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Abstract: In this paper, a tree-structured method is proposed to extend
Classification and Regression Trees (CART) algorithm to multivariate sur-
vival data, assuming a proportional hazard structure in the whole tree. The
method works on the marginal survivor distributions and uses a sandwich
estimator of variance to account for the association between survival times.
The Wald-test statistics is defined as the splitting rule and the survival
trees are developed by maximizing between-node separation. The proposed
method intends to classify patients into subgroups with distinctively different
prognosis. However, unlike the conventional tree-growing algorithms which
work on a subset of data at every partition, the proposed method deals with
the whole data set and searches the global optimal split at each partition.
The method is applied to a prostate cancer data and its performance is also
evaluated by several simulation studies.
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1. Introduction

In recent years, many efforts have been made in the application of tree-
structured methods to the censored data. The thrust of tree-structured methods
comes from the desire to extract meaningful subgroups. Although proportional
hazard model (Cox 1972) is a very useful tool in quantifying the effects of co-
variates on survival time, it is usually problematic for prognostic classification.
For example, we may create prognostic groups based on “risk score” which is cal-
culated from linear combinations of coefficients and covariate values. However,
this approach may be problematic: (a) the “risk score” depends on the correct
specification of the model structure, which may be hard to check when many
covariates are involved; (b) the regression model becomes difficult to interpret
for the purpose of classification when there exist many interaction terms; (c) the
resulting risk groups are arbitrary, and (d) sometime a risk group becomes empty
because no patients are included in some covariate profiles.
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In contrast, tree-structured methods recursively split the covariate space and
directly lead to homogeneous subgroups. Tree-structured method was first pro-
posed by Morgon and Sonquist (1963) and became popular due to the monograph
Classification and Regression Tree (CART) by Breiman et al (1984). Since Gor-
don and Olshen (1985) gave the first adaptation of CART algorithm to censored
data, a rich amount of literature has been dedicated to survival data. Davis and
Anderson (1989) grew trees by assuming survival times to be exponential within
a given node. LeBlanc and Crowley (1992) proposed a method to grow trees
via an one-step full log-likelihood estimation. Huang, Chen and Soong (1998)
extended Davis and Anderson’s method to the time-dependent case, assuming
the survival times to be piecewise exponential. The above methods grew trees
rewarding within-node homogeneity. Segal (1988) presented a method to grow
trees by goodness of split. Instead of maximizing within-node homogeneity, Se-
gal’s method maximized between-node separation, using log-rank test statistics
as the splitting rule. Bacchetti and Segal (1995) extended Segal′s method to
survival data with left-truncation and time-dependent covariates. LeBlanc and
Crowley (1993) developed an efficient pruning algorithm for trees that maximized
between-node separation.

All these methods were proposed for univariate survival data which assumes
survival times to be independent. However, this assumption may be violated in
multivariate (clustered) survival data. In the ophthalmology studies, for example,
it may be inappropriate to assume that the survival patterns of the two eyes from
the same subject are independent. There are very few published tree methods
regarding correlated survival data. Gao, Manatunga and Chen (2004) and Su
and Fan (2004) extended CART algorithm to multivariate censored data in a
similar manner. Both of them introduced a gamma distributed frailty to account
for the dependence among survival times. The former used Wald-test statistics
as the splitting function while the later was based on a likelihood ratio test.
Though survival trees developed above were computationally convenient, they
suffered a potential drawback that the overall model structure was unclear. When
a partition was done, for example, the above methods assume hazards within
the two daughter nodes to be conditionally proportional given the unobserved
frailty, but the hazards structures for any two nodes from different parents are
unclear. In this paper, we propose an algorithm that develops multiple survival
trees assuming a proportional hazards structure within the whole tree. The
proposed method can be viewed as a hybrid of CART algorithm and WLW model
(Wei, Lin and Weissfeld 1989). Instead of fitting a model for formal inference, it
automatically develops a set of prognostics groups while assuming a proportional
hazards structure. This paper is organized as follows. In section 2, we describe
the algorithm for classification. In section 3, we apply the method to a prostate
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cancer data. We assess the performance of the method by simulations in section
4. Finally, we conclude with a discussion in section 5.

