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Abstract: We develop a likelihood ratio test statistic, based on the beta-
binomial distribution, for comparing a single treated group with dichoto-
mous data to dual control groups. This statistic is useful in cases where
there is overdispersion or extra-binomial variation. We apply the statis-
tic to data from a two year rodent carcinogenicity study with dual control
groups. The test statistic we developed is similar to others that have been
developed for incorporation of historical control groups with rodent carcino-
genicity experiments. However, for the small sample case we considered,
large sample theory used by the other test statistics did not apply. We de-
termined the critical values of this statistic by enumerating its distribution.
A small Monte Carlo study shows the new test statistic controls the signifi-
cance level much better than Fisher’s exact test when there is overdispersion
and that it has adequate power.

Key words: Beta-binomial distribution, dual control groups, extra-binomial
variation, Fisher’s exact test, historical controls, likelihood ratio test, overdis-
persion, rodent carcinogenicity bioassay, significance level.

1. Introduction

When testing the null hypothesis of equal binomial parameters with random
samples from two populations, Fisher’s Exact test, the continuity corrected Chi-
square test, or the z-test based on normal theory are the test statistics generally
used. When there are replicate random samples from each population, a t-test
(using the arcsin square root of the proportions as data) is a common method of
analysis. However, the variation in proportions among replicate random samples
from the same population may exhibit greater variation than would be predicted
by the simple binomial model. This is often the case in toxicological studies,
where the proportion of litter mates with certain birth defects may vary more
from litter to litter within the same treatment than would be predicted by the
binomial model. The increase in variation over that predicted by the binomial
model is called overdispersion. When overdispersion is present in the data, the
analysis based on the t-test may not be the most appropriate.
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Kleinman(1973) proposed a weighted least squares approach for inference
on proportions in the presence of overdispersion. Williams(1975) developed a
likelihood ratio statistic, for comparing two proportions in teratology studies in
cases where there is overdispersion among replicate groups. His statistic was
based on the beta-binomial distribution. Kupper and Haseman(1978) devel-
oped a similar likelihood ratio statistic based on the correlated-binomial model.
Pack(1986) showed, through simulation studies, that the likelihood ratio test
based on the beta binomial model was superior to the alternate parametric mod-
els. In toxicology-teratology studies there are usually 20-40 litters (or replicate
random samples) per group, and the large sample properties of the likelihood ra-
tio statistic guarantee that the asymptotic Chi-square distribution is appropriate
for the beta-binomial likelihood ratio statistic.

In addition to applications in toxicology and teratology studies, the beta-
binomial likelihood ratio test of proportions has also been applied to animal car-
cinogenicity studies when the study results are combined with historical controls.
Tarone, Chu and Ward (1981) found overdispersion when they examined tumor
rates in historical controls, and this will normally be the case due to differences
from study to study. Hoel (1983) and Tarone (1982) proposed tests for carcino-
genic effect utilizing historical controls. Both of these tests followed Williams’
(1975) idea of using the beta-binomial distribution to model the overdispersion
(or extra-binomial variation in proportions). With a large number of historical
control groups, their likelihood ratio test statistics follow the Chi-square distribu-
tion due to large sample properties. Hoel(1983) also considered exact tests. Since
Hoel and Tarone’s seminal papers on the incorporation of historical controls in
tests for carcinogenic effects, additional research has been done to expand and
extend their results.

The asymptotic Chi-square null distribution of the beta-binomial likelihood
ratio test of proportions with overdispersion is justified in toxicology studies with
20-40 litters per group or in animal carcinogenicity studies where there are 50
or more historical control groups. However, in cases where there are very few
replicate samples per treatment group, using the large sample properties will not
be valid. In this paper we examine the case where there are only two replicate
samples for the control group and one for the treated group. We develop a
likelihood ratio statistic with overdispersion, along the lines of Williams(1975),
but then find its exact null distribution by enumerating all possible tables of
counts. We study the significance level of this test and its power via a simulation
study. We found it to be quite acceptable.

2. An Illustrative Data Set

Long-term animal experiments for routine testing of chemicals is part of the
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procedure for setting public health regulations in many countries (see Gart et
al.(1986)). There has been discussion of the use of two identical control groups
in these studies as a quality control check for identifying possible biases within
the design (see Society for Toxicology(1982)). Table 1 presents data from one
such study. This was a two-year study with Swiss crl:CD-1 BR mice that was
submitted to the United States Environmental Protection Agency June 29, 19931

(see Hansen(1994)). The table shows the number of male mice with liver ade-
noma/carcinoma in dual control groups and three treatment groups. There was
no statistically significant difference in survival between the high dose and control
groups in this study. Therefore it should be possible to get a first indication of
carcinogenic activity by comparing the crude proportion of tumors between the
control and treated groups.

