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Abstract: We propose a coherent methodology for integrating different
sources of information on a response variable of interest, in order to accu-
rately predict percentiles of its distribution. Under the assumption that one
of the sources is more reliable than the other(s), the approach combines fac-
tors formed from the data into an additive linear regression model. Quantile
regression, designed for quantifying the goodness of fit precisely at a desired
quantile, is used as the optimality criterion in model-fitting. Asymptotic
confidence interval construction methods for the percentiles are adopted to
compute statistical tolerance limits for the response. The approach is demon-
strated on a materials science case study that pools together information on
failure load from physical tests and computer model predictions. A small
simulation study assesses the precision of the inferences. The methodology
gives plausible percentile estimates. Resulting tolerance limits are close to
nominal coverage probability levels.
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1. Introduction

The aim of this paper is to propose a method for integrating different sources
of information on a response variable of interest, in order to make inferences on
the percentiles of its distribution. The approach is general enough to be ap-
plicable in a variety of fields. To set the stage, consider the basic problem in
engineering design of how to manage variability and risk in the properties of
materials. Albeit costly, physical testing of the materials has traditionally been
the primary method of quantifying uncertainty in vital characteristics like failure
load. Recent advances in the sophistication of analytical physics-based engineer-
ing models and associated hardware/software technology, are steadily becoming
increasingly important contributors in this endeavor. Although potentially less
precise, the lower cost of the latter (the indirect method) makes it an attractive
contender to the former (the direct method), since it does not involve physical
manipulation of the material. A sound uncertainty management strategy in this
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context might arguably be the effective integration of the information obtained
from each method. The aim of this paper is to propose a coherent methodology
for such a purpose.

Fields as diverse as archaeology, astronomy, engineering, geophysics, medicine,
military operations, and psychology, have developed and applied statistical meth-
ods to integrate heterogeneous sources of data (Draper et al., 1992). The concept
is related to meta analysis, with an early effort by DuMouchel and Harris (1983)
employing a Bayesian approach to combine the results from different studies.
(See Hedges and Olkien, 1987, for a comprehensive account of meta analysis.)
Craig et al. (2001), present a Bayesian forecasting approach that integrates data
from computer models and expert opinions. Recently, a comprehensive method-
ology has been advanced by Reese et al. (2004), who show how information from
computer models, expert opinions, and physical experiments, can be integrated
via a multi-stage hierarchical Bayesian regression framework.

By their very nature, Bayesian approaches tend to suffer from prior sensi-
tivity problems. Opting for a nonparametric frequentist stance, we propose a
novel approach for the integration of heterogeneous sources of information, by
combining data via a regression factor model. Our method is motivated by the
need to analyze a specific setup where only test data and computer prediction
data in the form of a range of values are available. In this context we seek to
make inferences on specific extreme percentiles of the response. Selecting quantile
regression (Koenker and Bassett, 1978) as our model-fitting criterion, provides
us with an inferential mechanism that targets precisely the desired quantile. As-
sociated confidence interval construction methods can then be used to calculate
tolerance limits such as A basis and B basis values (see Definition 1) for the
quantile(s) in question.

Although conceived in the context of a materials science problem, our ap-
proach has obvious potential applications in any field where percentile inference
(extreme or otherwise) is the main goal. Nuclear Engineering safety assessment
places a premium on quantifying the risk of extreme events such as reactor core
meltdown. Environmental Engineering seeks to measure probabilities of high
toxicity levels by combining data from various geobiotic sites. Civil Engineering,
Coastal Engineering, the insurance industry, and several others, are all in the
business of establishing safety margins to avert catastrophic events. It is often
the case that such assessments involve the integration of information from more
than one source.

This article is a refinement and condensation of the main findings in Trindade
and Uryasev (2006), where specific connections with financial measures of risk
are alluded to. The remainder of our paper is organized as follows. Section
2 introduces the regression modeling framework under which the data are to
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be combined. The model-fitting criterion, quantile regression, and associated
inference techniques are covered in Section 3. The methodology is illustrated in
Section 4 by applying it to a case study from the aerospace industry involving
material failure loads. We conclude in Section 5 with a Monte Carlo study on
the precision of the inferences derived from the methodology.

