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Abstract: Progress towards government health targets for health areas
may be assessed by short term extrapolation of recent trends. Often the
observed longitudinal series for a set of health areas is relatively short and
a parsimonious model is needed that is adapted to varying observed tra-
jectories between areas. A forecasting model should also include spatial
dependence between areas both in representing stable cross-sectional differ-
ences and in terms of changing incidence. A fully Bayesian spatio-temporal
forecasting model is developed incorporating flexible but parsimonious time
dependence while allowing spatial dependencies. An application involves
conception rates to women aged under 18 in the 32 boroughs of London.

Key words: Autoregression, forecasting, fractional polynomial, spatial ef-
fects, teenage conceptions.

1. Introduction

Government health improvement targets to reduce adverse events or health
inequity increasingly involve forecasts to assess how far much progress towards the
target has been achieved. When the targets are set for health areas, this requires
a forecast for a panel data situation, with observations formed by a collection of
incidence rates by areas i = 1, . . . , N and times t = 1, . . . , T , and with forecasts
required for times t = T + 1, . . . , T + R. This paper sets out a spatio-temporal
forecasting model suited to such analysis that allows both for enduring spatial
patterning in the health outcome and for spatial clustering of growth or decline
in incidence.

Enduring health contrasts reflect features such as the impact of social struc-
ture and health behaviours on health outcomes. Such contrasts tend to be rela-
tively stable in established urban areas, only subject to slow change (e.g. due pos-
sibly to selective migration over a number of decades), though more pronounced
change may occur in fast growing urban areas (e.g. if there is substantial building
of new homes). By contrast, trends towards improvement (or deterioration) in
health outcomes may well not be positively correlated with existing differentials,
and may reflect a wide range of factors including success or otherwise of health
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sector interventions, though may still show spatial patterning. This is true for
the application considered here which involves short term forecasts of conception
rates to women under 18 in the 32 London boroughs, using observations over
1992-2003; the percent change in this rate between 1992-95 and 2000-2003 has a
correlation of −0.14 with the average rate over the entire 12 year period.

Considerable work has been done in developing spatio-temporal models for
descriptive analysis (e.g. Waller et al, 1997) but the temporal mechanisms as-
sumed are not necessarily suited to short to medium term extrapolation (between
one to ten years ahead). Growth curve models in biostatistics and psychometrics
also assume relatively simple time effects (e.g. linear growth) and are not nec-
essarily suited to extrapolation. Bernardinelli et al (1995) present a model for
spatial disease outcomes through time that allows for spatially correlated linear
growth, but this change pattern may be a simplification in many applications.

Some have argued for an integration of growth curve principles and autore-
gressive models, improving forecasting potential, since autoregressive dependence
on lagged observations provides a basis for short term forecasting that reflects
the recent history of the series (Bollen and Curran, 2004). There is also scope for
modelling nonlinear evolution within a growth path context, e.g. by introducing
fractional polynomial effects in time (Royston and Altman, 1994). Fractional
polynomials allow a flexible polynomial shape without necessarily requiring high
order polynomial terms in time. The model developed here combines autoregres-
sive and growth curve principles within a spatio-temporal forecasting framework;
the model allows for spatial patterning both in the health outcome and in chang-
ing incidence of the outcome, with area change profiles modelled using fractional
polynomials.

The application involves a relatively short panel series of conception rates to
women aged under 18 in 32 London boroughs. Event totals and denominators
(women aged 15-17) are available back to 1992 and the series ends in 2003. Here
the last year’s observations are held out to provide a cross-validation benchmark
for models based on the 11 years 1992-2002. Teenage conceptions in London in
2003 total 6500 in relation to a risk population (over all 32 areas combined) of 127
thousands. The borough rates in 2003 vary from 22.4 per 1000 to 105 per 1000
(see Figure 1) with the highest rates in socially deprived areas in east and south
east inner London (cf. Diamond et al, 1999), while lower rates occur in generally
more affluent suburban boroughs. Specification of the model variants is based
on fully Bayesian principles, involving prior densities on parameters and their
updating via the likelihood to produce estimated posterior densities. Estimation
involves repeated sampling via Markov Chain Monte Carlo procedures, and uses
the WINBUGS package1