2. Methodology

The method is proposed for multivariate (clustered) survival data where sev-
eral items (or units of system) are followed simultaneously and we only con-
sider the data with a fixed cluster size. The simplest clustered data to con-
sider is the pair of survival times observed in two eyes in an ophthalmologic
study. Suppose that data includes N clusters (subjects) and each cluster in-
cludes J items (eyes). Let i = 1, 2, · · · , N index clusters and j = 1, 2, · · · , J
index the items within each cluster. Let Tij = min(Xij , Cij) be the observed
time for the jth item in the ith cluster, where Xij is the true failure time and
Cij is the true censoring time. Let δij be the corresponding survival indicator
with δij = 1 if Xij ≤ Cij and δij = 0 otherwise. In this paper we assume
that the covariate vector is common to items within the same cluster and let Zi

denote the covariate vector for ith cluster. Then, the data can be denoted as
{(tij , δij, zi), i = 1, 2, · · · , N ; j = 1, 2, · · · , J}. We further assume that the
survival time and censoring time are independent. Given covariate Z, the survival
times between clusters are independent and the survival times within the same
cluster may be dependent.

The proposed method intends to extract meaningful subgroups via a tree-like
algorithm. Similar to the procedure in Gao et al (2004), trees are developed to
maximize between-node separation as measured by a Wald-test statistic and the
partition is performed on a single covariate at a time. A large tree is developed
first and Segal’s pruning method (1988) is adopted to determine the proper tree
size. Finally a marginal Kaplan-Meier survival curve is prepared separately (i.e.,
for each eye) and thus to summarize the performance of the classification. How-
ever, unlike other tree-growing algorithms which work on a subset of data at a
partition, the proposed method deals with the whole data set at each split and
assumes a global proportional hazard structure in whole tree.

The proposed method models on the marginal distributions of survival times,
specifying the hazard function for jth event to be,

hj(t|zi) = h0j(t)g(zi), j = 1, 2, · · · , J (2.1)

where h0j(.) is the baseline hazard function for jth event and g(.) is an arbitrary
non-negative function of covariate vector.

The classification will be performed in a stepwise manner. Let Γk denote the
k subgroups obtained at kth step. We assume that these subgroups are consisted
of two disjoint subsets A and B, where A = {A1, A2, · · · , Ak1} contains these sub-
groups permitting further splitting while B = {B1, B2, · · · , Bk2} includes those
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that cannot be further split, with k = k1 + k2. In terms of non-splitting sub-
group, we mean that either the covariate space within the subgroup becomes
homogeneous or the sample size (number of events) of the subgroup is less than
a pre-specified value. Suppose that, at (k+1)th step, a subgroup γ ∈ A is further
split, and let Γk+1 represent the k + 1 subgroups at current step. For mathemat-
ical convenience, we rearrange the subgroups as Γk+1 = {C1, C2, · · · , Ck, Ck+1},
specifically letting C1, Ck and Ck+1 being the reference group and the two newly
obtained groups respectively. The reference group will be arbitrarily chosen (say,
B1) from subgroups that do not permit further splitting. Since the splitting
statistics (see below) is based on the relative difference of the two new subgroups
(Ck and Ck+1) rather than their absolute effects, the comparisons among candi-
date partitions will be valid as long as the two new subgroups have a common
reference level.