2. The Modeling Framework

The setup for the problem we wish to address is as follows. Data are collected
on a response variable of interest obtained through two mechanisms: direct ob-
servation and indirect observation. Assume that the direct data is more precise
than the indirect data, that is to say, the direct measurements are believed to
be closer to the truth. In the case study we will shortly consider, the response is
material strength and the direct data is obtained by applying increasing loads to
samples of such material until failure is observed. In addition, failure load predic-
tions obtained via methods that do not involve physical testing of the material
are also available, and comprise the indirect data. The latter can encompass
a broad spectrum of methods, from analytical physics-based computer models
and simulations, to subjective expert opinions. Primary questions of interest are:
how to effectively integrate direct and indirect data in a coherent manner so as to
use all available information, and how to quantify the contribution of the indirect
data in the presence of the direct data. In the case study, the hope is that indirect
model data which is cheaper to generate, can contribute to accurate prediction of
failure loads, reducing the need for more expensive direct test data. The mate-
rial may be available in different formulations, changes in its composition and/or
structure deliberately introduced in the manufacturing process so as to affect the
response.

We consider only the simplest case when direct data and only one type of
indirect data are available. The basic idea underlying the approach is to use
a regression framework, with each of the direct data values as the response in
turn; the remainder and all the indirect data serving as explanatory variables
(covariates). Let Yij denote the response obtained from the j-th direct data
value corresponding to the ith formulation, i = 1, . . . , I, and j = 1, . . . , Ni. We
condense the data from each source, direct and indirect, into a pair of summary
statistics such as the mean and standard deviation. Other data reduction mea-
sures of location (e.g. median) and dispersion (e.g. lower semi-deviation) could
also be used for more skewed data. Let (mi(j), si(j)) denote respectively the sam-
ple mean and standard deviation for the direct data in formulation i, obtained
from Yi,1, . . . , Yi,j−1, Yi,j+1, . . . , Yi,Ni . Letting (µi, σi) denote the indirect data
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mean and standard deviation in formulation i, we fit the regression model:

Yij = c0 + c1µi + c2σi + c3mi(j) + c4si(j) + εij , (2.1)

where c0, . . . , c4 are unknown regression coefficients to be estimated from the
data, and εij is the residual error corresponding to the jth direct data value in
the ith formulation. Evidently, if only the indirect data mean, µi is available,
then the c2σi term will be absent. This basic setup can easily be extended
to accommodate data from several (K say) indirect data sources (µ(k)

i , σ
(k)
i ),

k = 1, . . . ,K, which can occur if competing approaches are being considered, e.g.
two numerical models plus expert opinions (K = 3). Extensions to additional
sources of variability are likewise immediate. Of course, the basic linear model
can also be made more flexible by the inclusion

The motivation behind model (2.1) is two-fold and can be heuristically ar-
gued as follows. Firstly, it provides a way to combine the direct and indirect
information; leaving Yij out of the (mi(j), si(j)) calculation in a sense justifies its
use as the (obvious) response at that level of i and j. Secondly, the approach
“pools” together information from all sources when making inferences on a par-
ticular source, in much the same way as the Stein effect improves estimation by
using information from all coordinates when estimating each coordinate (Berger,
1982).

In reliability applications where failure load is the response, accurate inference
on low quantiles of its distribution are often desired. To ensure ample safety
margins, engineering specifications usually call for estimates of the 1st and 10th
quantiles, along with associated 95% lower confidence bounds. The resulting
tolerance limits are repectively known as A basis and B basis. Precise definitions
of these terms are as follows.

