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Abstract: Motivation: A formidable challenge in the analysis of mi-
croarray data is the identification of those genes that exhibit differential
expression. The objectives of this research were to examine the utility of
simple ANOVA, one sided t tests, natural log transformation, and a gen-
eralized experiment wise error rate methodology for analysis of such exper-
iments. As a test case, we analyzed a Affymetrix GeneChip microarray
experiment designed to test for the effect of a CHD3 chromatin remodeling
factor, PICKLE, and an inhibitor of the plant hormone gibberellin (GA), on
the expression of 8256 Arabidopsis thaliana genes.
Results: The GFWER(k) is defined as the probability of rejecting k or
more true null hypothesis at a given p level. Computing probabilities by
GFWER(k) was shown to be simple to apply and, depending on the value
of k, can greatly increase power. A k value as small as 2 or 3 was concluded
to be adequate for large or small experiments respectively. A one sided t-
test along with GFWER(2)=.05 identified 43 genes as exhibiting PICKLE-
dependent expression. Expression of all 43 genes was re-examined by qRT-
PCR, of which 36 (83.7%) were confirmed to exhibit PICKLE-dependent
expression.
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1. Introduction

The advent of inexpensive microarray technology has enabled individual lab-
oratories to easily obtain a global perspective on the expression pattern of thou-
sands of genes. This powerful technology has allowed investigators to diagnose
early cancers (Kim, J. W. and Wang, X. W., 2003; Zhang et al., 2003), discover
genes that contribute to quantitative traits (Gu et al., 2002), and detect coordi-
nated gene regulation during pivotal developmental events such as embryogenesis
and sexual maturation (Girke et al., 2000; Lo et al., 2003; Ruuska et al., 2002).

The first generation microarrays were generally based on two dye method-
ologies. These cDNA microarray experiments involve hybridizing two mRNA
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samples, each of which has been converted into cDNA and labelled with its own
fluorophore, on a single glass slide that has been spotted with 10,000-20,000 cDNA
probes. In contrast, more recent high-density oligonucleotide microarrays, such
as those offered by Affymetrix , provide direct information about the expression
levels in an mRNA sample and can have a much higher density (Yang and Speed,
2002).

The majority of methodologies for microarray analysis have been developed
for two dye spotted arrays (Kerr et al., 2000; Kerr and Churchill, 2001; Lee
et al., 2003, Nguyan et al., 2004, for review see Quackenbush, 2001 and Yang
and Speed, 2002). Unfortunately these two-dye spotted arrays also pose other
statistical issues, such as normalization to correct for dye bias. Furthermore if
more than 2 treatments are used, it is not possible to compare all treatments
on the same chip thus necessitating an Incomplete Block Design (IBD) type
design (Kerr and Churchill, 2001). As such, special experimental designs, such
as the reference and rotational design are needed for correct analysis (Kerr and
Churchill, 2001; Quackenbush, 2001 and Yang and Speed, 2002).

In contrast, oligonucleotide microarrays use a single dye technology and pose
some advantages, including a greatly increased density of genes and simplified
experimental design because treatment effects are tested independently on each
chip, eliminating the need for IBD designs. Nevertheless, statistical issues remain,
such as normality of residuals, homogeneity of residual variance, correlation of
errors within an array, and correlation of biological samples across arrays.

Mixed model methods for analysis of microarray experiment, proposed by
Wolfinger et al. (2001), solves most of these issues (see Craig et al., 2003 for
review). However, the complexity of analysis dramatically increases with these
advanced methods. Unfortunately, many of the current practitioners of microar-
ray technology do not possess the mathematical expertise necessary to meaning-
fully employ these methods. On the other hand ANOVA is a tool that is easy
to implement with methods common to most researchers. Kerr and Churchill
(2001) conclude that “The analysis of variance (ANOVA) is a natural tool for
studying data from experiments with multiple categorical factors”.

