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Abstract

We consider a continuous outcome subject to nonresponse and a fully observed covariate. We
propose a spline proxy pattern-mixture model (S-PPMA), an extension of the proxy pattern-
mixture model (PPMA) (Andridge and Little, 2011), to estimate the mean of the outcome
under varying assumptions about nonresponse. S-PPMA improves the robustness of PPMA,
which assumes bivariate normality between the outcome and the covariate, by modeling the
relationship via a spline. Simulations indicate that S-PPMA outperforms PPMA when the data
deviate from normality and are missing not at random, with minor losses of efficiency when the
data are normal.
Keywords missing data; missing not at random; nonignorable nonresponse; nonresponse bias

1 Introduction
Missing data are a common problem in many data sets. In this article we consider data where
our goal is to estimate the mean of a variable Y with n0 observed values ({Yi}, i = 1, . . . , n0)

and n1 missing values ({Yi}, i = n0 + 1, . . . , n0 + n1), when there is a set of p auxiliary variables
Z1, . . . , Zp that are fully observed ({Zi1, . . . , Zip}, i = 1, . . . , n, n = n0 + n1). Define the response
indicator R taking values 1 if Y is observed and 0 if Y is missing. It is common to use methods
that assume Y is missing at random (MAR) in the sense that R is independent of Y given the
observed covariates Z1, . . . , Zp (Rubin, 1976). Such methods include weighting class adjustments
and imputation. Our methods build on a robust MAR imputation method called penalized spline
of propensity prediction (PSPP) (Little and An, 2004; Zhang and Little, 2009; Yang and Little,
2015). This method (a) estimates the propensity that R = 1 given Z1, . . . , Zp based on a logistic
regression of R on Z1, . . . , Zp, using all the data, and (b) imputes Y based on the regression
of Y on a penalized spline of the estimated propensity, with other covariates being included
parametrically if they improve the predictions.

MAR-based methods are generally biased in cases where the missingness is missing not at
random (MNAR), meaning that missingness of Y depends not only on covariates Z1, . . . , Zp

but also on the value of Y itself. Schouten (2007) proposes a selection strategy for weighting
variables that relaxes the MAR assumption. The method uses a generalized regression estimator
to estimate the mean with auxiliary variables selected to minimize the maximal absolute bias
under MNAR. The selection strategy, however, is based on parameters estimated under the
MAR assumption and thus may be invalid if the missingness mechanism deviates markedly
from MAR. Pfeffermann and Sikov (2011) propose a method for estimating the mean under
MNAR by specifying models for the outcome and propensity, which is allowed to depend on
both the outcome and auxiliary variables. The method assumes known population totals for
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some or all of the auxiliary variables in the two models and estimates the model parameters in
a way that takes into account the known population totals.

The bivariate normal pattern-mixture model (BNPM) (Little, 1993, 1994) assumes a bi-
variate normal distribution for a single observed covariate X and an outcome Y within strata
defined by respondents and nonrespondents, with a different mean and covariance matrix in
each stratum. Parameters of BNPM are identified by assumptions about the missingness mech-
anism. For instance, under MAR, where missingness is assumed to depend on X but not Y , the
parameters of the regression of Y on X are the same for respondents and nonrespondents; as
a result, the maximum likelihood (ML) estimate for the mean of Y is the regression estimate,
μ̂Y = Ȳ (1) + sXY

sXX
(X̄ − X̄(1)), where X̄ is the sample mean of X, X̄(1) is the respondent mean of X,

Ȳ (1) is the respondent mean of Y , sXY is the respondent covariance of X and Y , and sXX is the
respondent variance of X. When missingness is MNAR and is assumed to depend on Y but not
X, the parameters of the regression of X on Y are the same for respondents and nonrespondents;
Little (1994) shows that the resulting ML estimate of the mean of Y is μ̂Y = Ȳ (1) + sYY

sXY
(X̄−X̄(1)),

where sYY is the respondent variance of Y . The approach is easily extended to allow missingness
of Y to depend on Y ∗ = X + λY for some known λ, a parameter that can then be varied in
a sensitivity analysis. ML, Bayesian and multiple imputation (MI) approaches to inference for
this BNPM model are described in Little (1994).

An advantage of the BNPM model is that it does not need to specify an explicit functional
form for the missingness mechanism, the mechanism entering in the form of restrictions on
the model parameters. The modification of MAR regression estimation to MNAR models is
straightforward, as seen in the estimate of the mean of Y above. However, validity of the estimates
depends on bivariate normality of X and Y , which is a strong assumption. For example, if X

is normal and Y given X is normal with conditional mean a quadratic function of X, then the
regression of X on Y is no longer linear, and ML estimates under the BNPM model are biased.
In this article we study the impact of such forms of misspecification on inferences for the mean
of Y .

We also propose a modification of the BNPM model, spline-BPNM (S-BPNM), which re-
places a parametric linear regression by a penalized spline, extending the PSPP method (which
assumes MAR) to MNAR situations; in the case where missingness depends on Y , we model the
regression of X on Y using a flexible penalized spline, rather than assuming a linear relationship.
The resulting estimate of the mean of Y is shown in simulations to be more robust than BNPM
to the distributional relationship between X and Y . The approach can also be generalized to the
case where missingness depends on Y ∗ = X + λY for some known value of λ.

We also consider cases with more than one covariate. In that context, proxy pattern-mixture
model analysis (Andridge and Little, 2011) extends the BNPM model to data with an outcome Y

and a set of p observed covariates Z1, . . . , Zp. The PPMA method replaces the set of covariates
by a proxy X, the single best predictor of Y given the covariates, estimated by regressing Y on
Z1, . . . , Zp for the respondents. The method then fits the pattern-mixture model in Little (1994)
to Y and X. Bayesian forms of PPMA take into account the estimation of the coefficients of Z

in the proxy variable X. This analysis relies on the bivariate normality assumption between the
proxy X and Y , which is violated when some or all of the covariates Z1, . . . , Zp used to estimate
X are not normally distributed. We propose a more flexible version of PPMA, which we call
spline-PPMA (S-PPMA), which relaxes the bivariate normality assumption between the proxy
and Y by replacing the linear regression of X on Y ∗ implied by the bivariate normality with a
penalized spline, allowing for a non-linear relationship between the variables.
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We conduct simulations to examine the performance of the new S-PPMA model, and in
particular to address the following questions:
1. How do inferences under S-BNPM and S-PPMA models compare with the original BNPM

and PPMA methods in terms of bias, root mean squared error (RMSE) and coverage, for
data sets generated under a variety of distributional assumptions?