Definition 1 (A basis and B basis) Let {X1, . . . ,Xn} be a random sample
of observations from random variable X with continuous distribution function
F (x) ≡ P (X ≤ x). For probability level 0 ≤ τ ≤ 1, let ξτ ≡ ξτ (X1, . . . ,Xn) be a
statistic (a function of the random sample) satisfying,

0.95 = P [1 − F (ξτ ) > 1 − τ ] (2.2)
= P [F (ξτ ) < τ ] = P

[
ξτ < F−1(τ)

]
. (2.3)

Representation (2.3) means that (ξτ ,∞) is a one-sided confidence interval for
F−1(τ), so that ξτ is a lower 95% confidence bound for the τ th quantile of X.
Equivalently, representation (2.2) means that ξτ is a lower 95% tolerance bound
for the (1 − τ)th quantile of X. An A basis value is defined to be ξ0.01, and a
B basis value, ξ0.10. Thus in repeated sampling, the calculated A basis (B basis)
value would fall below the true 1st (10-th) percentile, 95% of the time.
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With inference on such extreme quantiles of the response in mind, minimiza-
tion of residual error criteria such as squared or absolute deviations with their
focus on measures of central tendency, may be inappropriate. Quantile regression,
to be discussed next, provides a promising alternative.

3. Model Fitting: Quantile Regression

Consider observations

yi = β0 + β1xi1 + . . . + βpxip + εi = bx′
iβ + εi, (3.1)

for i = 1, . . . , n, from the linear regression model

Y = β0 + β1X1 + . . . + βpXp + ε, (3.2)

where the errors {εi} are independent and identically distributed (i.i.d.) with cdf
Fε and pdf fε. Since P (Y ≤ y|x) = Fε (y − x′β), it follows immediately that the
conditional quantile function of Y given x = [1, x1, . . . , xp]′, QY (τ |x), and the
quantile function of ε, are related according to,

QY (τ |x) = x′β + F−1
ε (τ) ≡ x′β(τ), (3.3)

where β0(τ) = β0+F−1
ε (τ), and βj(τ) = βj , for j = 1, . . . , p. Viewed as a function

of the design point x, QY (τ |x) describes how the τth quantile surface of Y varies
as a function of the factors X1, . . . ,Xp.

Let y′ = [y1, . . . , yn] denote the observed vector of responses, so that y =
Xβ + ε. For any real number z, define (z)+ = max{0, z} and (z)− = min{0, z}.
In analogy with the fact that any number b̂(τ) that satisfies,

b̂(τ) = arg min
b∈R

1
n

n∑
i=1

[
τ(yi − b)+ − (1 − τ)(yi − b)−

]
,

is an estimator of the τth quantile of Y based on the sample y1, . . . , yn, Koenker
and Bassett (1978) proposed that a natural estimator of β(τ) can be obtained
by minimizing the criterion,

V(b) =
1
n

n∑
i=1

[
τ(yi − x′

ib)+ − (1 − τ)(yi − x′
ib)−

]
, (3.4)

over all b ∈ Rp+1. The resulting estimators, β̂(τ), called regression quantiles by
Koenker and Bassett (1978), are therefore given by,

β̂(τ) = arg min
b∈Rp+1

V(b).
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The methodology that results in the regression quantiles is called Quantile
Regression. Using it to fit model (2.1), leads to the following estimated equation
for the τth quantile of the failure load, as a function of the generic design vector,
x′ = {1, µ, σ,m, s}:

Q̂Y (τ) = ĉ0(τ) + ĉ1(τ)µ + ĉ2(τ)σ + ĉ3(τ)m + ĉ4(τ)s = x′ĉ. (3.5)

A basis and B basis values are obtained as a 95% lower confidence bound
for the respective quantile, τ = 0.01 or τ = 0.10. Several methods are available
for the construction of such a confidence bound; we present three of the most
promising.

(i) Studentization. This is due to Koenker (1994), and is based on the asymp-
totic distribution of the regression quantiles derived by Koenker and Bassett
(1978) under mild regularity conditions. With Ω = X′X and z.05 denoting
the 5th percentile from a standard normal distribution, the studentization
method results in the A basis (τ = 0.01) or B basis (τ = 0.10) value

x′ĉ + z.05ŝn(τ)
√

τ(1 − τ)x′Ω−1x, (3.6)

where ŝn(τ) is an estimate of the sparsity function s(τ) = 1/fε(F−1
ε (τ)),

obtained by using for example the Hall-Sheather bandwidth.