The first objective of this research was to examine the utility of simple
ANOVA for analysis of replicated oligonucleotide microarrays experiments. The
motivation was given eloquently by Kerr and Churchill (2001) who stated “An
advantage of model based data analysis such as ANOVA is that a model helps
the analyst explore the data. If one finds a model inadequate, discovering why
it is inadequate can help the analyst identify sources of variation and bias.” A
secondary objective of this study was to show how using a one sided t-test can
be used to increase power. The final objective was to introduce an alternative
method to increase power by accepting a base number of false positive with high
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probability.
The ANOVA is particularly suited to analyzing data from microarray experi-

ments that employ a replicated factorial arrangement of treatments. An example
of such an experimental design is one in which the investigator looks at gene
expression in wild-type and mutant plants in the presence or absence of an added
chemical. Many microarray studies incorporate this type of experimental design,
e.g. the response of genes in nontumorigenic and tumorigenic tissues to different
concentrations of toxic or therapeutic drugs (Lundquist et al., 2002; Martinez
et al., 2002) or the response of genes from different tissues to estrogen or other
hormones (Abe et al., 2003; Faccioli et al., 2002; Fujita et al., 2003; Goda et al.,
2002). This design easily extends into any number of genotypes (or tissues) by
any number of developmental time points (or biochemical exposures).

The primary biological objective of this research was to understand how a
CHD3-chromatin remodeling factor, PICKLE, and a plant growth regulator, gib-
berellin (GA), regulate gene expression during germination of Arabidopsis seeds
(Rider et al., 2003). PICKLE is necessary for repression of embryonic traits
in Arabidopsis (Ogas et al., 1997). Expression of the embryonic state in pickle
seedlings is inhibited by the plant growth regulator gibberellin (GA) and is en-
hanced by application of uniconazole-P, an inhibitor of GA biosynthesis (Izumi et
al., 1985; Ogas et al., 1997). Specifically, gene expression was examined in wild-
type and pickle seeds grown in the absence and presence of 10−8 M uniconazole-
P. Thus the genotypes were ‘wild type’ vs. the pickle mutant, and biochemical
exposure was to either 10−8 M uniconazole-P or no uniconazole-P during seed
germination.

Our working hypothesis was that PICKLE functions during germination to re-
press genes that promote embryonic identity. In support of such a hypothesis, the
transcript levels of two positive regulators of embryogenesis, LEAFY COTYLE-
DON1 (LEC1) and LEAFY COTYLEDON2 (LEC2) (Lotan et al., 1998; Stone et
al., 2001), are elevated during germination of pickle seedlings (Ogas et al., 1999;
Rider et al., 2003). Our interest was to find new genes that exhibited PICKLE-
dependent expression, i.e. were up regulated. As such, we had a natural one
sided test.

2. Biological Methods

Seeds and tissues from the Arabidopsis pickle-1 mutant (in a Columbia eco-
type background) and wild-type Columbia were used for all investigations. Plants
were grown as described previously (Ogas et al., 1997; Rider et al., 2003).

The Affymetrix GeneChip Arabidopsis Genome Array1 contained 8256 sets of

1part no. 510429, Affymetrix, Santa Clara, CA
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oligos representing approximately 30% of the Arabidopsis thaliana transcriptome.
A 2× 2 factorial arrangement of treatments were examined. The first treatment
was genotype (pickle mutant vs. wild type), the second treatment was uniconazole
(applied vs. control), the treatment combinations were designated pkl, Upkl, wt
and Uwt (pickle mutant untreated, pickle mutant treated with uniconazole-P, wild
type untreated, and wild type treated with uniconazole-P) were each represented
by four biological replicates (n = 4) for a total of 16 chips (Rider et al., 2003).

3. StatisticalL Methods

3.1 The ANOVA, partitions, and transformations

The model for the completely randomized design (CRD) associated with the
k-th spot (or gene) is Y k

ij = µ + τk
i + εk

(i)j where Y k
ij is the expression (or log

transform) for the k-th gene, in the j-th replicate of the i-th treatment; µk is the
overall mean; τk

i is the effect of the i-th treatment on that gene, and εk
(i)j is random

residual. For maximum information treatment effects are further partitioned into
main effects and interactions. The partitioning should be reduced to single degree
of freedom tests by use of orthogonal contrasts. Because the ANOVA must be
completed for each spot on the array, methods to automate the test are needed.
To accomplish this goal, we use the well-known result that any single degree of
F tests can equivalently be constructed as a t-test (Gill, 1978). A simple t-test
for any contrast can be computed with the means procedure in SAS or in any
standard spreadsheet, such as Excel. The t-test also offers the advantage of being
able to test for a one sided alternative. In some experiments, as in this one, the
researchers may only be interested in genes that are either up or down regulated,
as a result, the power to detect those genes will be greatly increased.