2. How sensitive are S-BPNM and S-PPMA models to alternative assumptions about the miss-
ingness mechanism?
In the next section, we present the S-BNPM and S-PPMA models in detail. We then assess

their performance in simulation studies under a variety of distributional assumptions for the
auxiliary variables and missingness mechanisms.

2 Pattern-Mixture Model Analysis
We consider first bivariate data on X and Y , with X observed for the entire sample and Y subject
to missing data, and let R = 1 if Y is observed and R = 0 if Y is missing. Little (1994) assumes
the BNPM model:

(Y, X|φ(r), R = r) ∼ N2

([
μ

(r)
Y

μ
(r)
X

]
,

[
σ

(r)
YY σ

(r)
XY

σ
(r)
XY σ

(r)
XX

])
, R ∼ Bernoulli(π), (1)

where N2(μ, �) denotes the bivariate normal distribution with mean μ and covariance matrix �.
Since we have no data on Y for the nonrespondents (R = 0), we cannot estimate all of the
parameters in (1) for R = 0 without further assumptions. If assume that the missingness of Y

depends only on X, we can factor the joint distribution of X, Y , and R into:

p(X, Y, R|φ, π) = p(Y |X, R, φ)p(X|R, φ)p(R|π),

where p() is the probability density function. Under the bivariate normality assumption and the
property that the distribution of Y given X is independent of R, the parameters of the regression
of Y on X are the same for R = 1 and R = 0, leading to a just-identified model. Little (1994)
derives the ML estimates; in particular the ML estimate for μ̂Y , the mean of Y averaging over
R, is:

μ̂Y = Ȳ (1) + sXY

sXX

(X̄ − X̄(1)). (2)

Suppose now that the missingness of Y depends on Y but not X. This implies that the parameters
of the regression of X on Y are the same for R = 1 and R = 0, again leading to a just-identified
model. The resulting ML for μ̂Y averaging over R is:

μ̂Y = Ȳ (1) + sYY

sXY

(X̄ − X̄(1)). (3)

More generally, suppose that the missingness of Y depends on the value of Y ∗ = X + λY for a
given λ. Little (1994) shows that the ML estimate for μ̂Y averaging over R is then:

μ̂Y = Ȳ (1) + λsYY + sXY

λsXY + sXX

(X̄ − X̄(1)). (4)

It is easy to see that (4) reduces to (2) when the data is MAR (λ = 0), and to (3) when
missingness depends only on Y (λ = ∞). In practice, the data often provide no information about
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the value of λ. Little (1994) suggests a sensitivity analysis to capture the uncertainty about λ

by estimating μ̂Y over a range of λ. Large differences in μ̂Y over λ suggest that inferences on μ̂Y

are sensitive to assumptions about the missingness mechanism. Alternatively, we can specify a
prior distribution that reflects the uncertainty about the choice of λ.

2.1 Spline Pattern-Mixture Model

The BNPM model estimates rely heavily on the bivariate normality assumption between X and
Y. For example, (X, Y ) is not bivariate normal if (a) the conditional distribution of Y |X is normal
with E(Y |X) = 10 +X and the marginal distribution of X is gamma, or (b) X is normal but the
regression of Y on X is quadratic in X; in such cases the estimates from the BNPM model are
potentially biased even under the correct value of λ. We propose a penalized spline regression
(S-BNPM) model for X and Y that relaxes the bivariate normality assumption.

Suppose that missingness depends on the value of Y ∗ = X + λY for some known λ > 0.
The conditional distribution of X|Y ∗ is then the same for respondents and nonrespondents.
The S-BNPM method creates multiple imputations of the missing values of Y ∗ (and hence
Y = (Y ∗ − X)/λ) so that the regression of X on Y ∗ for respondents (where Y ∗ is observed) and
nonrespondents (where Y ∗ is imputed) follows the same spline regression model:

X|Y ∗ = β0 + β1Y
∗ +

K∑
k=1

γk(Y
∗ − κk)+ + ε, (5)

ε ∼ N(0, σ 2),

γk ∼ N(0, τ 2),

where a+ = a if a > 0 and a+ = 0 otherwise, and κ1 < . . . < κK are K knots. The model may be
fitted to the respondent data using a linear mixed model, treating the splines as random effects
and adding a penalization term, α

∑K
k=1 γ 2

k , to the log-likelihood to penalize the roughness of the
regression function, where α̂2 = σ̂ 2/τ̂ 2 and the model parameters are estimated via restricted
maximum likelihood (REML). Here, we adopt a Bayesian approach by assigning a uniform
prior for β and inverse gamma (υ = 10−5, ω = 10−5) priors for σ 2 and τ 2, which have a mean
of ω/(υ − 1) when υ > 1 and a variance of ω2/[(υ − 1)2(υ − 2)] when υ > 2, and obtain
draws from their posterior distributions using a Gibbs sampler (see Supplementary Material for
details of the algorithm). We give γ1, . . . , γK normal N(0, τ 2) priors that result in an equivalent
penalization to minimize over-fitting. While estimates are generally insensitive to the choice of
the inverse gamma hyperparameters, small values (e.g. 10−2 or less) should be chosen to yield
relatively noninformative but finite priors. In practice, the number of knots, and potentially a
polynomial basis for the splines, may be chosen based on the sample size and the observed degree
of nonlinearity. We recommend having at least 10 observations for each spline. For simplicity,
we consider splines with a linear basis.