(ii) Direct. A nonparametric approach making direct use of the empirical quan-
tile function, proposed by Zhou and Portnoy (1996). This results in the A
basis (τ = 0.01) or B basis (τ = 0.10) value

x′ĉ
(
τ + z.05

√
τ(1 − τ)x′Ω−1x

)
. (3.7)

(iii) Resampling. Various bootstrap methods have also been suggested by Koenker
(1994), and Zhou and Portnoy (1996). Generally speaking, the bootstrap
B basis (A basis) value would be the 5th empirical quantile of the sampling
distribution of the estimator of the 10th (1st) quantile.

Approaches (i) and (ii) were originally presented in the context of homoscedas-
tic errors, that is, all εi having the same variance. By introducing weights
w1, . . . , wn in the criterion function (3.4), which becomes

V(b) =
1
n

n∑
i=1

1
wi

[
τ(yi − x′

ib)+ − (1 − τ)(yi − x′
ib)−

]
, (3.8)

Zhou and Portnoy (1998) generalize (i) and (ii) to accommodate heteroscedastic-
ity (different error variances). The only adjustment needed in (3.6) and (3.7), is
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to redefine Ω = X′Diag(w1, . . . , wn)X with the weights vector w = [w1, . . . , wn]′

estimated either via least absolute deviations or least squares. The latter permits
a closed form representation for the estimator as

ŵ = X(X′X)−1X′|ξ̂|,
where ξ̂ is the vector of quantile regression residuals resulting from a median
quantile regression fit (τ = 0.5).

Finally, and in analogy with R2 of ordinary regression, Koenker and Machado
(1999) point out that a measure of goodness-of-fit relative to the intercept-only
model can also be defined in the framework of quantile regression. That is, if
β̃0(τ) denotes the estimated regression quantile in the intercept-only model, and
β̂(τ) the estimated regression quantiles in the full model (3.5), we define

R1(τ) ≡ 1 − V
(
β̂(τ)

)
/V

(
β̃0(τ)

)
. (3.9)

The R1(τ) criterion thus assess the appropriateness of the fitted conditional quan-
tile function of Y at τ , on a scale of 0 to 1. Values close to 0 (1) suggest a poor
(good) fit.

Remark. Trindade and Uryasev (2006) demonstrate that whereas the fitted
quantile regression criterion V(β̂(τ)) is not easily interpretable, the modified cri-
terion VC(β̂(τ)) defined as,

VC(β̂(τ)) =
max(τ, 1 − τ)

τ(1 − τ)
V(β̂(τ)),

can be visualized as the distance between the mean and the tail mean beyond the
smaller of the τth or (1− τ)th quantile, for the fitted residual error distribution,

ε̂ = Y − β̂0(τ) − β̂1(τ)X1 − . . . − β̂p(τ)Xp.

That is,

VC(β̂(τ)) =
{

CVaRτ (ε̂ − Eε̂) , if τ ≥ 0.5,
CVaR1−τ (Eε̂ − ε̂) , if τ < 0.5,

where for random variable Z, CVaRτ (Z) = E
[
Z | Z ≥ F−1

Z (τ)
]
.

4. Integrating Data on Composite Material Strength: A Case Study
from the Aerospace Industry

In this section we apply the data integration and quantile regression method-
ology to a dataset supplied by The Boeing Company involving the strength of a
composite material available in several different formulations. The information
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available within each formulation consisted of: (i) an upper and lower failure load
prediction limit for each formulation stemming from an analytical model (model
data); and (ii) actual observed failure loads obtained through physical testing of
formulation samples (test data). The test and model data comprise the direct
and indirect data respectively, and we refer to it as such in the context of this
case study. The dataset considered consisted of 18 formulations with exactly 5
test points per formulation.