1See Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2003) WinBUGS User Manual.
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Figure 1: Actual rates in 2003

2. Modelling Framework

For event totals Yit and populations at risk Nit, binomial or Poisson sampling
is frequently assumed in conjunction with a logit and log links respectively. Thus
Yit ∼Bin(Nit, rit) where rit are the event probabilities, or Yit ∼Po(Nitµit) where
µit are relative risks. The framework suggested here allows for time specific spatial
morbidity effects sit that are expected to change relatively slowly. However,
forecasting is facilitated by lagged effects of previous outcomes and by including
possibly nonlinear growth effects. Here binomial sampling is assumed, and lagged
effects are based on moment estimates of rates pit = Yit/Nit.

For modelling spatial effects sit, one possible prior structure is provided by the
intrinsic conditionally autoregressive (ICAR) Normal prior of Besag et al (1991),

Version 1.4 (http: //www.mrc-bsu.cam.ac.uk/bugs)
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with weights wijt relating areas i and j in year t,

sit | sjt,j �=i, τt ∼ N

(∑
j �=i wijtsjt∑

j �=i wijt
,

τt∑
j �=i wijt

)

where τt is the conditional variance of the spatial effects. Several other forms of
spatial prior have been suggested, including priors that mix heterogeneity with
spatial correlation (Leroux et al, 1999). The sit can be envisaged as residuals with
spatial structure so that sit and sjt have positive spatial dependence. Such spatial
effects are often used in cross-sectional disease mapping applications (Pascutto et
al, 2000) to represent spatially correlated and unmeasured influences on disease
risk. Here they can be taken to represent time varying spatially correlated influ-
ences on the risk of teenage conception. It is not necessary to assume Normality
regarding the sit and other options are Student t and double exponential densi-
ties (Lawson and Clark, 2002), especially if outliers are thought likely to distort
an otherwise relatively smooth spatial interdependence. For identification, the
restriction

∑
i sit = 0 within each period is needed; this is achieved by centering

the effects at each MCMC iteration. The weights wijt define the form of spa-
tial contiguity or connectiveness2 and are typically assumed to be non-stochastic.
They make take account of geographic or even social distances between areas,
but are commonly defined in terms of adjacency (i.e. wijt = 1 if areas i and j are
adjacent and zero otherwise).

The regression model is here confined to a changing intercept αt to model
the overall change in incidence, though other known predictors for areas and/or
times might be relevant to explaining conception trends (e.g. youth employment
prospects). Then a model for rit including lags at 1, . . . , L in pit has the form

logit(rit) = αt + sit + β1pi,t−1 + · · · + βLpi,t−L

For t exceeding T +L, the lagged pi,t−L are replaced by lagged ri,t−L. Station-
arity is not imposed a priori on the autoregressive (AR) coefficients. It is likely
that autoregressive effects differ by area, and a generalization assumes random
effects AR coefficients, either with no spatial structure or spatially structured, so

logit(rit) = αt + sit + βi1pi,t−1 + · · · + βiLpi,t−L

where the βil for lag l could have ICAR form separately, though a multivariate
version of the CAR model (an MCAR prior) can also be used to model the βil

jointly (Gamerman et al, 2003).
2Lesage, J. (1999). Spatial Econometrics. Web manuscript. Department of Economics,

University of Toledo, see http://www.spatial-econometrics.com
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Following Bollen and Curran (2004), albeit concerned with non-spatial ap-
plications, a more inclusive approach to modelling longitudinal change includes
growth curve as well as autoregressive influences. While several forms of time
series model have been proposed for nonlinear time effects, such as functional au-
toregressive models (Huang and Shen, 2004), these are difficult to extend to the
case where the nonlinear effects differ by area. By contrast, the fractional poly-
nomial structure allows flexible modelling of nonlinear effects and also permits
the coefficients to vary by area. A fractional polynomial (FP) relation between
rit and time t can be added to the above model via

logit(rit) = αt + sit + βi1pi,t−1 + . . . + βiLpi,t−L + φM (t; ξ, q) (2.1)

where q = (q1, q2, . . . , qM ), (q1 < q2 < · · · < qM ), is a vector of powers in t,
including possibly qj = 0 leading to log(t). The summation

φM (t; ξ, q) =
M∑

j=1

ξjHj(t)

involves polynomial terms Hj(t), j = 1, . . . ,M defined as Hj(t) = tqj if qj �= qj−1

but Hj(t) = Hj−1(t) log(t) if qj = qj−1. To reflect the spatial panel data appli-
cation, the coefficients ξij can be made area specific, with spatially structured
(possibly multivariate) random effects priors being one option for (ξi1,ξi2, ..ξiM ).