We then adopt a hot deck procedure (Andridge and Little, 2010) to impute the missing
values of Y ∗, where the missing value of Y ∗ is imputed with the observed value of a matched
donor with X and Y ∗ observed. The method involves the following steps:
1. Draw B values of Y ∗ for each nonrespondent from the distribution of Y ∗|X, R = 0, estimated

under the BNPM model. This results in a pool of n1B values of Y ∗ ({Y ∗
p }, p = 1, . . . , n1B).

In the simulations in Section 3 a value of B = 100 is sufficient.
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2. Given each Y ∗
p in the pool, draw a value Xp from the posterior predictive distribution of

X|Y ∗ in (5), with parameters estimated from respondents. This results in a set of pairs of
({Xp, Y ∗

p }, p = 1, . . . , n1B) that form our donor pool.
3. For each nonrespondent j , choose a pair (Xk, Y

∗
k ) from the donor pool ({Xp, Y ∗

p },
p = 1, . . . , n1B) with the closest value Xk to Xj , and impute Y ∗

j = Y ∗
k (hence Yj = (Y ∗

k −Xj)/λ)
from that pair.

4. Repeat steps 2–3 above for 2000 iterations, deleting the first 1000 as burn-in and using every
other 10 iterations to create D = 100 multiply-imputed data sets with values of Y imputed.
Using multiple imputation combining rules (Little and Rubin, 2020) we obtain μ̂Y and its
variance:

μ̂Y = μ̂D = 1

D

D∑
d=1

μ̂d, (6)

Var(μ̂Y ) = 1

D

D∑
d=1

Wd + D + 1

D(D − 1)

D∑
d=1

(μ̂d − μ̄D)2, (7)

where μ̂d and Wd are the estimated marginal mean and variance in the dth imputed data set,
respectively. For the MAR assumption of λ = 0, we apply a Bayesian form of the PSPP method
(Zhang and Little, 2009; Yang and Little, 2015). Specifically, we regress Y on a spline of X using
the complete cases and impute Y by drawing directly from its predictive posterior distribution
in (5) given the observed X(1) for each iteration of the Gibbs algorithm.

The underlying rationale of the procedures is as follows. Since the unobserved Y ∗ is a
covariate in our spline model (5), we cannot impute Y ∗ by drawing directly from a model. Thus
we first create a donor pool of values ({Y ∗

ib}, b = 1, . . . , B, i = n0 + 1, . . . , n0 + n1) as draws
from the BNPM model. For each donor in the pool, we create a corresponding value of X as a
prediction from the spline model (5). We then match each incomplete case to a member of the
donor pool with a similar value of X, and impute for that case the corresponding value of Y ∗
from the donor. When the data are normal, the “hot-deck” matching step has little effect on the
final imputations of Y ∗. However, when data deviate from normality, the pairs (X, Y ∗) resulting
from the hot-deck respect the spline model (5) and hence should improve on the imputations
from the BNPM model, which incorrectly assume a linear relationship between X and Y ∗. In
practice, we create multiple initial draws of Y ∗ for each nonrespondent, as a large value of B

allows flexibility in the nonlinearity adjustment by S-BNPM and ensures a close match with
the donors for every observed X. In the following examples we find a value of B = 100 to be
sufficient to ensure a near-identical match in X.

As in the original BNPM model, the S-BNPM model utilizes the fact that, conditional
on the variables contributing to missingness, the regression model parameters are the same for
both respondents and nonrespondents. However, the penalized spline improves robustness of the
pattern-mixture model by allowing us to model nonlinearity in the relationship between X and Y .
As suggested in Little (1994), inferences for μ̂Y should be displayed for a range of potential values
of λ to account for uncertainty about the true value of λ and to assess sensitivity of inferences
to the choice of λ.

2.2 Extensions of Proxy Pattern-Mixture Model Analysis

There may be multiple observed covariates Z1, . . . , Zp that are predictive of μ̂Y . Andridge and
Little (2011) proposed an extension of the pattern-mixture model analysis by taking X as a proxy
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obtained by regressing Y on the set of Z1, . . . , Zp and replacing the set of covariates by X, the
estimated best predictor of Y given Z1, . . . , Zp. Proxy pattern-mixture model analysis (PPMA)
then estimates μ̂Y by applying the pattern-mixture model in Little (1994) to X and Y . The
advantage of reducing Z1, . . . , Zp to X is simplicity: modelling departures from MAR under one
sensitivity parameter λ is much simpler than specifying a model with p sensitivity parameters
for each of Z1, . . . , Zp. Moreover, should missingness depend on some other combination of
Z1, . . . , Zp (e.g. W = c1Z1 + . . . + cpZp, where c1, . . . , cp are constants), estimates for the mean
of Y are still approximately unbiased since Y is independent of W given X.

Andridge and Little (2011) showed that the uncertainty of the estimates of μ̂Y depends
largely on the degree of correlation between the proxy X and Y as well as the degree of sim-
ilarity between respondents and nonrespondents with respect to the value of X. When X and
Y are highly correlated and the values of X are similar for respondents and nonrespondents,
information on missing values of Y and evidence on the lack of response bias are both strong,
resulting in estimates of μ̂Y with high precision. However, if X and Y are weakly correlated and
the values of X are much different for respondents and nonrespondents, we have strong evidence
for response bias with little information on the missing values of Y , resulting in estimates of μ̂Y

with high uncertainty.

2.3 Spline Proxy Pattern-Mixture Model

As in the bivariate case, validity of the proxy pattern-mixture model proposed by Andridge and
Little (2011) when data are MNAR relies on the assumption of bivariate normality between
the proxy X and Y , which is violated when some or all of the Z1, . . . , Zp used to obtain X are
not normally distributed. Suppose, for example, Z is a fully observed standard normal variable
and Y given Z is normal with mean Z + Z2. Let X be a proxy from the regression of Y on Z

and Z2. When the data is MAR, X is an unbiased predictor of Y , hence estimates from the
pattern-mixture model under λ = 0 are unbiased. However, when missingness depends on Y , the
resulting proxy X is no longer an unbiased predictor of Y since the regression coefficients in the
regression of Y on Z and Z2 based on the respondents are biased for the nonrespondents. Since
X is some function of Z and Z2 which is not normally distributed, the assumption of bivariate
normality, hence linearity, with Y fails, resulting in biased estimates for all values of λ.

