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Abstract: Information identities derived from entropy and relative entropy
can be useful in statistical inference. For discrete data analyses, a recent
study by the authors showed that the fundamental likelihood structure with
categorical variables can be expressed in different yet equivalent information
decompositions in terms of relative entropy. This clarifies an essential differ-
ence between the classical analysis of variance and the analysis of discrete
data, revealing a fallacy in the analysis of hierarchical loglinear models. The
discussion here is focused on the likelihood information of a three-way con-
tingency table, without loss of generality. A classical three-way categorical
data example is examined to illustrate the findings.
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1. Introduction

The analysis of contingency tables with multi-way classifications originates
from the historical development of statistical inference with 2 × 2 tables. In the
initial extension to the case of 2 × 2 × K tables, Bartlett (1935) discussed test-
ing for three-way interaction and derived an estimate of the common odds ratio
suggested by R. A. Fisher. Norton (1945) and Simpson (1951) supplied inter-
pretations of varied interactions which led to the well-known Simpson’s paradox
(Blyth, 1972). Roy and Kastenbaum (1956) showed that Bartlett’s procedure is
an implicit maximum likelihood estimation (MLE), conditioned upon the fixed
margins of each 2×2 table. The celebrated analysis of variance (ANOVA, Fisher,
1925) inspired discussions of partitioning chi-squares within the contingency ta-
bles, notably by Lancaster (1951), Mood (1950), and Claringbold (1961), among
others. In related research in biostatistics, Cochran (1954), Woolf (1955) and
Mantel and Haenszel (1959) developed chi-square tests for no association be-
tween two variables across levels of the third variable. These early studies led
to further analyses of three-way tables, which include estimating the common
odds ratio, testing zero interaction and testing no association across strata, for
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examples, Kullback (1959), Gart (1962), Darroch (1962), Lewis (1962), Plackett
(1962), Birch (1963, 1964), and Goodman (1964).

The classical method of partitioning the chi-squares for the three-way (I×J×
K) contingency table does not provide a convenient test of the null hypothesis
that the three-way interaction is zero (Lancaster, 1951). The null distribution
of Lancaster’s test statistic need not be asymptotically chi-square distributed
(Plackett, 1962). A similar remark can also be applied to the methods of parti-
tioning chi-squares by Kullback (1959) and Claringbold (1961). Since partitions
of chi-squares are closely related to the likelihood ratio tests (Wilks, 1935), max-
imum likelihood estimation of association and interaction significantly influenced
the early studies of multi-way contingency tables (Roy and Kastenbaum, 1956).
In particular, it led to the development of a likelihood ratio test for zero inter-
action in a multi-way contingency table (Darroch, 1962). This is given a close
examination below, and also in Section 4.

Suppose that individuals of a sample are classified according to three categori-
cal variables {X}, {Y }, {Z} with classified levels: i = 1, . . . , I, j = 1, . . . , J, k =
1, . . . ,K, respectively. Denote the joint probability density by pijk = P (X =
i, Y = j, Z = k), which satisfies that

∑
ijk pijk = p··· = 1. Define

pij· =
∑

k

pijk = P (X = i, Y = j), pi·· =
∑

j,k

pijk = P (X = i), (1.1)

as the marginal probabilities, and define pi·k, p·jk, p·j· and p··k analogously.
Also, let nijk denote the number of individuals classified to the cell (X =

i, Y = j, Z = k). A classical test of primary interest concerns the notion of no
(or, zero) three-way interaction in the full I × J ×K table (Bartlett, 1935). This
is defined by the set of (I −1)(J −1)(K −1) conditions on the joint probabilities:

pijk pIJk

piJk pIjk
=

pijK pIJK

piJK pIjK
(i = 1, . . . , I − 1, j = 1, . . . , J − 1, k = 1, . . . ,K − 1).

(1.2)
In addition to providing a likelihood ratio test for (1.2) (via solving the maximum
likelihood estimates by the Lagrange multiplier method), Roy and Kastembaum
(1956, pp. 750-753) recommended an equivalence test for the independence be-
tween one variable and the remaining two. Specifically, they argued that the
combination of (1.2) with the hypotheses:

pi·k = pi·· p··k and p·jk = p·j· p··k (i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . ,K),

is equivalent to the hypothesis: for all (i, j, k),

pijk = pij· p··k. (1.3)
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It was taken for granted that equation (1.3) is directly analogous to a property
of interactions in the analysis of variance (Darroch, 1962). Unexpectedly, the
equivalence of (1.3) is invalid, a fact that has not been clarified in the statistics
literature.