In order to rate over all possible splits, the following working model is fitted,

hj(t|zi) = h0j(t)eβI(zi). (2.2)

That is, the function g(zi) in model (2.1) is approximated by g(zi) = eβI(zi) =
e
∑k+1

m=1 βmI(zi∈Cm), where I(zi ∈ Cm) is an indicator function with I(zi ∈ Cm) = 1
if a cluster (subject) falls into subgroup Cm and 0 otherwise. In approximation
(2.2), β = {β1 ≡ 0, β2, β3, · · · , βk+1} and the first subgroup is set to be the
reference level. The unknown parameters can be estimated by maximizing the
following partial likelihood function (Wei, Lin and Weissfeld 1989),

L(β) =
N∏

i=1

J∏

j=1

{ eβI(zi)

∑N
l=1 Ylj(tij)eβI(zl)

}δij ,

where Ylj(t) is an indicator for whether jth item in lth cluster is at risk at time t,
with Ylj(t) = 1 if tlj ≥ t and 0 otherwise. The corresponding score function and
the information matrix of β respectively are,

U(β) =
dlog L(β)

dβ
=

N∑

i=1
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S
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dβ2
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S
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where S
(0)
j (β, t) =

∑N
l=1 Ylj(t)eβI(zl), S

(1)
j (β, t) =

∑N
l=1 Ylj(t)eβI(zl)I(zl), and

S
(2)
j (β, t) =

∑N
l=1 Ylj(t)eβI(zl)I(zl)I(zl)′. At a given step, model (2.2) is essen-

tially a WLW model (Wei, Lin and Weissfeld 1989) with a set of indicators for the
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resultant subgroups. The estimator β̂ will be consistent for β but A−1(β) may
not provide a valid variance-covariance estimator (Lin and Wei, 1989). Then, a
“sandwich” estimator (Lin and Wei, 1989) can be used to account for the within-
cluster association,

Σ̂ = A−1(β̂)B(β̂)A−1(β̂), where

B(β̂) =
N∑

i=1

J∑

j=1

J∑

l=1

{Wij(β̂)}′{Wil(β̂)},

Wij(β̂) = δij{I(zi) −
S

(1)
j (β̂, tij)

S
(0)
j (β̂, tij)

} −
N∑

l=1

δljYij(tlj)eβ̂I(zi)

S
(0)
j (β̂, tlj)

{I(zi) −
S

(1)
j (β̂, tij)

S
(0)
j (β̂, tij)

},

and A(β̂) = −dlog2 L(β)
dβ2 is the information matrix of β evaluated at β̂.

The splitting function to evaluate and compare any candidate partitions is
defined as Φ = { (β̂k−β̂k+1)

2

ˆvar(β̂k−β̂k+1)
}, the robust Wald-test statistic for testing the hy-

pothesis whether the two new subgroups are different H0 : βk = βk+1. We
note that, as in all tree-based methods, the models are developed conditionally
in that the latter split is always conditional on previous ones. In such a case, the
asymptotic distributions of estimated parameters become unclear and a formal
statistical inference may be problematic. However, Φ still quantifies the separa-
tion between the two new subgroups and can be used to rate over the candidate
splits. The best partition is chosen such that Φ is maximized among all candidate
splits in subgroups that permit further partition. In the special case where all
terminal nodes permitting further splitting (the set B is empty), first we need
to randomly pick up one node from set A (A1, say) as the reference group to
evaluate the splits among all other subgroups. Then, we fix one of the other
subgroups as the reference to evaluate all possible splits within node A1.

In summary, the proposed method incorporates a tree-like algorithm into
the conventional WLW model. At each step all competing splits are evaluated,
and the one maximizing the splitting function is chosen and executed. As is
conventional practice in tree-based methods, we choose a conservative stopping
criterion to avoid missing important data structures. The partition process is
applied repeatedly until either all the subgroups can not be further split or Φ ≤
0.45, which corresponds to 50% percentile of an X2 distribution with 1 degree
of freedom. As mentioned previously, however, the asymptotic distributions of
estimated parameters become unclear due to the conditionality of tree-based
methods. The choosing of 0.45 is rather arbitrary and could be adjusted by
readers to avoid a tree with too large size. Usually a large tree will be developed
using such a conservative stopping criterion, and then we select the tree with
a proper size by adopting Segal’s pruning algorithm (1988) detailed below. We
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initially grow a very large tree and identify all possible branches of the tree in a
bottom-up approach. Within each branch, we find the maximal splitting statistic
that reflects the strength of the link of that branch to the tree. We then rank
these maximal statistics and prune off the branch with the smallest value (the
branch with the weakest link). Thus, we get the first pruned tree plus its weakest
linking statistic. The second tree can be obtained by applying this process to
the first pruned tree. Repeating the above steps until the pruned tree contains
only the root node, we obtain a sequence of nested trees together with their
weakest linking statistics. Finally we plot the weakest linking statistics against
the tree sizes. Because a plateau in the curve indicates that the strength of the
link does not decrease as the tree size increases, we choose the best tree as the
one corresponding to the characteristic “kink” in the curve.