We propose a modification of the proxy pattern-mixture model that relaxes the assumption
of bivariate normality between X and Y . Suppose, as before, X is the predicted value of Y based
on regression of Y on Z1, . . . , Zp for the complete cases, and that missingness depends on the
value of Y ∗. The conditional distribution of X given Y ∗ is independent of R and the regression
coefficients of X on Y ∗ are the same for both respondents and nonrespondents. The model
proposed in Andridge and Little (2011) assumes linearity between X and Y , and hence Y ∗, which
as discussed may not be appropriate when X and Y are not bivariate normal. Thus, we propose
a spline proxy pattern-mixture model analysis (S-PPMA) to describe the relationship between
X and Y . Under S-PPMA, we first estimate the proxy based on a complete-case regression of Y

on Z1, . . . , Zp as in Andridge and Little (2011), and set X as the predicted value of Y from this
regression. Then, we apply a penalized spline model to X and Y and estimate μ̂Y as discussed in
Section 2.1. As in the bivariate model, we believe S-PPMA will further enhance the robustness
of PPMA by relaxing the bivariate normality assumption.

In the next section, we describe simulation studies to assess the performance of S-PPMA
under various distributions of Z1, . . . , Zp, Y , and missingness mechanisms. For comparison we
include estimates from the proxy pattern-mixture model proposed in Andridge and Little (2011).
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3 Simulation Studies
We assess the performance of S-PPMA for inferences about the mean of Y with respect to average
bias, root mean square error, 95% confidence interval width, and rate of confidence interval
non-coverage over 1000 replications and six scenarios. For each replication, we construct 95%
confidence intervals and estimate the non-coverage rate as the proportion of the 1000 confidence
intervals that do not cover the true value, where 95% CI = (μ̂Y − tn−1,0.975

√
Var(μ̂Y ), μ̂Y +

tn−1,0.975

√
Var(μ̂Y )), tn−1,0.975 is the 97.5th percentile of the t-distribution with n − 1 degrees of

freedom, and Var(μ̂Y ) is the estimated variance of the mean in (7). Confidence interval widths
(CIW) are computed as CIW = 2tn−1,0.975

√
Var(μ̂Y ), or for credibility intervals, the difference

between the 97.5th and 2.5th percentiles of the posterior distribution of μ̂Y . For all simulations,
we set sample sizes of n = 100 and n = 400 over 1000 replications and apply the penalized spline
models using K = 2 and K = 5 knots, respectively.

For the first scenario, we assume bivariate normal data of X and Y and compare estimates
of the mean of Y under the BNPM and S-BNPM models. For scenarios 2–5, we assume a set of
fully observed covariates Z1, . . . , Zp. Here, we first obtain the proxy X from a correctly specified
regression of Y on Z1, . . . , Zp using the respondent sample. Then, we estimate the mean of Y

using three methods:
1. We apply the S-PPMA model to X and Y using a penalized spline in (5). (S-PPMA)
2. We assume bivariate normality between X and Y and estimate μ̂Y via maximum likelihood

in (4) as originally proposed in Andridge and Little (2011). Variance is estimated using 200
bootstrap samples. (PPMA-ML)

3. We assume bivariate normality between X and Y and draw μ̂Y from its posterior distribution
as described in Little (1994). The 95% credibility intervals and coverage are based on draws
from the posterior distribution. (PPMA-BAYES)
Let λT be the true, unobservable value of λ generating missing data, and let λA be the

assumed value of λ in our models. For each scenario, we simulate nonresponse using λT = 0, 1
and ∞. To assess sensitivity of inferences to λA, we produce estimates under λA = 0, 1 and ∞ for
each value of λT , one of which corresponds to the true underlying value of λT . While inferences
under additional values of λA may be explored, we chose these three values to capture a range
of potential missingness mechanisms. In the following section, only results for which λA = λT

are shown (for rest, see Supplementary Material).

3.1 Scenario 1: Bivariate Normal Data

We assume a fully observed covariate X and a Y that is bivariate normal with X and subject
to missingness. The data is generated under the following pattern-mixture model with sample
sizes of n = 100 and n = 400:

R ∼ Bernoulli(0.5),

X, Y |R = 1 ∼ N2

([
0
0

]
,

[
1 0.5

0.5 1

])
,

X|R = 0 ∼ N(1, 1).

In this and all subsequent scenarios, nonresponse rates are approximately 50%. For sim-
plicity we only display results at n = 400, as results for n = 100 are generally similar (see
Supplementary Material). Figure 1 displays the performances of each estimator in terms of av-



82 Yang, Y. and Little, R.J.A.

Figure 1: Results for scenario 1 where λA = λT .

erage bias, root mean squared error (RMSE), 95% CIW, and its corresponding non-coverage
rate out of 1000 replications when λA = λT . In the figure, the true missingness of Y depends
on X + λT Y for λT = 0, 1, and ∞. Results show little differences between the methods in bias,
RMSE, and CIW regardless of λA in all values of λT (results for λA �= λT in Supplementary Ma-
terial). As expected, when λA = λT , all estimates are approximately unbiased and non-coverages
are near the nominal 5%, as BNPM is the correct model for the data. Moreover, CIW increases
as λT increases, reflecting a rise in uncertainty as a result of nonresponse due to Y . We notice
that the CIW for S-BNPM at λA = ∞ is narrower than that for BNPM under both ML and
Bayes for all values of λT . This may be due to a small correlation of 0.5 between X and Y ,
which may lead to a large value of sYY

sXY
in (3) and consequently an extreme μ̂Y . In S-BNPM, the

process of generating multiple initial draws of the missing Y and matching on the donor pool
based on predictions from the spline model helps to alleviate this problem as draws of X from
extreme values of Y are less likely to be matched to observed values of X, leading to less extreme
imputations in this particular scenario.
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3.2 Scenario 2: Bivariate Non-normal Data

Suppose X is a fully observed, gamma-distributed covariate and Y is normal conditional on X

and is subject to missingness. We generate the data under a selection model with sample sizes
of n = 100 and n = 400:

X ∼ Gamma(1, 0.25),

Y |X ∼ N(10 + X, 1).