In practice models with large L and/or M may not lead to pronounced im-
provements in forecasting accuracy, and one may adopt an incremental modelling
strategy starting with a simple model. For example, a baseline model oriented
to forecasting might be defined by {L = 1,M = 1, q = (1)} and varying area lag
and FP effects, namely

logit(rit) = αt + sit + βipi,t−1 + ξit (2.2)

and one may generalize this model by adding (area specific) lags and/or further
fractional polynomial terms. The model in (2.2) would also tend to accurately
describe observed cross-sectional patterns (within the estimation period) due to
the sit parameters. However, reduced parameterization of the descriptive side of
the model may be possible without adversely affecting short-term forecasts. This
is illustrated by the case study.

3. Case Study

The above framework is now applied to the spatial panel for London boroughs
over 1992-2003 (source: Department of Health for England), with the first ten
years of data providing the estimation period (see the web site of Journal of Data
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Science for the data, including area neighbour structure). For teen conception
totals Yit and female populations at risk Nit, binomial sampling is assumed in
conjunction with a logit link. The goal is parsimonious modelling that produces a
good forecast to (known) values in the cross validation year, 2003. Comparisons
of model fit within the estimation period use the deviance information criterion
(DIC) of Spiegelhalter et al (2002), where the DIC is the posterior average of the
deviance plus a measure of complexity de. This measure can also be regarded
as an estimate of the effective dimension of the model. It is estimated as the
difference between the average deviance and the deviance Dev(θ̄) at the posterior
mean of the full parameter set θ. To assess out of sample fit to known rates in
the period T + 1 (i.e. the year 2003, so R = 1), predictive error sum of squares

E1 =
∑

i

(r̄i,T+1 − pi,T+1)2

pi,T+1
(3.1)

and average absolute deviation measures

E2 =
1
N

∑
i

|r̄i,T+1 − pi,T+1|
pi,T+1

(3.2)

are used, where r̄i,T+1 denotes the posterior mean forecast. Then 100E2 expresses
the average percent absolute relative error in forecasts to 2003.

Five models are considered, with the rationale in model development being to
introduce enhancements to improve forecast performance while avoiding excess
parameterization. A baseline model (model 1) resembles descriptive models used
in disease mapping studies; this will tend to produce a good within sample fit
but not necessarily a good forecast fit. Model 1 allows for spatially correlated
effects sit specific to time and also for changing overall incidence. The spatial
effects follow the ICAR model of Besag et al (1991), with weights wijt. This
model allows for changes in the degree of spatial correlation in a health outcome
over time (Waller et al, 1997); specifically, the changing variance τt of the spatial
effects is modelled using a first order random walk in log(τt). Changing overall
incidence is modelled via a changing intercept αt, also assumed to follow a first
order random walk prior, with identifiability achieved by centering the sit. The
weights wijt are assumed constant over time and to equal 1 when boroughs are
adjacent and zero otherwise. Hence model 1 is

Yit ∼ Bin(Nit, rit)
logit(rit) = αt + sit

sit | sjt, j ∈ Li, τt ∼ N(S̄it, τt/ki)
ϕt = 1/τt = exp(κt)
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κt ∼ N(κt−1, φκ) t = 2, . . . , T + R

αt ∼ N(αt−1, φα) t = 2, . . . , T + R

where Li denotes the neighbourhood of borough i (the set of ki boroughs adjacent
to it) and S̄it is the average of the spatial effects in that neighbourhood in year t.
Diffuse Normal N(0, 1000) priors (i.e. variance of 1000) are assumed on κ1 and
α1, while 1/φκ and 1/φα follow Ga(1, 1) gamma priors.