Table 1: Data from rodent carcinogenicity study

Group animals with tumor animals without tumor total

Control 1 1 49 50
Control 2 8 42 50
Treated (low dose) 9 41 50
Treated (mid dose) 10 40 50
Treated (high dose) 12 38 50

The regulatory agency reviewing the data suggested that each treatment
group should be compared to each control group and to the combined control
groups, using Fisher’s Exact test, to determine if there was an increase in tu-
mors. Using this approach there was no significant increase in tumors for the low
and mid-dose group, but there was a significant increase for the high-dose group.
The data for the last comparison (control groups versus high-dose group) is the
data we will use to illustrate the likelihood ratio statistic we develop.

The problem with the data in Table 1 is that there is a significant differ-
ence in the proportion of tumors between the two control groups (p = 0.0154).
Therefore, it appears that there is a highly significant increase in tumors for the
high dose when compared to control group 1, but there is no significant increase
when compared to control group 2. This situation can arise with dual control
groups and is exactly the case that Haseman et. al (1990) describes as difficult
to interpret. When the results of a study are difficult to interpret, they cannot
simply be ignored. Some way must be found to explain and interpret the data
for the regulatory agency where it is submitted.

1See Hansen, L. J. (1994). United States Environmental Protection Agency Memorandum
from Linnea J. Hansen (Health Effects Division) to Robert Brennis and Joseph Tavano (Resgis-
tration Division) dated June 22, 1994.
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Is it possible that two control groups could have different tumor rates in the
same study? There are many reasons cited in the literature why this could be the
case (see Haseman et.al. (1989), and Haseman (1995)). The most common cause
of differences in tumor rates between supposedly equivalent groups is differences
in mortality. If this is the case, the appropriate way to test for a treatment effect
would be to do a mortality adjusted analysis rather than an analysis of the crude
proportions. However, there was no difference in mortality for the groups in Table
1, and methods for mortality adjusted analysis will not be discussed here.

Other reasons for a difference in tumor rates between equivalent control groups
in the same study include things such as differences in preparation of tissue
slides, differences among histology technicians reading the slides, and time related
diagnostic shifts in reading the slides. Haseman et. al. (1986) said there may also
be random differences in tumor rates between equivalent groups and estimated
there is a 47-50% chance that some tumor type may show significant differences
by chance. We believe the beta-binomial overdispersion model is a good way to
model these random or unexplainable differences and provide a reasonable way to
explain and interpret the data in Table 1. We believe the use of Fisher’s exact test
when there is a significant difference in the control groups is inappropriate, and
we show in Section 7 that the significance level of Fisher’s Exact test is inflated
when there is overdispersion.

3. Modeling Overdispersion

To clarify the concept of overdispersion we will first describe it for quanti-
tative variables and then show the analogous case for dichotomous data. If the
response variable in a study is quantitative, such as animal weight, and there are
Ji independent samples or groups of nij animals for each of two treatments, the
model for the data can be written as:

Yijk = µi + eijk (3.1)

where i = 1, 2, j = 1, . . . , Ji, k = 1, . . . , nij , and eijk ∼ N(0, σ2). V ar(Yijk) = σ2
e .

If there is overdispersion an additional term is added to the model

Yijk = µi + Gij + eijk (3.2)

where Gij ∼ N(0, σ2
G). The random nested group effect, Gij , represents the

overdispersion in the data, since the V ar(Yijk) = σ2 + σ2
G > σ2 when σG > 0 in

model (3.2).
If the data are binomial tumor counts rather than quantitative measures, a

model analogous to model (3.1) is the binomial model

P (Yij = y | pi) =
(

nij

y

)
py

i (1 − pi)nij−y. (3.3)
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Yij is the number of tumors in the j-th sample or group for the i-th treatment,
pi is the probability of a tumor in the i-th treatment group, and V ar(Yij) =
nijpi(1 − pi).