We generate missing values of Y under the following models to reflect both MAR and MNAR
scenarios, assuming an unobserved latent variable U :

U |X, Y ∼ N(−1.5 + 0.5X, 1), (A. λT = 0)
U |X, Y ∼ N(−2.5 + 0.15(X + Y ), 1), (B. λT = 1)

U |X, Y ∼ N(−3.5 + 0.25Y, 1), (C. λT = ∞)

where Y is missing if U > 0 and observed otherwise.
In this scenario we include estimates from the true model, which models Y ∗ on U and X

for λT > 0, since Y ∗ and U are bivariate normal conditional on X. Since U is unobserved, we
estimate U by introducing a latent variable U ∗, and produce posterior draws of the missing Y ∗
iteratively by the following steps:
1. Initialize values of Y ∗(0) and U ∗ by setting Y ∗(0) as predictions from the regression of Y ∗ on X

under the complete cases, and draw U ∗ from a normal distribution with variance 1 and mean
Zπ̂ − Ȳ +Y , where π̂ is the nonresponse rate, Zα is the αth percentile of the standard normal
distribution, and Ȳ is the estimated mean combining the observed Y ∗(1) and the initialized
Y ∗(0). For respondents, positive values of U ∗ are discarded and redrawn until all values are
negative. Likewise for nonrespondents, we discard and redraw negative values of U ∗.

2. At the ith iteration, obtain posterior predictive draws of Y
∗(0)

(i) |U ∗(0)

(i−1), X
(0) under a linear re-

gression model with parameters estimated from Y ∗|U ∗
(i−1), X under the entire imputed sample,

using values of Y
∗(0)

(i−1) and U
∗(r)

(i−1) drawn from the previous iteration.
3. Obtain posterior predictive draws of U ∗

(i)|Y ∗(1), Y
∗(0)

(i) , X under a linear regression model for the
entire sample, where Y

∗(0)

(i) are predictive draws for the missing Y ∗(0) at the current iteration.
We again discard and redraw all positive values of U ∗

(i) for respondents and negative values
of U ∗

(i) for nonrespondents.
4. Repeat steps 2 and 3 over 1000 iterations, discarding the first 100 as burn-in. We then

apply (6) and (7) over the 900 sets of drawn values of Y ∗(0) to estimate the mean and
variance.

For λT = 0, we impute the missing Y based on posterior predictive draws from the regression of
Y on X on the complete cases.

Figure 2 displays results under λA = λT for λT = 0, 1, and ∞. As in Scenario 1, we only
display results at n = 400, as results for n = 100 are generally similar (see Supplementary
Material). When λT = 0, all methods are unbiased, with S-BNPM having slightly higher RMSE
and more conservative 95% confidence intervals. Since data is MAR and Y |X is normal with a
mean that is linear on X, the BNPM model is correctly specified and thus it is not surprising
that its estimates are unbiased and have better precision than S-BNPM. However, when λT = 1,
linearity assumptions for X|Y ∗ are violated, and consequently we see bias and under-coverage
by BNPM. Here, S-BNPM shows reductions in bias and to a lesser extent RMSE, and achieves
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Figure 2: Results for scenario 2 where λA = λT .

near nominal 5% non-coverage with a minor penalty in RMSE and precision compared to the
true model. The more the data deviate from MAR, the higher the gains in bias and RMSE from
S-BNPM, as evident in the results under λT = ∞. S-BNPM shows a noticeable improvement
in RMSE over BNPM and still yields close to nominal non-coverage. Robustness to normality,
however, comes at the price of precision, as S-BNPM tends to yield wider intervals than both
BNPM and the true model.

3.3 Scenario 3: Set of Normal Z’s

In this scenario, we assume a set of covariates that are normally distributed. Let Z1, Z2, Z3 be
fully observed covariates with distributions:

Z1 ∼ N(0, 1),

Z2 ∼ N(0, 1),

Z3 ∼ N(0, 1),

Y |Z1, Z2, Z3 ∼ N(15 + Z1 + 2Z2 + Z3, 1).
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Let Y be missing under the following logistic models:

Logit[Pr(R = 0)] = 0.5(Z1 + 2Z2 + Z3), (A. λT = 0)
Logit[Pr(R = 0)] = −3.5 + 0.25(0.98Z1 + 1.95Z2 + 0.98Z3 + Y ), (B. λT = 1)

Logit[Pr(R = 0)] = −7.5 + 0.5Y, (C. λT = ∞)
Logit[Pr(R = 0)] = 2Z2, (D)

Logit[Pr(R = 0)] = −7.5 + 0.5(2Z2 + Y ). (E)

For each missingness mechanism, we obtain the proxy X by regressing Y on Z1, Z2, and
Z3 apply the estimators to X and Y . Figure 3 shows results for λA = λT , with λT = 0, 1,
and ∞ under n = 400 (see Supplementary Material for rest of results). In addition there are
two nonresponse mechanisms, D and E, that do not correspond to any λT . When λT = 0, Y

is MAR, λA = 0 is the correct assumption about nonresponse and as a result all estimators
are approximately unbiased and yield similar RMSE, confidence interval widths, and near-
nominal non-coverage of 5%. For values of λA = 1 and ∞ when λT = 0, all three methods
exhibit bias, with negligible differences in RMSE, CIW, and non-coverage (not shown). Sim-
ilarly when λT = 1 and ∞, values of λA such that λA = λT result in negligible bias and
near nominal non-coverage for all estimators. For values of λA such that λA �= λT , all meth-
ods are biased with higher than nominal non-coverage, as expected given that the assumptions
about nonresponse are wrong. Results for mechanism D (not shown) are generally similar to
those of A, where λT = 0. Here, all methods have negligible bias and nominal non-coverage
at λA = 0 and yield similar RMSE and CIW at all values of λA. In mechanism E, all meth-
ods have minor bias at λA = 1 and cover the true mean at a rate close to 95%, with minor
differences in RMSE and CIW regardless of λA. In this scenario, nonresponse mechanisms D
and E do not deviate much from mechanisms A and B, which explains the similarity of re-
sults.