A two chain run of 5000 iterations with disparate initial values shows con-
vergence after 1000 iterations according to Gelman-Rubin criteria (Gelman et al,
1995). There is some evidence that overall incidence is increasing early in the
observation span (the early and mid 1990s), but that this is tailing off by the
2000s. Hence the forecast (posterior mean) for αt for 2003 is for very similar to
the mean for 2002. By contrast, the precisions of the spatial effects are increasing
and the mean of ϕT+1 exceeds the mean of ϕT .

This model is relatively heavily parameterized (de = 488 compared to NT =
352 observations) while not facilitating forecasts tailored to the growth path in
each area. The fit within the estimation period (1992-2002) is good as judged
by criteria 3.1 and 3.2 evaluated for 2002 (Table 1). However, the forecasts for
2003 show lack of fit, with average relative absolute error of 41% (100 times E2).
Hence a second model (model 2) introduces area specific autoregression on the
preceding years rate ri,t−1 and also allows a borough specific linear growth effect;
this is the case M = L = 1 with q = (1), as mentioned above.

Table 1: Insample and forecast model fit

Within Estimation Sample Forecast

DIC EDa DPMPb SREESc ARAD2d SRESe ARAD3f

Model 1 3412.8 488.1 2436.6 0.0007 0.017 0.323 0.407
Model 2 2961.0 78.9 2803.2 0.0060 0.053 0.0280 0.094
Model 3 2915.7 96.5 2722.8 0.0045 0.048 0.0254 0.095
Model 4 2948.6 91.1 2766.4 0.0051 0.048 0.0264 0.093
Model 5 2933.6 101.9 2729.8 0.0033 0.040 0.0284 0.100

aED = Effective Dimension de (Complexity), bDPMP= Deviance at poste-
rior mean of parameters, cSREES= Sum of Relative Errors Squared (2002),
dARAD2 = Average of Relative Absolute Deviations (2002), eSRES = Sum
of Relative Errors Squared (2003), fARAD3 = Average of Relative Absolute
Deviations (2003).

To reduce parameterization the time specific spatial effect is replaced by a
spatial factor model (Wang and Wall, 2003; Congdon, 2002), so that sit is replaced
by λtsi where λt =exp(ηt) are positive coefficients(loadings), with λ1 = 1, and ηt
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following an RW1 prior to allow for pooling strength over time. The terminology
‘spatial factor’ describes the use of a shared error with coefficients linking the
error through times. The autoregressive effect and the linear growth effect are
both assumed spatially correlated. The resulting model 2 has the form

logit(rit) = αt + exp(ηt)si + βipi,t−1 + ξit t = 2, . . . , T + R

logit(ri1) = α1 + si + ξi

si | sj , j ∈ Li, τ ∼ N(S̄i, τ/ki)
ξi | ξj, j ∈ Li, ωξ ∼ N(ξ̄i, ωξ/ki)
βi |βj , j ∈ Li, ωρ ∼ N(β̄i, ωβ/ki)
ηt ∼ N(ηt−1, φη)
αt ∼ N(αt−1, φα)

with η1 = 0, α1 ∼ N(0, 1000), 1/τ ∼ Ga(1, 1), 1/ωβ ∼ Ga(1, 1),1/ωξ ∼ Ga(1, 1),1/φη

∼ Ga(1, 1) and 1/φα ∼ Ga(1, 1). For t exceeding T + L, the lagged pi,t−L are
replaced by lagged ri,t−L.

A two chain run of 5000 iterations (convergent from 1000) shows that this
model leads to a some loss of fit (to 2002 data) within the estimation period.
However, the loss is slight in view of the much reduced parameterization as com-
pared to model 1. The DIC actually falls due to the reduced parameter count
(Table 1) though the deviance at the posterior parameter mean is higher. De-
spite the reduced parameter count, the forecast accuracy for 2003 (when forecasts
can be compared to known conception rates) improves considerably compared to
model 1. The average percent relative forecast error falls to 9%.