Figure 1 shows the case study data augmented with 10th and 90th percentile
lines, estimated via weighted quantile regression (least squares weights). If Ui and
Li denote respectively the upper and lower model failure load prediction limits
in the ith formulation, the model mean and standard deviation is computed as
µi = (Ui + Li)/2 and σi = (Ui −Li)/2. As is evident, the method gives plausible
percentile estimates. Information is pooled from all formulations when making
inferences on a particular formulation.
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Figure 1: The Case Study Data With Estimated 10th and 90th Percentiles.
Each formulation has an upper and lower failure load prediction limit stemming
from an analytical model (model points), and actual observed failure loads
obtained through physical testing of formulation samples (test points). The
percentile lines are fitted via weighted quantile regression, using both model
and test data as covariates.

In direct analogy with ordinary regression, and to quantify the contribution
from a subset of covariates given a subset already in the model, we can compute
the partial R1(τ). Simplify the notation by suppressing dependence on the fitted
parameters ĉ(τ), and let the subscripts m, t, and mt denote respectively results
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of weighted quantile regression runs using as covariates model only data, test
only data, and both model and test data. For example, VC

mt(τ) denotes the
weighted quantile regression goodness-of-fit criterion attained under model (2.1),
while VC

t (τ) denotes the same attained under the subset model

Yij = c0 + c3mi(j) + c4si(j) + εij .

The partial R1(τ) of the model data given the test data can then be defined as

R1
m|t(τ) ≡ 1 − VC

mt(τ)/VC
t (τ) =

R1
mt(τ) − R1

t (τ)
1 − R1

t (τ)
.

VC
t (τ) and R1

t (τ) are replaced by VC
m(τ) and R1

m(τ) in the definition of R1
t|m(τ).

Figure 2 shows a schematic of all the partial R1(.10) values, as a function of the
terms present in the quantile regression model.
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Figure 2: Partial R1(0.10) values for the case study data. Values are computed
from weighted quantile regression fits using test only (t), model only (m), and
both test and model (mt) data as covariates.

The diagram in Figure 2 suggests that the model data contributes little (1.8%)
in the presence of the test data, whereas the test data contributes 19.1% in the
presence of the model data. Table 2 shows the change in the fitted coefficients
(and standard errors) as we add more covariate terms into the 10th quantile
regression model. The signs of the coefficients remain consistent throughout;
positive (negative) for the mean (standard deviation) terms, agreeing with the
intuitively obvious fact that quantile estimates should increase with increasing
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mean failure loads, and decrease with increasingly variable failure loads. Only
the mean terms in the subset models (model only and test only) are significant;
sample sizes are generally too small to accommodate a more complex regression
model.

Table 1: Fitted coefficient values under 10-th quantile regression modeling
with different sets of covariates. The first set includes only model mean (c1)
and standard deviation (c2) data; the second only test mean (c3) and standard
deviation (c4) data; the third both model and test data. Standard errors appear
in parentheses.

Covariates Estimates of quantile regression coefficients
used c0(0.1) c1(0.1) c2(0.1) c3(0.1) c4(0.1)

model only -1.59 0.96 -1.02
(10.94) (0.16) (2.36)

test only 1.72 0.95 -1.33
(7.88) (0.15) (1.70)

model & test 0.24 0.20 -0.54 0.79 -0.58
(14.73) (0.92) (2.32) (0.93) (2.69)
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Figure 3: The entire quantile regression process for the case study data. The
goodness-of-fit criterion R1(τ) from weighted quantile regression fits, plotted
as a function τ . The line types indicate whether only test, only model, or both
test and model, data are used as covariates.
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A broader perspective of the extent of the goodness-of-fit attained for these
data is presented in Figure 3, which shows the value of R1(τ) plotted as a function
of τ . These values are obtained as in Figure 2, for all values of 0 < τ < 1. The
different line types indicate whether only test, only model, or both test and model,
data are used as covariates. The small difference in fits obtained by using test
only vs. model and test as covariates, with model only fits lagging about 10%
below these, is consistent with our earlier statements. Slightly better fits for all
are attained in the right tails (τ > 0.5).