This scenario assumes that all auxiliary variables are normally distributed, resulting in a
proxy X that is normal and linear with Y regardless of the nonresponse mechanism. As such, the
methods in Andridge and Little (2011) produce valid estimates under the correct value of λA.
We again notice that S-PPMA tends to yield slightly more conservative confidence intervals
than PPMA, which suggests there is some penalty in precision from fitting a more robust model
when normality assumptions are met.

3.4 Scenario 4: Varying Distributions of Z

Let Z1, Z2, Z3 be fully observed covariates with the following distributions:

Z1 ∼ N(0, 1),

Z2 ∼ Gamma(1, 1),

Z3 ∼ Bernoulli(0.5),

Y |Z1, Z2, Z3 ∼ N(10 + Z1 + 4Z2 + Z3, 1).
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Figure 3: Results for scenario 3 where λA = λT .

Let Y be missing under the following logistic models:

Logit[Pr(R = 0)] = −2 + 0.5(Z1 + 4Z2 + Z3), (A. λT = 0)
Logit[Pr(R = 0)] = −4.5 + 0.25(0.98Z1 + 3.9Z2 + 0.98Z3 + Y ), (B. λT = 1)

Logit[Pr(R = 0)] = −7 + 0.5Y, (C. λT = ∞)
Logit[Pr(R = 0)] = −1 + Z2, (D)

Logit[Pr(R = 0)] = −4 + 0.25(2Z2 + Y ). (E)

We obtain the proxy by regressing Y on Z1, Z2, and Z3 using respondent data and apply
the estimators under λA = 0, 1 and ∞. Results for which λA = λT under n = 400 are shown in
Figure 4 (see Supplementary Material for rest of results). Mechanisms D and E do not correspond
to any value of λT . In this scenario we vary the distributions of the auxiliary variables and the
conditional mean of Y given Z1, Z2, and Z3 is dominated by a gamma distributed Z2. For λT = 0
where Y is MAR, all three methods yield approximately unbiased means with close to nominal
non-coverage when the correct value of λA = 0 is used. Under the incorrect values of λA = 1 and
∞, however, the S-PPMA has lower bias, lower RMSE, and lower non-coverage rate than the
linear models albeit with more conservative confidence intervals (not shown).
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Figure 4: Results for scenario 4 where λA = λT .

For λT = 1 and ∞, the PPMA estimates exhibit small bias even when λA = λT , most likely as
a result of lack of linearity between X and Y due to MNAR and some of the auxiliary variables be-
ing non-normal. The S-PPMA estimates at the correct λA show low bias and non-coverages close
to 5%, which may be explained by the spline’s ability to model nonlinearity between X and Y . It is
worth noting, however, that despite the bias PPMA still achieves good coverage at λA = λT = 1.
In terms of RMSE, S-PPMA has no noticeable gains over PPMA under λA = λT = 1, and larger
gains when λA = λT = ∞. This suggests that as dependence of nonresponse on Y increases, the
degree of nonlinearity adjustment by the penalized spline increases. Robustness to λT comes at
the expense of precision, as the penalized spline yields wider intervals under all values of λA for
any λT . However, it is important to note that values of Y tend to be much lower for respondents
than nonrespondents as a result of the nonresponse mechanism, which leads to sparse data and
extrapolation at higher values of Y . Thus, wider interval widths by the spline may be a reflection
of uncertainty in imputing the missing values by extrapolating a nonlinear model. For mechanism
D (not shown), there are no significant differences in RMSE and CIW regardless of λA, with negli-
gible bias at λA = 0 and close to nominal coverage at both λA = 0 and 1 for all methods. In mech-
anism E, both S-BNPM and BNPM yield similar estimates with nominal non-coverage at λA = 1.
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3.5 Scenario 5: Quadratic Term in Mean of Y

Let Z1 and Z2 be fully observed covariates with the following distributions:

Z1 ∼ N(0, 1),

Z2 ∼ N(0, 1),

Y |Z1, Z2 ∼ N(10 + Z1 + Z2 + 2Z2
2, 1).

Let Y be missing under the following mechanisms:

Logit[Pr(R = 0)] = −1 + 0.5(Z1 + Z2 + 2Z2
2), (A. λT = 0)

Logit[Pr(R = 0)] = −3 + 0.25(0.97Z1 + 0.97Z2 + 1.95Z2
2 + Y ), (B. λT = 1)

Logit[Pr(R = 0)] = −6 + 0.5Y, (C. λT = ∞)
Logit[Pr(R = 0)] = 4Z2, (D)

Logit[Pr(R = 0)] = −5.5 + 0.5(4Z2 + Y ). (E)

We estimate the proxy X by regressing Y on Z1, Z2, and Z2
2 using the complete cases and

apply the estimators under the different values of λA. Here we introduce a quadratic term in
the conditional mean of Y. For λT = 0, when data is MAR, the estimated proxies are unbiased
estimates of Y since they are based on a correctly specified regression model. As a result all
methods are unbiased with close to nominal 5% non-coverage when we assume the correct value
of λA = 0, with the spline having slightly wider interval widths (Figure 5). For other values of
λA, the S-PPMA shows smaller bias, lower RMSE, and much higher coverage rate than their
linear counterparts, and still achieves near nominal non-coverage under the incorrect assumption
of λA = 1 (not shown).

For λA = λT = 1, where missingness depends equally on both Y and the auxiliary vari-
ables, estimates under λA = 0 (see Supplementary Material) are similarly biased and intervals
undercover the true value for all methods, which is not surprising since the assumption of λT

is incorrect. However, S-PPMA has minor bias under λA = 1, which is the correct assumption
in this case shown in Figure 5, and near nominal non-coverage rates under both assumptions
of λA = 1 and λA = ∞, where the PPMA estimates are biased and undercover the true value.
With respect to RMSE, S-PPMA shows increasing gains over PPMA as λA increases.

