4900 0.3064 0.5692 0.4051 0.3107 40 0.0916 0.2418 0.3385 0.6074 0.4444
20 0.0510 0.2387 0.3004 0.6932 0.3124 41 0.1245 0.4280 0.5458 1.3827 0.5125

21 0.8919 -0.2142 0.7332 0.6247 0.3019 φ̂02 1.5025 φ̂12 0.4822

We also applied model (5.1) to the gray-sided voles data. As before, we only
used the first 30 observations in each series and left the last one to check the
coverage of the forecasting value. The results are listed in Table 7. The results
of series 8, 9 and 38 showed a very large π̂ which were close to 1. Considering
the short series length, we can accept some bad estimates. For series 8, the
second component has a very large variance about 14. Note that the mixture
probability of this series is 0.95, there were only two observations coming from
the second component. We checked the two observations and found that they
were exactly the two missing data points in this series. Hence, the variance of the
second component was just an artifact from the Fortran program and would be
meaningless. Other series showed a significant mixture phenomenon. By checking
the coverage of the forecasting, we found that there were also 3 observations
outside the 95% one-step ahead predictive interval, that is, a coverage about
7.3%. However, although the log-likelihood was -963.38 which were smaller than
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that of model (3.1) and the one in Hjellvik and Tφstheim (1999), the number of
parameters was 207 which increased the BIC to 3399.52. Because of the large
number of parameters, we have some reservations on fitting gray-sided voles data
with model (5.1).

6. Conclusion

In this paper, we considered a mixture autoregressive panel (MARP) model
which can capture the multi-modal phenomenon in some data sets. We suggested
to estimate the MARP model by the EM algorithm. The simulation studies
showed that we can obtain quite satisfying estimates if the series length of each
series is 50 or longer. Even if the series length is around 30, the estimates still
appeared to be acceptable. We illustrated the model by applying it to the gray-
sided voles data. All these results show that the sample size requirement of our
model is quite low and the performance of the model is satisfying so that it may
be of some potential in applications.
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