The goal of this study is to illustrate the fallacy of (1.3) using likelihood
information identities. For three-way tables, the data information structure will
be analyzed in Section 2, using a basic orthogonal decomposition in terms of the
mutual information, also known as the relative entropy to engineers (Shannon,
1948), and, the Kullback-Leibler divergence (1951) to statisticians. It is shown
that equation (1.3) is in conflict with the information identities illustrated in
Section 2. The validity of the information identities is also examined against a
data example, a 2 × 2 × 2 contingency table (Snedecor, 1958). The calculations
given in Sections 3 and 4 will illustrate the errors incurred when using (1.3) and
(4.1), which led to invalid analyses in the classical hierarchical loglinear models.

Analysis of variance was designed to measure deviations from the means of
continuous variables, which are expressed by partitioning sums of squares (Fisher,
1925). In contrast, analysis of categorical data measures deviations from uniform
association, or independence, and varied interactions between the categorical
variables, which are solely defined by the likelihood factorization. A basic likeli-
hood information approach to categorical data analysis, coined linear information
models, will provide a remedy, and this will be discussed in a forthcoming study.

2. Discrete Data Likelihood Identities

Let (X,Y ) be a discrete random vector, where X and Y are categorical vari-
ables. Let f(xi, yj) (i = 1, . . . , I and j = 1, 2, . . . , J), be the joint probability
density function (j.p.d.f.), and f(xi) and g(yj) are the marginal p.d.f. of X and
Y , respectively. The Shannon entropy (1949) of the random variables is defined
as

H(X) = −
∑

xi

f(xi) log f(xi), H(Y ) = −
∑

yj

g(yj) log g(yj),

and H(X,Y ) = −
∑

(xi,yj)

f(xi, yj) log f(xi, yj). (2.1)

This is widely known as the foundation of information theory in engineering,
physics, probability, and statistics (see for example, Gray, 1990). A well-known
derivative of the Shannon entropy is the relative entropy, also known as the
Kullback-Leibler (KL) divergence. By definition, (2.1) is equivalent to the basic
equation:

H(X) + H(Y ) = H(X,Y ) + I(X;Y ), (2.2)
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where I(X;Y ) defines the so-called mutual information:

I(X;Y ) ≡
∑

i,j

f(xi, yj) log[f(xi, yj) / f(xi)g(yj)]. (2.3)

Essentially, identity (2.3) defines the minimum KL-divergence, from the joint
p.d.f. of X and Y to the product space of marginal p.d.f., where X and Y are
independent (cf. Cheng, Liou, Aston, and Arthur, 2006). The observed cell
frequencies nij, the total counts of the vectors (X = i, Y = j), characterize the
mutual information by the test statistic:

Î(X,Y ) =
I∑

i=1

J∑

j=1

nij log(
nij

n·· f̂(xi, yj)
) =

I∑

i=1

J∑

j=1

nij log(
nij n··
ni· n·j

), (2.4)

where f̂(xi, yj) is the MLE under the null hypothesis of independence. Twice
the mutual information (2.4) is asymptotically chi-square distributed with (I −
1)(J − 1) d.o.f., which is the same test for no interaction between X and Y . It is
noteworthy that the likelihood ratio test statistic (2.4), being the sample analog
of I(X;Y ), is an average of empirical log-likelihood; and therefore, the sample
version of (2.2) does not include a constant term as the loglinear model does with
standard ANOVA. This is the basic difference between the linear equation (2.2)
and the stturated loglinear model in two variables.

Equations (2.2) and (2.3) admit obvious extensions to the general case with
multiple variables. In particular, for the joint distribution of three variables, the
analog of (2.2) is

H(X) + H(Y ) + H(Z) = H(X,Y,Z) + I(X;Y ;Z), (2.5)

It is plain that equations (2.2) and (2.5) represent a fundamental linear infor-
mation model. For I × J × K contingency tables, it is analogous to (2.4) that
twice the sample mutual information, the MLE 2 Î(X;Y ;Z), is asymptotically
chi-square distributed with d.o.f. equal to IJK − (I + J + K) + 2, under the
null hypothesis of mutual independence. In the sequel, the “hat” notation for the
MLE, the sample mutual information, will be omitted for short.