The beta-binomial model takes overdispersion into account by allowing the
Binomial parameter, pi , in model (3.3) to be a random variable, Pij , that varies
from sample group to sample group of animals, receiving the same treatment,
according to the Beta Distribution:

f(Pij |αi, βi) =
Pij

αi−1(1 − Pij)βi−1

B(αi, βi)
, 0 < Pij < 1, αi > 0, βi > 0, (3.4)

where αi and βi are the parameters of the beta distribution, and B((αi, βi) =
Γ(αi)Γ(βi)/Γ(αi +βi). The marginal distribution of Yij is then the beta-binomial
distribution:

P (Yij = y) =
(

nij

y

)
B(αi + y, nij + βi − y)

B(αi, βi)
. (3.5)

Griffiths (1973) reparameterized the beta-binomial parameters such that

P (Yij = y) =
(

nij

y

)
B(µi/θi + y, nij + (1 − µi)/θi − y)

B(µi/θi, (1 − µi)/θi)
. (3.6)

where µi = αi(αi + βi)−1 is the mean of the distribution, or average probability
of a tumor in the i-th treatment, and θi = (αi + βi)−1 is a reasonable measure
of overdispersion because 1/(αi + βi + 1) is the correlation between the binary
variates in the beta-binomial setting.

For the case we will study i = 1, 2 where 1 = control and 2 = treated; J1 = 2
for dual control groups, and J2 = 1 for one treatment group. Fixing i = 1,
the beta-binomial model was fit to the two control groups in Table 1, and the
maximum likelihood estimates of µ1 and θ1 were 0.089 and 0.056 respectively.

4. A Likelihood Ratio Test Based on the Beta-Binomial Model

A likelihood ratio test for differences in average proportion of tumors in the
treatment and control groups of a 3× 2 table (in the presence of overdispersion)
can be constructed under the beta-binomial model given in equation (3.6). A
reasonable test would be to compare the probability of a tumor in the treatment
group to the probability of a tumor in the two control groups, assuming the extra-
binomial variation or overdispersion is the same for both treatment and control
groups (since we have no replicate samples to estimate the overdispersion in the
treated group).
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The log likelihood function for all the tumor counts in a 3 × 2 table, under
the beta-binomial model given in equation (3.6), can be expressed as:

L = C +
2∑

i=1

Ji∑
j=1

[ln B(µi/θi + yij, nij + (1 − µi)/θi − yij)

− ln B(µi/θi, (1 − µi)/θi] , (4.1)

where C is a constant, Ji = 2 when i = 1 (control) and Ji = 1 when i = 2
(treatment). The likelihood ratio test statistic for testing the hypothesis H0 :
µ1 = µ2 versus the alternative Ha : µ1 �= µ2 with the restriction that θ1 = θ2, is
S = −2×(L0−La) where L0 is the maximized value of (4.1) under the restriction
that µ1 = µ2 and θ2 = θ2, and La is the maximized value of (4.1) without the
restriction that µ1 = µ2.

Since ln B(α, β) = lnΓ(α)−ln Γ(β)−ln Γ(α+β), the terms of the sum of equa-
tion (4.1) can be evaluated using the readily available statistical software such as
SAS and Splus and the maximization can be accomplished using the program-
ming languages of these packages, or even using simple spreadsheet programs (see
Lawson and Meade (1998)). The statistic S for the 3 × 2 Table 1 was computed
to be S = 2.15, and the parameters were estimated to be θ̂ = 0.0802, µ̂1 = 0.1382.

Even though the test statistic can be easily computed, it is questionable
whether the chi-square distribution with one degree of freedom would be appropri-
ate for determining the critical region. In the next section the exact distribution
of the likelihood ratio test statistic under the null hypothesis is discussed.

5. Significance Limits for Likelihood Ratio Test with Small Sample
Sizes

To compute the exact distribution of the beta-binomial likelihood ratio statis-
tic, S, defined in the last section, we used the following procedure. For control
group 1, let a represent the number of animals with tumors, and b represent the
number of animals without tumors. Similarly for control group 2, let c and d
represent the number of animals with and without tumors, and for the treated
group let e and f represent the number of animals with and without tumors. The
normal situation for carcinogenicity studies is a + b = c + d = e + f = 50, or
fifty animals per group. Since a, c, and e can each range between 0 and 50, there
are 513 = 132, 651 potential tables of counts for the domain of our study. The
test statistic, S, was computed for all possible 132,651 tables of counts. This was
accomplished using the NLPCG subroutine in SAS proc IML. This subroutine
will do a nonlinear optimization of a function by the conjugate gradient method.
The values of the test statistic, calculated for each potential table of counts, were
then sorted and weighted according to the probability of the occurrence of the
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counts in the table (i.e., P (Y11 = a)×P (Y12 = c)×P (Y21 = e) where P (Yij = y)
were calculated using equation (3.6)). T his was done for the case the of no treat-
ment effect, i.e., µ1 = µ2, and θ1 = θ2, and for various overdispersion scenarios
determined by the value of θ1 = θ2.