Model development could be in extending the fractional polynomial, the AR
components or both. To assess the gain through developing the fractional polyno-
mial component of the model, the fractional polynomial components is expanded
to φ3(t; ξi, q), where q = (−1, 0, 1) and ξi = (ξi1, ξi2, ξi3). Hence model 3 is

logit(rit) = αt + exp(ηt)si +
βipi,t−1 + ξi1/t + ξi2 log(t) + ξi3t t = 2, . . . , T + R

logit(ri1) = α1 + si + ξi1 + ξi3

ηt ∼ N(ηt−1, φη)
αt ∼ N(αt−1, φα)
si | sj , j ∈ Li, τ ∼ N(S̄i, τ/ki)
βi |βj , j ∈ Li, ωρ ∼ N(β̄i, ωβ/ki)

with η1 = 0, α1 ∼ N(0, 1000), 1/τ ∼ Ga(1, 1), 1/ωβ ∼ Ga(1, 1),1/φη ∼ Ga(1, 1)
and 1/φα ∼ Ga(1, 1). The increased parameterization may be contained by pool-
ing strength under a multivariate version of the CAR Normal prior (Gamerman
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et al, 2003) for ξi=(ξi1, ξi2, ξi3). Thus the pairwise difference prior with precision
matrix Ψξ is

P (ξi |Ψξ) ∝| Ψξ |n/2 exp{−
∑
i,j

wij(ξi − ξj)′Ψξ(ξi − ξj)}

As above a contiguity assumption is made for wij , and a Wishart prior with
identity scale matrix and 3 degrees of freedom is adopted on Ψξ; so Ψξ ∼ W (3, I).

This model produces a gain in fit within the estimation period at the expense
of an increase in complexity de from 78.9 to 96.5. There is a gain in forecasting
performance according to criterion (3.1). Figure 2 shows the forecast rates for
2003 under model 3, and Table 2 shows the posterior summary of the forecasts.

Figure 2: Forecast conception rates in 2003
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Table 2: Actual 2003 rates and model 3 prediction summary

Borough Actual FPMa 2.5% 97.5%

Barking 71.9 68.0 61.7 74.2
Barnet 30.7 31.6 28.2 35.3
Bexley 41.2 42.8 38.4 47.5
Brent 56.2 50.6 46.2 55.4
Bromley 38.6 35.4 31.7 39.4
Camden 48.7 51.0 45.5 56.7
Croydon 52.6 58.2 53.4 62.9
Ealing 38.0 37.6 34.1 41.3
Enfield 57.5 53.7 48.8 59.7
Greenwich 69.1 64.3 58.6 70.5
Hackney & City 69.3 77.6 71.5 84.3

of London (combined)
Hammersmith 51.7 63.3 56.6 70.6
Haringey 71.0 77.9 71.7 84.7
Harrow 26.9 26.6 23.3 30.2
Havering 35.9 38.6 34.0 43.4
Hillingdon 48.4 43.7 39.5 48.4
Hounslow 45.8 42.6 38.3 47.4
Islington 61.1 64.1 57.0 71.1
Kens-Chelsea 27.6 45.9 39.9 52.4
Kingston 30.8 30.1 25.8 34.8
Lambeth 104.9 93.5 85.8 102.2
Lewisham 74.0 70.8 64.0 77.1
Merton 39.7 43.7 38.7 49.1
Newham 55.2 56.4 51.8 61.2
Redbridge 32.2 32.7 29.0 36.9
Richmond 22.4 24.2 20.6 28.1
Southwark 86.8 80.7 74.0 87.6
Sutton 32.1 35.8 30.6 41.2
Tower Hamlets 42.9 49.1 44.2 54.0
Waltham Forest 55.4 59.5 54.3 65.3
Wandsworth 58.8 65.8 59.6 71.9
Westminster 41.5 46.8 41.2 53.0

aFPM= forecast posterior mean

Observation level forecasting performance in this and other models is domi-
nated by overestimation of the conception rate in the central London borough of
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Kensington and Chelsea in 2003; this has an actual rate of 27.6 per 1000 in 2003
compared to a posterior mean forecast of 46 per 1000 under model 3. The number
of conceptions here fell sharply to 57 in 2003, compared to totals of 80,80 and 81
in the years 2000, 2001 and 2002 respectively. Excluding this borough reduces
criterion (3.2) 9.5% to 7.7%. However, some discrepancies are related to shifts
in the denominator population estimates. For example, the denominator popula-
tion in Westminster (women aged 15-17) shifted upwards by 12% between 2002
and 2003 due to an upward revision of populations, reflecting concerns over 2001
census enumeration errors3. The official rate per 1000 (Department of Health,
England) for 2003, with the revised population denominator, is 41.5 compared to
a posterior mean forecast of 46.8 per 1000.