Table 1: Clinical characteristics for the patients with prostate cancer

Characteristics Number of cases (%)

PrePSA (ng/ml) 537
< 4.0 39 (7.3%)
4.1-10.0 359 (66.9%)
10.1-20.0 108 (20.1%)
> 20.0 31 (5.8%)

Gleason Score 529
2-4 90 (17.0%)
5-6 325 (61.4%)
7 92 (17.4%)
8-10 22 (4.2%)

Clinical Stage 537
T1A-T1C 238 (44.3%)
T2A 156 (29.1%)
T2B 106 (19.7%)
T2C 37 (6.9%)

3. Application: Prostate Cancer Data

Disease-free survival rate is an important measurement in the evaluation of
treatment effect for prostate cancer patients. Currently there are two types of
definitions for disease freedom in prostate cancer treatment. One specifies a
non-detectable level of prostate specific antigen (PSA) and the other, by the
American Society of Therapeutic Oncology (ASTRO), defines a non-rising PSA
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level. From August 1992 through October 1997, 537 patients with prostate cancer
were treated by transperineal I-125 implant and followed up for 3 to 8 years,
with a median follow-up of 6 years (Critz 2002). The outcome of interest for
this study is the time to recurrence. Two outcomes were defined using follow-
up PSA levels. One records the time from treatment to the detection of ≥0.2
ng/ml PSA level. The other is the time to 3 consecutive increasing in PSA as
measured 6 months apart. At the end of study, 81 patients recurred based on
the definition of undetectable PSA and 59 patients recurred according to ASTRO
definition. Three clinical characteristics were also collected: pre-treatment PSA
(PrePSA), clinical stage, and Gleason Score. All of them were ordinal covariates
with 4 categories (Table 1). Eight patients were excluded due to missing values
in Gleason Score and these 529 patients constituted the cohort for our study. The
original goal of the study was to check the agreement between the two definitions
for recurrence. In this paper, we are interested in identifying risk groups for
recurrence.

Table 2: Results of marginal model analysis for prostate cancer data

Characteristics β̂ se(β̂) z p

PrePSA (ng/ml)
4.1-10.0 vs < 4.0 0.422 0.520 0.572 0.570
10.1-20.0 vs < 4.0 1.635 0.523 2.204 0.027
> 20.0 vs < 4.0 1.596 0.566 2.023 0.043

Gleason Score
5-6 vs 2-4 0.142 0.273 0.377 0.710
7 vs 2-4 0.776 0.290 2.002 0.045
8-10 vs 2-4 1.017 0.394 1.895 0.058

Clinical Stage
T2A vs T1A-T1C 0.224 0.237 0.714 0.470
T2B vs T1A-T1C 0.680 0.220 2.247 0.025
T2C vs T1A-T1C 0.882 0.266 2.508 0.012

For comparison, we first analyze the data by WLW model (Wei, Lin and
Weissfeld 1989), treating the first category of each covariate as the reference level.
The results show that those patients being in stage T2B and T2C have higher
risk of recurrence, and those patients with higher level of pre-treatment PSA or
larger values of Gleason Score are more likely to experience recurrence (Table 2).
Though the above model is very useful in quantifying prognostic effects, it does
not directly lead to risk groups. Next, we apply the proposed tree-structured
method to this data and set the minimal size of the terminal nodes to be 20
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Figure 1: Multivariate survival trees for prostate cancer data, where Φ is the
splitting statistics quantifying the separation between two subgroups and N
represents the number of patients in the resultant prognostic groups.