When λT = ∞, where missingness depends only on Y , the penalized spline is again approx-
imately unbiased with nominal non-coverage under the correct assumption of λA = ∞, while
the linear models are heavily biased. This is due to nonlinearity between X and Y caused by
the quadratic Z2

2 term in the mean of Y , violating the bivariate normality assumption required
in PPMA. Although the spline yields more conservative intervals, possibly from extrapolating
nonlinearity, its ability to model nonlinearity results in estimates that are unbiased and have
good coverage rates. This is especially important when the missingness mechanism is MNAR,
where the proxy X is no longer unbiased and has a nonlinear relationship with Y . It is interesting
to note, however, that in this and the previous scenario, PPMA shows slightly lower RMSE at
the wrong assumption of λA = 1 when the true value is λT = ∞ (see Supplementary Material).

In mechanism D (not shown), the methods show low bias and similar RMSE at all values
of λA, with the ML estimate of BNPM having significantly wider intervals than S-BNPM and
the Bayesian estimate of BNPM, resulting in better coverage. In mechanism E, all methods are
generally biased and fail to achieve nominal non-coverage regardless of λA, with small differences
in RMSE. Again the ML estimate of BNPM tends to yield much wider intervals that result in
better coverage.
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Figure 5: Results for scenario 5 where λA = λT .

3.6 Scenario 6: Interaction Term in Mean of Y

Let Z1 and Z2 be fully observed covariates with the following distributions:

Z1 ∼ N(0, 1),

Z2 ∼ N(0, 1),

Y |Z1, Z2 ∼ N(20 + Z1 + Z2 + 2Z1Z2, 1).

Let Y be missing under the following mechanisms:

Logit[Pr(R = 0)] = Z1 + Z2 + 2Z1Z2, (A. λT = 0)
Logit[Pr(R = 0)] = −5 + 0.25(0.98Z1 + 0.98Z2 + 1.96Z1Z2 + Y ), (B. λT = 1)

Logit[Pr(R = 0)] = −10 + 0.5Y, (C. λT = ∞)
Logit[Pr(R = 0)] = 5Z2, (D)

Logit[Pr(R = 0)] = −10 + 0.5(5Z2 + Y ). (E)

In this last scenario, we let the conditional mean of Y be a function of two normally dis-
tributed variables and their interaction. We then model Y using a correctly specified regression
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Figure 6: Results for scenario 6 where λA = λT .

on Z1, Z2, and Z1Z2 for the respondents, and obtain the predicted values of Y as our proxy X. As
in all scenarios, Figure 6 shows that when missingness is at random, all methods are unbiased,
yield similar RMSE, and achieve nominal non-coverage under λA = 0 since the proxy X itself is
unbiased for Y . However, under the incorrect values of λA = 1 and λA = ∞, the S-PPMA shows
significantly larger bias, RMSE, and CIW than PPMA (see Supplementary Material).

When λT = 1, all methods have negligible bias under the correct value of λA = 1 as shown in
Figure 6, and achieve close to 5% non-coverage. There are generally minor differences in RMSE
between the methods regardless of the assumption in λA, though S-PPMA tends to be slightly
more conservative in terms of interval widths. For λT = ∞, all methods yield low bias with
similar RMSE at λA = ∞ and nominal non-coverage. All methods have similar bias, RMSE,
CIW, and coverage at all other values of λA (not shown). Although the mean of Y in this
scenario depends on the interaction of Z1 and Z2, which is not normally distributed, the model
assuming linearity between X and Y still yields good estimates of the mean under MNAR when
λA = λT . This may be because the distribution of Z1Z2 does not result in a drastic departure
from normality in the proxy X, so the bivariate normality assumption between X and Y still
approximately holds.
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In the results for mechanism D (not shown), which does not correspond to any value of
λT , estimates at λA = 0 are generally unbiased with minor differences in RMSE, and achieve
close to nominal non-coverage with the exception of the Bayesian BNPM. In mechanism E, all
methods show some bias at all values of λA with S-BNPM yielding higher RMSE than BNPM
at λA = ∞.

4 Example: Child Asthma Study
We apply S-PPMA and PPMA to an asthma study conducted by the University of Michigan
Schools of Public Health and Medicine. The study consists of children with asthma from Detroit
elementary and middle schools, whose aim is to evaluate the effectiveness of an educational
intervention in reducing asthma symptoms. The main outcome of interest is the average number
of nights the child experiences asthma symptoms per month, collected at baseline and one-year
follow-up. Our goal is to estimate the mean change in nights of symptoms per month from
baseline to follow-up, which is subject to dropout. However, since it is well documented that
asthma severity naturally declines as the child ages, we restrict our attention to only those in
the control group with symptoms at baseline.

Out of 133 children ages 6 to 14 with asthma symptoms at baseline in the control group, 41
(31%) dropped out before follow-up information was obtained. Since dropout may be attributed
to asthma severity, we apply the S-PPMA and PPMA models to estimate the mean change in
nights of symptoms per month. Only age and measurement at baseline are significantly associated
with the outcome, with baseline age also being significantly associated with response. We first
obtain our proxy by regressing change in nights per month on its baseline value and age using
the respondent sample. We then apply the S-PPMA and PPMA models to estimate the mean
change in nights of symptoms per month.