Taking any two variables, say, (Y,Z) as a single component, a decomposition
of (2.5) yields

I(X;Y ;Z) = I(X; (Y,Z)) + I(Y ;Z). (2.6)

This initial step of information decomposition examines whether one variable,
say, X, is independent of the pair (Y,Z); and the first term of (2.6) is tested
against the chi-square distribution with (I − 1)(JK − 1) d.o.f. Next, decompose
this term to yield

I(X; (Y,Z)) = I(X;Z) + I(X;Y | Z)) = I(X;Y ) + I(X;Z | Y ). (2.7)
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By (2.6) and (2.7), the mutual information between X, Y and Z is the sum
of three orthogonal components. For example, the first sum of (2.7) yields the
equation:

I(X;Y ;Z) = I(X;Z) + I(Y ;Z) + I(X;Y | Z). (2.8)

The last term of (2.8) measures the conditional independence between X and
Y across the variable Z, which is tested against a chi-square distribution with
(I − 1)(J − 1)K d.o.f. Clearly, the right-hand side of (2.8) can be expressed by
three equivalent decompositions, using each variable as the conditioning variable.
It is notable that the unique three-way interaction in a three-way table is included
within a term of conditional mutual information, say, I(X;Y | Z). That is,

I(X;Y | Z) = Int(X;Y ;Z) + I(X;Y ‖ Z), (2.9)

where Int(X;Y ;Z) measures the non-uniform association between X and Y ,
across Z, which is the unique three-way interaction with (I − 1)(J − 1)(K − 1)
d.o.f.; and I(X;Y ‖ Z) defines the uniform association between X and Y , that
remains with respect to Z, with (I − 1)(J − 1) d.o.f. The latter is commonly
called the partial association between X and Y , given Z (for example, Birch,
1964; Goodman, 1969). There are obviously three different forms of (2.9), one
for each conditioning variable.

It follows from equations (2.5) to (2.9) that a saturated linear model in the log-
likelihood of three variables must be one of three information-equivalent models.
Each model consists of three main (one-way) effects, two two-way (first-order)
interaction effects, and a three-way (second-order) effect of conditional mutual
information. By (2.9), a three-way effect consists of the unique interaction, and
a conditional uniform association. Extension of this decomposition to multi-
way contingency tables can be similarly formulated. An important message is
conveyed: the present characterization of a saturated linear information model,
based on identities (2.5) to (2.9), has not been discussed for use in the statistics
literature, nor in the hierarchical loglinear models. Computational effects of this
drawback will be illustrated using a classical data example in Section 3.

3. Discrete Data Information: An Example

Table 1 below is a three-way contingency table that had been analyzed by
Mood (1950), and discussed by Snedecor (Table 1, 1958), which also included an
ANOVA method by Lanscaster (1951). It is a typical case of a three-way table
and is used to illustrate the main findings of this study. The original notations
of the three variables, {A,B,C} will be used, instead of {X,Y,Z} as used in
Sections 1 and 2.
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Table 1: A Three-Way Contingency Table

C1 C2

B1 B2 B1 B2

A1 79 62 73 168
A2 177 121 81 75

A digest of Snedecor’s discussion about Table 1 is useful for the present study:
“In non-specific terms it may be said that the second-order interactions of Bartlett
and Lancaster answer the same type of question, and that Mood tests combina-
tions of the Lancaster interactions. The discrepancies observed have two sources:
(1) the models used by the three investigators are different, and (2) different ap-
proximations to the chi-square distribution are employed.”

Mood (1950) initiated the study of Table 1 and considered two cases: “com-
pletely random sampling” and “fixed totals in one classification, say, variable C”.
In both cases, the measures of independence (no association) are estimated from
the marginal variable totals. Thus, for the 2 × 2 × 2 Table 1, it is the same in
either case that (i) there are 4 degrees of freedom (d.o.f.) for testing whether
all three variables {A, B, C} are mutually independent; and (ii) there are 3
d.o.f. for testing whether a variable C is independent of the other two variables
{A, B}. Accordingly, based on maximum likelihood estimation, Mood calculated
the chi-squares of these two tests to be (i) χ2

4,M = 111.10, and (ii) χ2
3,M = 86.72,

where the second subscript M refers to the author, Mood. Both chi-squares cor-
respond to extremely small probabilities such that the independence hypotheses
are rejected.