failures. The method first splits on whether pre-treatment PSA is larger than 10
or not. Then Gleason Score (> 6 versus ≤ 6) and clinical stage (T1A-T2A versus
T2B-T2c) are chosen as the best partitions respectively. After 5 partitions, an
original tree with 6 terminal nodes is developed (Figure 1(a)), where circles and
squares represent internal nodes and terminal nodes respectively, and Φ denotes
the splitting function for each partition. After pruning process, we end up a final
tree with 4 terminal nodes which lead to 4 risk groups (Figure 1(b)): PrePSA
≤ 10.0 and Gleason Score ≤ 6 (Group A, node 6), PrePSA ≤ 10.0 and Gleason
Score > 6 (Group B, node 7), PrePSA > 10.0 and clinical stage being T1A-T1C
or T2B (Group C, node 4), and PrePSA > 10.0 and clinical stage being T2B
or T2C (Group D, node 5). Because larger values of covariates associated with
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higher risk of recurrence, we anticipate that patients in Group A have the lowest
recurrent risk and patients in Group D have the highest risk. The marginal
Kaplan-Meier plots of these 4 prognostic groups are presented in Figure 2, and
the curves show that these subgroups are well separated in each definition for
disease-freedom. The risks of recurrence are in the order of Group A < Group B
< Group C < Group D.
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Figure 2: Kaplan-Meier plots for the 4 prognostic groups derived from the sur-
vival tree (A separate plot was prepared for each definition of disease freedom)

4. Simulation Studies

Several simulation studies are performed to assess the proposed method. Data
sets are generated from the bivariate Clayton-Oakes model (Oakes 1982), with
the joint survivor function S(t1, t2) = Pr(T1 > t1, T2 > t2) given by,

S(t1, t2) = {{G(t1)}(1−θ) + {H(t2)}(1−θ) − 1} 1
1−θ ,

where G(t1) = Pr(T1 > t1) and H(t2) = Pr(T2 > t2) are marginal survivor func-
tions for survival times T1 and T2 respectively, and the parameter θ governs the
association between T1 and T2. As θ → 1+, S(t1, t2) → G(t1)H(t2) and the two
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survival times become independent. As θ → ∞, S(t1, t2) → min(G(t1),H(t2))
and the bivariate distribution shows maximal association. In the simulation stud-
ies, different values of θ are set to introduce the model a low to moderate associ-
ation, indexed by Kendal’s τ=0.2, 0.4, and 0.6 respectively.

In the simulations, for simplicity we consider G(.) = H(.) and assume the
hazard function to be

hj(t|z) = h0(t)g(z), j = 1, 2

where the baseline hazard h0(t) is chosen such that the baseline survivor function
has a Weibull distribution S0(t) = e−(ηt)κ

with a shape parameter κ = 1.5 and a
scale parameter η = 1. The function g(z) is defined as g(z) = eβ1I(z1>2)+β2I(z2>1),
with β1 = 1.0, β2 = 0.75 and I(.) to be the indicator function of covariates.
Therefore, the above model leads to 4 prognostic groups. To have a better evalu-
ation of the ability to correctly identify these prognostic groups, two extraneous
variables (z3 and z4), which are not related to the outcome, are also included into
the data. Among these 4 covariates, z1 and z4 have discrete uniform distribu-
tions taking values from 1 to 5, and z2 and z3 are dichotomous variables which
take values 1 and 2 with the same probability. In addition to the complete data,
censoring times are also introduced independently from a uniform distribution
[0,u]. Approximately 30% censoring is introduced by adjusting the value of u.
Each simulation has 1000 repetitions and each repetition consists of 400 pairs of
survival times. The simulations are implemented via statistical package R (ver-
sion 1.5). In simulation studies, the minimal size for a terminal node is set to be
40 failures.