5. Assessing the Precision of the Inferences on Simulated Data

As a check on the precision of the results, the performance of the methodology
was assessed in a controlled environment consisting of failure data simulated
from two-parameter Weibull distributions. The choice of shape (α) and scale (β)
parameters, constituting a formulation, is made randomly and uniformly over
the rectangle, 10 < α < 80 and 40 < β < 120. (This region encompasses
plausible values of the Weibull parameters for the case study data, determined
by a maximum likelihood fit to the test data within each formulation.) A random
draw of fixed sample size Ni ≡ n is then made in each of I formulations, for all
combinations of n = 5, 10, 20, 30, and I = 5, 10, 20, 50. The n points constitute
the test data used to form (mi(j), si(j)). The true mean and standard deviation
of the formulation Weibull distribution form the model data,

µi = βiΓ(1 + 1/αi), and σi = βi

√
Γ(1 + 2/αi) − Γ(1 + 1/αi)2.

Table 2: Percent coverages for B basis values computed via studentized
weighted quantile regression. The data within a formulation are simulated
from a Weibull distribution, with shape (α) and scale (β) parameters selected
randomly and uniformly over the rectangle, 10 < α < 80, 40 < β < 120.
Coverages are based on 1,000 replications. Nominal level is 95%.

Number of Number of test points per formulation
formulations 5 10 20 30

5 32.6 39.4 39.9 41.5
10 72.2 78.1 82.8 85.8
20 89.9 92.0 94.6 95.4
50 95.4 96.6 97.6 98.0

Regression model (2.1) is then fitted via weighted quantile regression, and the
B basis calculated using the studentization approach. This is replicated 1,000
times for each (n, I) combination. The percentage of time that the calculated
B basis fell below the true 10th percentile within each formulation is recorded.
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Averaging these percentages across all formulations gives the B basis percent
coverage probabilities presented on Table 2.

For small formulation and test point numbers, coverages are well below the
nominal 95% level. The nominal level is attained at about 20 formulation, each
with 20 test points. The direct method was found to be unsuitable for extreme
quantiles like the 10th; the value in parenthese of equation (3.7) was often neg-
ative. Because of the reasonable studentization coverages obtained in the range
of sample sizes present in the study, the computationally intensive resampling
methods were not implemented.

Figure 4 shows the resulting B basis line for the case study data, computed
via this studentized approach at each of the fitted 10th percentile lines. The large
variability present in the estimates is reflected in the distance between the two
lines. This is not however inconsistent with the small amount of data available,
especially test points within formulations. One would naturally expect better
results in larger studies.
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Figure 4: B basis values for case study data. The estimated 10-th percentile
and B basis lines are based on quantile regression fits, with both test and model
data as covariates.

6. Summary

We have shown how predictions on material strength from computer or an-
alytical models can be coherently integrated with physical test data, in order
to improve the accuracy of estimates for percentiles of the failure load distribu-
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tion. The method is general enough to be applied to any situation where one
seeks to combine quantitive data on a particular response variable from a more
trustworthy source, with data obtained from one or more less reliable sources.
The information integration is accomplished in the farmework of a regression
model, the parameters of which can be estimated via weighted quantile regres-
sion, a criterion specifically designed to achieve a good fit at a chosen percentile.
In the case of Weibull-distributed failure loads, tolerance limits calculated via
a one-sided asymptotic confidence bound were found to achieve good coverage
probabilities at moderate sample sizes. An argument analogous to the partial
R2 of ordinary regression indicates that the model information by itself explains
about 65% of the “variability” seen in percentiles of the failure load distribution.
The incorporation of the test data in the form of summary statistics serving as
covariates, accounts for approximately 20% of the remaining variability.
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Appendix: Details on Formation of the Response Vector and Design
Matrix from Available Test and Model Data

We provide specifics on the formation of response vector y and design matrix
X of Section 2, used for quantile regression fitting in Section 3. Let Yij be
jth response for the ith formulation, obtained from direct data, i = 1, . . . , I,
j = 1, . . . , Ni. The total number of direct data values is N =

∑I
i=1 Ni. To build

the regression data, the direct data in each formulation are partitioned into two
disjoint sets; values in one set are used as the response while those in the other
are used to form the covariates. This is repeated for all remaining possible ways
to partition the direct values so as to result in different response and covariate
sets. The details are as follows:

1. Repeat the following loop for each formulation i, where i = 1, . . . , I:

(a) Form all pi =
(Ni

r

)
possible partitions of the Ni direct values into two
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disjoint sets consisting of r and ni = Ni − r values, respectively, where
0 ≤ r ≤ Ni, is constant for all i. The r values will be used to form
the covariates (the covariate set), while the ni values will be used as
responses (the response set).