Lancaster (1951) analyzed an ANOVA approach to decomposing the chi-
square of the mutual independence. For the present data with three variables, the
decomposed chi-squares were calculated and listed in Table 2 of Snedecor (1958,
p. 561). They are χ2

AB = 24.10, χ2
BC = 31.80, χ2

AC = 68.30, and χ2
ABC = 7.80,

where each chi-square has 1 d.o.f., giving the total chi-square for mutual indepen-
dence to be (i) χ2

4,L = 132.00, and the measure of association between variables
{A, B} and C to be (ii) χ2

3,L = χ2
AC + χ2

BC + χ2
ABC = 107.90. These two

chi-square values differ greatly from those calculated by Mood as given above,
although insignificantly in probability. Here, the notation χ2

AB defines the chi-
square of the two-way independence between the variables A and B; and, an
approximating likelihood-ratio test statistic to χ2

AB is twice the mutual informa-
tion I(A,B) defined in (2.3). Likewise, χ2

ABC � χ2
(I−1)(J−1)(K−1), approximated

by 2 Int(A;B;C), denotes the chi-square of the three-way interaction discussed
by Bartlett (1935).

By using the classical method of “expected” frequency chi-squares, Snedecor
gave his answers to Table 1 as (i) χ2

4,S = 132.00, (ii) χ2
3.S = 93.73, and the
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three-way interaction χ2
ABC = 19.57. Besides the difference in the two previous

total chi-squares of (i) that were given by Mood and Lancaster, the three chi-
square values of (ii) are all different. As stated above, Snedecor only argued
that the discrepancies between the two sets of calculations given by Mood and
Lancaster were attributable to using different loglinear models, but he did not
provide explanations about the conditions of the hypotheses and models in use.
In fact, it can be illustrated that these are direct calculations of chi-squares out
of the original data, before identifying or using a fitted model.

The sizes of data cells of Table 1 were sufficiently large to warrant close
approximations between the decomposed chi-squares and the corresponding like-
lihood ratio test statistics, namely, twice the KL divergence defined in Section
2. In accordance with equations (2.6) to (2.8), a complete list of the conditional
and unconditional mutual information (KL divergence) is provided below. The
two-way effects are

I(A;B) = 12.11, I(B;C) = 16.01, and I(A;C) = 34.77. (3.1)

The three-way conditional mutual information terms are

I(A;B | C) = 9.52, I(B;C | A) = 13.41, and I(A;C | B) = 32.18. (3.2)

The second-order (three-way) interaction, computed by the well-known method
of iterative proportional fitting (IPF, Deming and Stephan, 1940), and the total
mutual information are respectively

Int(A;B;C) � (0.5)χ2
ABC = 3.41, and I(A;B;C) = 60.30. (3.3)

The corresponding chi-squares are twice the divergence values of (3.1) to (3.3).
Since the early computations were carried out about a half century ago, it is
not surprising that the current computations (3.1) to (3.3) could yield differ-
ent yet correct answers. Specifically, the mutual independence is: (i) χ2

4,KL =
2 I(A;B;C) = 120.60, which sits between the two values, 111.10 and 132.00, cal-
culated by Mood (1950) and Lancaster (1951), respectively. And, the measure of
no association between variable C and {A, B} is: (ii) χ2

3,KL = 2 I(C; (A,B)) =
96.37. The latter is obtained from the identity (2.6), which yields I(C; (A,B)) =
I(A;B;C)− I(A;B) according to (3.1) and (3.2). For the same Table 1, none of
the KL-divergences (i) and (ii) were close to the corresponding values calculated
by the three authors as stated above. It is worth noting that the values of three
two-way effects in (3.1) are quite close to those given by Lancaster (1951). How-
ever, by (3.3), the correct three-way interaction effect is found to be χ2

ABC = 6.82,
with p value close to 0.009, which differs from Lancaster’s χ2

ABC = 7.80, with
p � 0.005.
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To confirm that the values calculated from (3.1) to (3.3) are correct and
reliable, one can simply check that the computations of all the three equally
symmetric forms of (2.6) to (2.8) are equal. In this case, it is checked that the
three differences between the corresponding terms of (3.1) and (3.2) are equal,
that is,

I(A;B) − I(A;B | C) = I(B;C) − I(B;C | A) = I(A;C) − I(A;C | B) = 2.59.