Model 4 considers instead considers an extension of the lag effects in model
2, namely adding spatially varying AR2 coefficients. A bivariate CAR form is
assumed for the two autoregressive coefficients. Thus model 4 is defined by

logit(rit) = αt + exp(ηt)si + βi1pi,t−1 + βi2pi,t−2 + ξit t = 3, . . . , T + R

logit(ri2) = α2 + exp(η2)si + βi1pi1 + 2ξi

logit(ri1) = α1 + si + ξi

si | sj , j ∈ Li, τ ∼ N(S̄i, τ/ki)
ξi | ξj, j ∈ Li, ωξ ∼ N(ξ̄i, ωξ/ki)

P (βi|Ψβ) ∝| Ψβ |n/2 exp{−
∑
i,j

wij(βi − βj)′Ψβ(βi − βj)}

ηt ∼ N(ηt−1, φη)
αt ∼ N(αt−1, φα)

with Ψβ ∼ W (2, I), η1 = 0, α1 ∼ N(0, 1000), 1/τ ∼ Ga(1, 1), 1/ωξ ∼ Ga(1, 1),1/φη

∼ Ga(1, 1) and 1/φα ∼ Ga(1, 1).
This model produces a slight loss in fit to the estimation sample as compared

to model 3, and also no gain in forecast accuracy as compared to model 3. Which
model among models 1 to 4 is preferred depends on the relative weights attached
to insample fit and out-of-sample forecast accuracy; relative forecasting perfor-
mance also depends on which of (3.1) or (3.2) is used. Since model 3 has the
best in-sample fit (among models 2 to 4), and best forecasting fit under (3.1),
it seems to show the best overall performance. If one were primarily concerned
with description then model 1 is preferred.

Model 3 has a simple fractional polynomial form. However, extending the
fractional polynomial did not improve forecast or in-sample performance. Thus

3See Office of National Statistics (2004). News Release: Results of 2001 Census based
Local Authority Population Studies, July 2004 (www.statistics.gov.uk/about/me thodol-
ogy by theme/population.asp).
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model 5 replicates model 3 except in expanding the FP component to φ5(t; ξi, q),
where q = (−2, 1, 0, 1, 2) and ξi = (ξi1, ξi2, ξi3, ξi4, ξi5) following an MCAR form.
The extra complexity of this model leads to a worse DIC and some deterioration
in forecast accuracy too (Table 1).

4. Conclusion and Possible Methodological Extensions

Many spatio-temporal models for disease and mortality outcomes have fo-
cussed on description and not on extrapolation to the future. As model 1 in the
case study application illustrated, a descriptive model providing a close fit to an
existing dataset may not produce a good forecast. By contrast, models allowing
for short term extrapolation of growth trends and/or autoregression on recent
rates may improve on descriptive models in terms of out-of-sample accuracy.

For health and social indicators relatively short observed series over sets of
constant boundary areas are often common. Short panel series for area units may
be due to boundary changes, changes in data collection or indicator definition, or
intermittent collection (as in the case health status data from Censuses). Hence
there may be only a small gain in adopting highly complex models with high order
lags or complex polynomial forms. However, the case study demonstrated that
improved fit did result from adopting a spatially varying fractional polynomial of
a relatively simple form.

The above analysis has been for a single outcome, but there may be gains
in pooling strength over two or more outcomes. For example, area conception
rates for women aged under 16, aged 17-18 and aged 19-20 tend to be positively
correlated. For outcomes k assumed binomial with rates rikt, one might envisage
models that develop on (2.1), such as

logit(rikt) = αtk + λtksik + βik1pi,k,t−1 + · · · + βikLpik,t−L + φMk
(t; ξik, qk)

where the sik model stable morbidity differences, the λtk are positive time and
output specific coefficient loadings, the βikl model area specific autoregressive
own lags in outcome k, and the fractional polynomial allows area and outcome
specific coefficients and also possibly qk vectors different by outcome. Pooling
over outcomes in the autoregressive coefficients might be based on a common
factor approach, for example expressing βikl as κkβil. More complex models might
involve cross-lags (of rikt on pim,t−l for m �= k).
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