The 20 scenarios studied were

(µ = 0.0076, 0.01, 0.14, 0.20) × (θ = 0.01, 0.04, 0.06, 0.0711, 0.110).

Figure 1 shows the cumulative distribution of the test statistic, S, for five scenar-
ios and compares them to the cumulative distribution function for the Chi-Square
Distribution with one degree of freedom. From the graph it can be seen that the
distributions are not close to the chi-square with one degree of freedom. Since
the chi-square distribution is to the left, using it to calculate critical limits would
result in too many false positives and inflated significance limits.

Cumulative Distribution FunctionBeta-binomial Data  mu=.14
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Figure 1: Cumulative distribution – Beta-binomial likelihood ratio statistic

Figure 1 also shows that the likelihood ratio test statistic, S, is not a pivotal
quantity because its distribution (under the null hypothesis) depends upon the
unknown population parameters µ and θ. It can be seen in Figure 1 that as
the parameter θ increases, the whole cumulative distribution shifts to the right.
Because θ increases with the variance of the beta-binomial distribution, a larger
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value of the test statistic is required to reject the null hypothesis H0 : µ1 = µ2 at
the same significance level when there is a larger variance.

Table 2: Summary of quadratic curve fits

Statistic 90-th Percentile 95-th Percentile 99-th Percentile

Response Mean 3.9922 5.4740 7.6281
Root MSE 0.1668 0.2080 0.2205
R-Square 0.9920 0.9843 0.9893
Coefficient of Variation 4.18% 3.80% 2.89%

From the cumulative distribution curves generated for the 20 different scenar-
ios, empirical quadratic equations were fit by least-squares so that the extreme
percentiles of the distribution can be approximated as a function of the param-
eters µ and θ. These are given below as equations (5.1), (5.2), and (5.3). These
equations will be useful for predicting the extreme percentiles of S for any 2 × 3
table containing dichotomous data with one treated and two control groups and
with estimated values of µ and θ within the range of the 20 scenarios studied.
The quadratic equations were fit using the desired percentage as the response and
the square root of θ and µ as the independent variables. The fits were excellent,
and the summary statistics from the fits are shown in Table 2.

90-th percentile = 0.49329 + 14.097646
√

µ + 5.286806
√

θ

−27.879764µ + 38.035832
√

µθ − 20.208964θ (5.1)

95-th percentile = 1.791458 + 11.312982
√

µ + 8.100139
√

θ

−22.324785µ + 29.442947
√

µθ − 15.511246θ (5.2)

99-th percentile = 4.988716 + 4.02004
√

µ − 1.961369
√

θ

−11.422557µ + 40.398358
√

µθ + 8.678507θ (5.3)

These equations were used to predict the 90-th, 95-th and 99-th percentiles
of the distribution of S for the case where θ = 0.0802, µ = 0.1382 (the values
estimated from Table 1) and resulted in the predicted values 5.762, 7.061, and
9.298. These were very close to the actual percentiles 5.807, 7.084, and 9.265
obtained by enumerating the distribution for this case.

A proposed procedure for using the test statistic, S, and the significance limits
given above is outlined as follows:

(1) Compute the maximum of the likelihood function La and the maximum like-
lihood estimates of µ1, µ2, and θ under the alternative hypothesis that µ1 �= µ2.
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(2) Compute the maximum of the likelihood function L0 and the maximum like-
lihood estimates of µ1, µ2, and θ under the null hypothesis that µ1 = µ2.

(3) Compute S = −2 × (Lo − La).

(4) Compare S to the 90-th, 95-th or 99-th percentile critical limits obtained from
equations (5.1), (5.2) or (5.3) using the maximum likelihood estimates of µ1 and
θ obtained in step (1).

Following steps (1) through (4) described above with the data from Table 1, we
calculated the estimates of θ̂ = 0.0802, µ̂1 = 0.1382 and S = 2.15 for comparing
the treatment group to the controls. The 90-th percentile of the distribution of
S, approximated from equation (5.1) with these estimates of θ and µ is 5.762.
Since S = 2.15 < 5.762, it indicates that there is no significant difference between
treatment and controls. This is the same conclusion that would have been reached
if S had been compared to the incorrect chi-square reference distribution, but it is
different from the conclusion that was reached using Fisher Exact test in Section
2.