4. A Fallacy of Hierarchical Loglinear Models

It is well known that hierarchical analyses of the loglinear models in three
variables could accommodate eight distinct parameters in a saturated model.
Taking away the constant mean, it defines the decomposition of chi-squares to be
attributed to three main effects, three two-way effects, and the unique three-way
interaction. Although the chi-square decomposition in the multi-way contingency
tables had been studied long before statistical inferences were discussed for the
loglinear models, it is surprising that the inconclusive and varied calculations
of the partitioned chi-squares, as exemplified in Section 3, were not rigorously
analyzed. As a consequence, equation (1.3) given by Roy and Kastenbaum (1956)
led to the following development of a likelihood ratio test.

Darroch (1962, p. 260) derived a likelihood-ratio test for the three-way inter-
action effect based on the identity:

ZABC = ZI − ZAB − ZBC − ZCA, (4.1)

where ZABC = 2 Int(A;B;C) is the three-way interaction, ZI = 2 I(A;B;C) is
the joint mutual information of (2.6), and ZAB = 2I(A;B), ZBC and ZCA are
the obvious two-way effects. As a matter of fact, (4.1) was obtained from (1.3)
and (2.5), based on the argument that the partition bears an obvious analogy
to the ANOVA of the term χ2

3,L (cf. Section 3) discussed by Lancaster (1951).
Thus, on heuristic grounds, a test for no three-way interaction can be based on
ZABC � χ2

(I−1)(J−1)(K−1) (Darroch, 1962, p. 259). Equivalently, (4.1) asserts
that testing zero three-way interaction is equivalent to testing that the three
two-way effects altogether is equal to the effect of mutual independence among
the three variables. This is simply not true, because (1.3) is incorrect, a priori,
in view of the information identities (2.7) to (2.9).

For numerical evidence of the invalidity of (4.1), hence (1.3), a data example
is observed from Table 1 of Section 3. The computation using equations (3.1) to
(3.3) evaluates the left-hand side of (4.1) to be ZABC = 6.82. And, the right-hand
side of (4.1) is found to be 2(60.30−12.11−16.01−34.77) = −5.18 < 0 . The two
sides of (4.1) are unequal, and the illogical negative value is obtained, because
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(4.1) violates the identity (2.8), which disallows the inclusion of all the two-way
effects within the likelihood information decomposition.

There is however a useful interpretation: the right-hand side of (4.1) can be
expressed as an entropy identity,

H(X) + H(Y ) + H(Z) − H(X, Y ) − H(Y, Z) − H(Z, X) + H(X, Y, Z)
= I(X;Y ) + I(Y ;Z) + I(Z;X) − I(X;Y ;Z). (4.2)

The left-hand side of equation (4.2) is seemingly a Venn diagram in terms of
entropy, but its value need not be nonnegative as illustrated above. Nevertheless,
an ideal Venn diagram can be formulated in terms of relative entropy. It is
actually an equivalent identity to equation (4.2):

I(X) + I(Y ) + I(Z) − I(X;Y ) − I(Y ;Z) − I(Z;X) + I(X;Y ;Z)
= H(X, Y ) + H(Y, Z) + H(Z, X) − H(X, Y, Z) ≥ 0, (4.3)

where I(X) = H(X) is commonly defined for notational convenience.
Since 1962, the current finding with formulae (1.3) and (4.1) has been over-

looked in the statistics literature, as is not found in the studies of Lewis (1962,
p.100), Birch (1963, p.223), Goodman (1969, 1978), Bishop, Fienberg, and Hol-
land (1975), Hagenaars (1993), Christensen (1997), and Agresti (2002). In the
elementary analysis of a 2 × 2 table, it is also remarkable that partition of chi-
squares (associated with three degrees of freedom) could only yield equations in
distribution by approximation (Kendall and Stuart, 1978, (33.117); Rao, 1973,
(6d.2.6)), while exact equations are given in terms of relative entropy. The task
of examing the deviation from the mean in the classical ANOVA is intrinsically
different from testing association between categorical variables. It is clarified in
this study that information identities (2.5) to (2.9) provide a key to the analysis
of loglinear models. This introduces the linear information models which will be
presented in a forthcoming study.
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