Figure 7 shows the distributions of baseline age and nights per month in our data. Both
variables show deviations from normality, particularly nights of symptoms per month. Figure 8
displays scatter plots for the relationship between X and Y along with the average regression
lines for PPMA and S-PPMA. For the regression of Y on X under the assumption of λ = 0,
both PPMA and S-PPMA yield near identical regression lines. However, differences can be seen
for the regression of X on Y under the assumption of λ = ∞, where S-PPMA seems to provide
a minor improvement in fit. As such, we expect some differences between estimates from S-
PPMA and PPMA, particularly at λ = ∞. Figure 9 shows estimates of the mean change under
each method. Each line represents the mean and its 95% confidence interval for S-PPMA (PS)
and PPMA, which is estimated using both maximum likelihood bootstrap (ML) and posterior
draws (PD). To assess sensitivity to our assumption about λ, we display estimates under λ =
0, 0.5, 1, 4, and ∞. Results show that the mean change in symptoms per month generally
decreases as we place more weight on our outcome to response, which suggests that children
with higher decrease in symptoms may be less likely to participate in the follow-up survey. As
expected from Figure 8, estimates for PPMA and S-PPMA at λ = 0 are similar, with differences
between the methods being most pronounced at λ = ∞. There are minor differences between
the PPMA estimates, with the posterior draws generally producing more conservative intervals
than maximum likelihood. As in the simulations, interval lengths tend to widen slightly as λ

increases due to increasing uncertainty when missingness depends on the outcome. S-PPMA
is to a small degree less sensitive to assumptions about λ than PPMA, as estimates of mean
change are within 0.1 nights of each other for values of λ > 0, whereas estimates from PPMA
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Figure 7: Distributions of baseline covariates.

are generally within 0.4 nights as λ varies from 1/2 to ∞. In terms of precision, S-PPMA tends
to be more conservative than ML but has slightly narrower interval widths than PD.

In practice, one might choose some intermediate value of λ (e.g. λ = 1) since it represents
a more conservative assumption about the missingness mechanism. However, lack of sensitivity
to λ allows for more robustness of estimates to the assumptions about missingness, which is
important since any belief regarding λ cannot be tested.

5 Discussion
Most nonresponse adjustment methods assume MAR, which can be a strong and untestable
assumption. An advantage of the PPMA model is it allows us to make inferences about the
mean of an outcome variable without assuming MAR. Moreover, the model does not require us
to specify a propensity model, since it assumes that missingness depends only on the value of
X+λY . The method simplifies nonresponse adjustment by combining a set of auxiliary variables
into a single measure X and models departures from MAR using a single sensitivity parameter λ.
In our proposed extension to the PPMA model, we model the relationship between X and Y

through a spline. An advantage of this approach is that it does not require X and Y to be bivariate
normal, which is assumed in PPMA, since splines allow us to model nonlinearity between the
variables. As a result, we do not require the auxiliary variables to be normally distributed, as



Spline Pattern-Mixture Models for Missing Data 93

Figure 8: Relationship between X and Y .

the model is robust to non-normal distributions of the auxiliary variables. It is important to
note, however, that we do not specify a joint distribution between X and Y . Thus S-PPMA is
approximately viewed as a method.

While S-PPMA utilizes initial values of Y generated from the potentially incorrect PPMA
model, the additional steps of spline modelling and hot deck imputation helps to adjust for
this nonlinearity. Our simulations show that the proposed S-PPMA model with penalized spline
consistently yields approximately unbiased estimates with near nominal non-coverage regardless
of the distributions of the auxiliary variables when the correct value of λ is used. Compared to the
original PPMA proposed in Andridge and Little (2011), S-PPMA has shown to yield estimates
that are more robust to covariate distributions, though with a slight penalty in precision when
the PPMA model is correct. The gains in bias and RMSE are particularly noticeable the more
the auxiliary variables deviate from normality. Results for a smaller sample size of n = 100 (see
Supplementary Material) show similar trend, where S-PPMA provide some gains in bias and
RMSE when covariates are not normal and missingness is not at random, though differences in
bias and RMSE tend to be less pronounced than in larger sample sizes. Moreover, the bootstrap
variance estimates of PPMA tend to be more conservative than their Bayesian counterpart,
leading to better coverages.

It may be tempting to estimate the value of λ by specifying a prior distribution. However,
any inference about λ would be driven entirely by the prior since the data contains no informa-
tion about λ. Thus we recommend conducting a sensitivity analysis by applying the S-PPMA
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Figure 9: Estimates for mean change in nights of symptoms per month.

model over a range of λ. The sensitivity analysis reflects our uncertainty about the nonresponse
mechanism by displaying estimates of the mean over different values of λ, ranging from MAR
(λ = 0) to the more extreme MNAR that assumes missingness depends only on the outcome it-
self (λ = ∞). Comparing estimates over a range of λ helps to provide us an idea of how sensitive
our inferences are to the missingness mechanism.

Our examples assume that the variables used to predict the outcome are fully observed,
which may not be the case since often both outcome and covariates are missing at the same
time, as is the case in unit nonresponse. Extension to the S-PPMA model incorporating ad-
ditional assumptions about missingness of the covariates may be explored. In our simulations,
S-PPMA tends to yield wider confidence intervals than the bivariate normal model particularly
for λ > 0. This may be attributed to the fact that when the data is MNAR, values of the
outcome for the nonrespondents may be drastically different than the respondents, leading to
extrapolation. Estimation becomes particularly tricky when the relationship between Y and X

is nonlinear. Thus, the precision of the penalized spline at high values of λ may be a reflection
of our uncertainty in extrapolating a nonlinear model.

The S-PPMA and PPMA models assume that missingness depends only on the value of
X + λY , where X is a function of the covariates Z1, . . . , Zp. In reality, there are infinite ways
in which data is missing. For example, missingness of Y may depend only on some subset of
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Z1, . . . , Zp, which would not be reflected by X + λY for any λ. While we may place additional
sensitivity parameters on the auxiliary variables, it will reduce simplicity of the model. Finally,
we assume that our outcome variable, Y , is continuous and limit our inferences to the mean.
Extensions to the S-PPMA model are needed to model non-continuous outcome variables.

Disclaimer
This work was performed while Ye Yang was a doctoral student at the University of Michigan.
This article reflects the views of the authors and should not be construed to represent the Food
and Drug Administration’s views or policies.

Supplementary Material
Please refer to the Supplementary Material document for:
1. A detailed description of the Gibbs sampling algorithm for the penalized spline prediction.
2. Results from all six simulation scenarios, including estimates from n = 100 and n = 400 and

where λA = λT and λA �= λT .
3. R code and workspace for the simulations.
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