6. Power Study

In this section we complete our study of the proposed likelihood ratio test
statistic, S, by studying its power properties under various alternatives. This was
done by simulation. In the simulation study two control groups were compared
to one treatment group in a 3 × 2 table with 50 simulated animals per group.

Generating random data from the beta-binomial distribution is similar to
generating data from the binomial distribution. Since a binomial random variable
can be expressed as a sum of independent Bernoulli random variables, a beta-
binomial random variable can likewise be expressed as a sum of independent
Bernoulli random variables where the Bernoulli parameter, Pij , varies from group
j to j within treatment i according to a beta distribution. For the two control
groups (i = 1, j = 1, 2) and the treated group (i = 2, j = 1), 50 independent
uniform(0,1) variables Uij,1, . . . , Uij,50 were generated (Ross (1987)). The values
of each of these variables represented an individual animal. In addition, a random
value of Pij was generated for each group, j, from the beta distribution with the
values for the parameters µi and θi that are constant for each treatment i. If
Yijk is the indicator of a tumor for the k-th animal in the j-th group for i-th
treatment, then Yijk is equal to 1 if Uijk < Pij and zero otherwise. The simulated
count of tumors in the j-th group for i-th treatment, Yij =

∑60
k=1 Yijk, follows

the beta-binomial distribution with parameters µi and θi.
The beta-binomial likelihood ratio test statistic, S, was computed for each

simulated 3 × 2 table along with the maximum likelihood estimates of the pa-
rameters and the computed critical values. For each alternative, this process
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was repeated 1000 times and Table 3 shows the power (at the α = 0.05 level
of significance) under each alternative. Three values of the control group mean,
six values of the treatment group mean, and four overdispersion scenarios are
represented in the table. One thousand repetitions reduce the margin of error in
the estimated power to less than 0.035.

Table 3: Power of the test∗

Treatment mean Oversispersion Control Mean (µ)

(µ) (θ) 0.01 0.07 0.20

0.01 0.01 0.070 — —
0.07 0.01 0.522 0.054 —
0.14 0.01 0.842 0.162 —
0.20 0.01 0.956 0.352 0.058
0.40 0.01 0.996 0.893 0.474
0.80 0.01 1.000 0.997 0.996
0.01 0.04 0.047 — —
0.07 0.04 0.373 0.055 —
0.14 0.04 0.698 0.128 —
0.20 0.04 0.849 0.210 0.040
0.40 0.04 0.963 0.651 0.246
0.80 0.04 0.994 0.918 0.510
0.01 0.08 0.047 — —
0.07 0.08 0.356 0.064 —
0.14 0.08 0.671 0.138 —
0.20 0.08 0.790 0.166 0.056
0.40 0.08 0.932 0.467 0.154
0.80 0.08 0.970 0.758 0.666
0.01 0.11 0.040 — —
0.07 0.11 0.356 0.066 —
0.14 0.11 0.595 0.112 —
0.20 0.11 0.758 0.190 0.040
0.40 0.11 0.932 0.443 0.246
0.80 0.11 0.973 0.513 0.510

∗ Power values were simulated at the 0.05 level of significance.

It can be seen in the results that the power increases as the mean for the
treatment group increases, and decreases as the overdispersion (θ) increases. The
significance level, or power when the treatment mean is equal to the control
mean, is not inflated and remains near 0.05 when the overdispersion parameter
(θ) increases. The power appears reasonable for the alternatives listed.
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7. Performance of Fisher’s Exact Test with Overdispersed Data

Fisher’s exact test is one commonly used test statistic for comparing crude
proportions. We investigated the type I error rate of this test statistic for com-
paring one treatment group to dual control groups when extra-binomial variation
may be present in the data. To do this, the cumulative distribution was calcu-
lated under three different overdispersion scenarios, similar to what was done for
the likelihood ratio statistic in section 5. Four Fisher’s exact test statistics were
calculated for each of the 132,651 possible tables of counts. The first statistic,
labeled cg1 compares the treatment group to control group 1.

cg1 =
a∑

i=0

(
a + b

i

)(
e + f

a + e − i

)
/

(
a + b + e + f

a + e

)
(7.1)

This statistic is a function of the potential values a, b, c, d, e, and f in each
table of counts as described in Section 5, and represents the probability of a or
fewer tumors in control group 1.