Table 3: Simulations investigating the capability in identifying data structures

Given values Correct Over-sized Partial-recognized Failed
τ∗ censoring
0.2 0% 0.980 0.011 0.009 0.000

30% 0.957 0.024 0.019 0.000
0.4 0% 0.939 0.034 0.023 0.004

30% 0.917 0.045 0.028 0.010
0.6 0% 0.897 0.048 0.039 0.016

30% 0.868 0.061 0.048 0.023

*: Kendall’s τ , which index the within-cluster association

The final trees are categorized according to their ability to identify correct
data structures. A tree will be classified as “correct” if all 4 prognostic groups
are identified as the terminal nodes of the pruned tree. A tree will be classified as
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“over sized” if all 4 prognostic groups are included in the tree, but not all of them
are terminal nodes of the tree. A tree will be classified as “partial recognized”
if only 2 of the 4 prognostic groups are included in the tree. Otherwise the tree
will be classified as “failed”. Table 3 summaries the simulations, where τ reflects
the correlation between survival times and a larger value of τ is associated with
a higher correlation. The results show that the proposed method performs quite
well in identifying correct data structures. In all the simulations, the prognostic
groups in nearly 90% of the simulated data are correctly identified. However,
the capability of identification decreases slightly in the presence of censoring.
Because the power to detect the difference decreases as the correlation increases
(Lee, Wei and Amato 1992), the capability of identification also decreases as the
correlation increases.

5. Discussion

Tree-structured methods have provided a superior way for prognostic classifi-
cation. Under classical CART algorithm, trees are grown by maximizing within-
node homogeneity which is usually measured with log-likelihood. In multivariate
survival data, writing a log-likelihood function is problematic due to the unknown
marginal survivor functions as well as the presence of association among events.
In contrast, the idea of growing trees rewarding between-node separation by Segal
(1988) can be extended to develop survival trees in multivariate survival data.
In the two survival trees by Gao et al (2004) and Su and Fan (2004), for exam-
ple, a gamma distributed frailty was introduced to account for the dependence
among survival times and the trees were developed maximizing relative risks as
indexed by Wald test and likelihood ratio test respectively. In trees constructed
by conventional methods, all the resultant subgroups are completely unrelated.
However, this may not be true for the above multivariate survival tree because
the two daughter nodes share a common baseline hazard function. That is, two
components (relative risk and baseline hazards) are involved in the model, but
only one (relative risk β) is used for tree construction and the other (baseline
hazards) is left unspecified. To address this problem, we advocate a method
to develop classification trees under proportional hazards structure. The pro-
posed method works on marginal distributions of the survival times, and uses the
“sandwich” estimator of variance to account for within-cluster association. The
splitting function is based on the robust Wald-test statistics of WLW model (Wei,
Lin and Weissfeld 1989) which is fast in computation. The proposed method can
be used as a complimentary tool to the usual parametric or semi-parametric mod-
els. The method is useful in preliminary data analysis to identify the potential
data structures, thus facilitating a better understanding of the survival data and
a more efficient statistical modeling. We evaluate the method by several simula-



354 F. Gao, A. K. Manatunga and S. Chen

tion studies. The results show that the method performs quite well in prognostic
classification. In all the simulations, data structures in nearly 90% data sets can
be correctly identified.

The proposed algorithm for multivariate survival trees shares some inherent
features of the univariate survival tree methods. Therefore, it is straightforward
to further extend this algorithm in a variety ways, i.e., incorporating surrogate
splits (Breiman et al, 1984) to handle missing values in covariates or using boost-
ing and bagging method (Hothorn et al 2004) to stabilize its performance. Com-
paring to the conventional WLW model (Wei, Lin and Weissfeld 1989) or the
trees developed via frailty model (Gao et al 2004, Su and Fan 2004), the pro-
posed method possesses some unique advantages. First, instead of presenting an
algebraic formula, this method provides a set of subgroups directly. In addition,
the prognostic groups are developed within the framework of proportional haz-
ards model. Instead of assuming a locally proportional hazards structure, this
algorithm assumes a proportional hazards structure within the whole tree and
thus presents a clear model structure. As a consequence, a global optimal split is
obtained at each partition because the best split is searched over the whole tree.
Though the above advantages are gained in the price of intensive searching, com-
putational time has become a minor issue with the availability of high performed
personal computers nowadays.
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