(b) Let Y
(q)
i(1), . . . , Y

(q)
i(ni)

denote the direct values in the qth response set,
q = 1, . . . , pi. Form yi, the vector of length nipi consisting of the
responses ordered as follows,

yi = [Y (1)
i(1), . . . , Y

(1)
i(ni)

, Y
(2)
i(1), . . . , Y

(2)
i(ni)

, . . . , Y
(pi)
i(1) , . . . , Y

(pi)
i(ni)

]′.

(c) Let Y
(q)
i(ni+1), . . . , Y

(q)
i(Ni)

denote the direct data values in the qth co-

variate set, q = 1, . . . , pi. Form m
(q)
i and s

(q)
i , the sample mean and

standard deviation of the direct data values in the qth covariate set:

m
(q)
i =

1
r

Ni∑
j=ni+1

Y
(q)
i(j), s

(q)
i =

√√√√ 1
r − 1

Ni∑
j=ni+1

(
Y

(q)
i(j) − m

(q)
i

)2
.

If r = 0, the direct data is not used as covariates (only indirect data).
If r = 1, then s

(q)
i = 0. If r = Ni, we use all the direct data as both

response and covariates.

(d) Form µ
(k)
i and σ

(k)
i , the sample mean and standard deviation of the

indirect data from the kth source in formulation i, for all k = 1, . . . ,K.

(e) Form the design matrix, Xi, for formulation i. This consists of the
direct and indirect data summary statistics arranged in a matrix of
nipi rows and 2K +3 columns (the first column consists of the number
1). The rows correspond to those in yi. If # = �v/ni� denotes the
largest integer greater than or equal to v/ni, the vth row of Xi is just

[
1, µ(1)

i , σ
(1)
i , µ

(2)
i , σ

(2)
i , . . . , µ

(K)
i , σ

(K)
i ,m

(#)
i , s

(#)
i

]
.

2. Form y, the regression response vector of length n =
∑I

i=1 nipi com-
prised of the vertical concatenation of the formulation response vectors,
y′ = [y′

1, . . . ,y
′
I ].

3. Form the regression design matrix, X, with n rows and l + 1 = 2K + 3
columns, comprised of the vertical concatenation of the formulation design
matrices Xi, X′ = [X′

1, . . . ,X
′
I ].
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Note that throughout the paper we used r = 4. An example follows.
Example. Suppose formulation i has {10.1, 12.3, 14.5, 16.7} as direct data, and
{12.4, 16.8} as indirect data. We will illustrate the calculations in 1(a). Here
K = 1, Ni = 4, and suppose we choose r = 2. Then pi =

(4
2

)
= 6, and Xi will be

of dimension (12 × 5). We obtain,

µ
(1)
i = (12.4 + 16.8)/2 = 14.6, and σ

(1)
i = 16.8 − 12.4 = 4.4.

For the first covariate set, {14.5, 16.7}, we obtain

m
(1)
i = (14.5 + 16.7)/2 = 15.6, and s

(1)
i = 16.7 − 14.5 = 2.2.

Computing m
(2)
i , . . . ,m

(6)
i and the corresponding s

(2)
i , . . . , s

(6)
i similarly, gives

eventually,

y′
i = [10.1, 12.3, 10.1, 14.5, 10.1, 16.7, 12.3, 14.5, 12.3, 16.7, 14.5, 16.7] .

The first 3 columns of Xi consist of the numbers 1, 14.6, and 4.4, respectively,
while the 4th and 5th columns are

[15.6, 15.6, 14.5, 14.5, 13.4, 13.4, 13.4, 13.4, 12.3, 12.3, 11.2, 11.2]

and
[2.2, 2.2, 4.4, 4.4, 2.2, 2.2, 6.5, 6.5, 4.4, 4.4, 2.2, 2.2].
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