The second statistic, labeled cg2, compares the treatment to control group
2, and represents the probability of c or fewer tumors in control group 2.

cg2 =
c∑

i=0

(
c + d

i

)(
e + f

c + e − i

)
/

(
c + d + e + f

c + e

)
(7.2)

The third statistic, labeled com, compares the treatment group to the com-
bined control groups, and represents the probability of a + c or fewer tumors in
the combined control groups.

com =
a+c∑
i=0

(
a + b + c + d

i

)(
e + f

a + c + e − i

)
/

(
a + b + c + d + e+

a + c + e

)
(7.3)

The fourth statistic, labeled sma, compares the treatment to the control
group that results in the smallest p-value (worst case). The cumulative distribu-
tion of each Fisher’s exact test statistic was calculated under different overdis-
persion scenarios by weighting the values calculated for each potential table of
counts by the joint probability of that table obtained using equation (3.6) under
the null hypothesis of no treatment effect, i.e., µ1 = µ2, and θ1 = θ2.

For a one sided test of whether the number of tumors in the treated group is
large with respect to the control group(s) (or equivalently whether the number
of tumors in the control group(s) is small with respect to the treated group), we
would reject the null hypothesis when the test statistic is smaller than a critical
value. In this case the test statistic represents the probability of observing a



368 J.S. Lawson and B. Ahlstrom

number of tumors less than or equal to what was actually observed. For example,
when the chosen level of type I error is α = 0.05, the critical region for the statistic
cg1 would be {cg1|cg1 ≤ 0.05}.

Table 4: Actual significance levels for 0.05 level Fisher’s exact test statistics
with beta-binomial data

Beta-binomial parameter Fisher’s exact statistic

µ θ cg1 cg2 com sma

0.00 0.029 0.029 0.033 0.053
0.20 0.01 0.060 0.060 0.066 0.104

0.04 0.134 0.134 0.138 0.216
0.11 0.221 0.221 0.216 0.333

0.00 0.028 0.028 0.030 0.051
0.14 0.01 0.057 0.057 0.062 0.100

0.04 0.127 0.127 0.132 0.204
0.11 0.210 0.210 0.206 0.314

0.00 0.024 0.024 0.029 0.044
0.01 0.01 0.051 0.051 0.060 0.089

0.04 0.118 0.118 0.128 0.187
0.11 0.208 0.208 0.199 0.311

Table 4 shows the significance levels at critical value 0.05 for binomial data
(i.e. θ = 0) and three different overdispersion scenarios for three different values
of µ. Overdispersion increases with the parameter, θ, and the table shows that
as the overdispersion increases, the significance levels of all of the test statis-
tics also increase. Therefore it appears that comparing the crude proportion of
tumors from one treated group to dual control groups using Fisher’s exact test
will produce too many false positives if there is overdispersion or extra-binomial
variation.

8. Summary and Conclusions

We developed approximating equations for the significance limits of a likeli-
hood ratio test statistic for comparing the crude proportion of tumors between a
single treated group and dual control groups based on the beta-binomial model.
These approximated critical limits do not rely on large sample theory. We show
that the significance level of the test statistic we develop does not increase as
the level of overdispersion increases. By comparison, we show that Fisher’s ex-
act test, which assumes homogeneity of variance, has an inflated type I error
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rate when comparing proportions from one treated group to dual control groups
where overdispersion is present.

An example of the use of the new statistic was shown with a set of real
data where overdispersion appears to be present. In this example no significant
difference was found between the treated and control group using the likelihood
ratio statistic, but there was a significant difference found using Fisher’s Exact
test. The difference in conclusion between the likelihood ratio and the Fisher
Exact test is due to the inflated significance level of the Fisher Exact statistic.

The likelihood ratio statistic developed in this paper for comparing one treated
group to two control groups in the presence of overdispersion could easily be
extended to more general comparisons of proportions between treatment groups
where overdispersion is present and a small number of replicate samples from one
more treatment groups are present With the speed of modern computers, it would
be possible to determine the distribution of such a test statistic by enumerating
all possible cases as we did. For example, Williams (1975) developed a large
sample test for comparing the number of pups with birth defects in a teratology
experiment. If only one or two litters were available for each treatment, Williams’
large sample theory would not be accurate. However, the method we used in this
paper could be used to develop critical limits for a likelihood ratio test of group
differences.
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