For expression type data, the variance is usually correlated with the mean,
violating a critical assumption for the ANOVA. For such data, transforming to
logs will usually correct this problem. Interpretation of log transformed data also
better meets the interest of the biologist as significant differences are interpreted
as being significant ratios on a non-transformed basis, i.e. the difference between
logs of numbers is the same as the log of a ratio. A log base 2 is interpreted
as fold change, while base 10 is interpreted as orders of magnitude difference.
Natural logs have not been widely used for array data but perhaps represents
the most valid biological interpretation due to kinetics. A common rate equation
in chemistry is where the rate of change in product (∂Y ) per unit of time (∂t)
is proportional (c) to the product (Y ), thus ∂Y = cY ∂t. The solution to this
differential equation is Y = cet. Therefore by taking natural logs, the expression
is linearized into a rate equation, ln(Y ) = ln c+t. If t is constant across biological
replications, then variation in expression is due to linear differences in the rate
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constant c, the gene regulatory factor. Differences due to treatments are then
interpreted as linear differences in gene regulatory factors (rate constants).

The vast majority of array data will require such a transformation, however,
curiously these data better met the assumption when non-transformed. To check
this assumption for any data, compute the within gene variance for each gene
(the residual error variance in the ANOVA), then plot that against the average
expression level for that gene. Any slope significantly different from zero (a zero
slope is parallel to the x axis) indicates that the data require a transformation
before the analysis proceeds.

For a given gene, because each treatment combination was randomized onto
each of 4 biological replicates, the experiment as detailed above is a 2 × 2 facto-
rial arrangement of treatments in a completely randomized design (CRD). The
ANOVA for this design with treatment effects partitioned is given in Table 1.

Table 1: ANOVA table with partitions.

Source of Variation Degrees of Freedom Mean Square

Treatments t − 1 MS(T)
Genotypes (C1) 1 MS(C1)
Inhibitor (C2) 1 MS(C2)
Interaction of 1 MS(C3)
Genotype x Inhibitor (C3)

Within Error t(r − 1) MS(E)

The mean squares for the partitions can be found using the following formula
along with the contrast coefficients given in Table 2

Table 2: Coefficients for partitions of treatment effects.

Treatment Treatment Combination Contrast Coefficients (Cmj)

Genotype Inhibitor C1j C2j C3j

1- pkl pickle None 1 1 1
2- Upkl pickle Uniconazole 1 −1 −1
3- wt wild type None −1 1 −1
4- Uwt wild type Uniconazole −1 −1 1

MS(Cm) = r(
∑

j

Cmj Ȳij)2I(
∑

j

)C2
mj). (3.1)
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The F test, which is distributed as F with 1 and t(r − 1) degrees of freedom,
is then computed as the ratio of F = MS(Cm)/MS(E). This test is equivalently
computed as t

Tm =

∑
j Cmj Ȳij·√

1
rMS(E)

∑
j C2

mj

(3.2)

which has t(r−1) degrees of freedom. From these formula it is easy to verify that
the calculated value F = t2 and from tables one can verify corresponding critical
values, i.e. F1,t(r−1) = (tt(r−1))2. However, when calculated as a t-test the sign
of the contrast is preserved, thus allowing a one tailed test. This approach will
extend to any contrast for any number of treatments, provided the sum of the
coefficients for that contrast is zero. To be orthogonal with other contrasts the
sum of the cross products must also sum to zero.

For this analysis, our hypothesis was that one or more genes existed for which
the expression level was elevated in pickle mutants, regardless of uniconazole
treatment. This hypothesis was based on an expression pattern similar to that
of LEC1 and LEC2. Thus the primary contrast of interest was the main effect
of genotype (C1). Because we were only looking for a similar pattern (up regula-
tion), the power to detect up regulated genes increased. Use of prior information
to increase power is more cost effective than increasing the number of biolog-
ical replicates. In other experiments additional contrasts may be of equal or
greater importance, this may be particularly true of the interaction of genotypes
with uniconazole treatment (C3), which test the hypothesis that application of
uniconazole has a different effect on one genotype than the other.

The critical value of t depends on a number of factors, including one- vs.
two-sided alternatives, degrees of freedom (df) for estimation of error variance,
and acceptable type I error rates. Choosing an acceptable Type I error rate is
discussed in the next section.

3.2 Generalized experiment wise error rate (GFWER(k))

Experimenters have long recognized that if a comparison wise type I error rate
(CWER) is used across a great number of tests, a large proportion of declared
significant differences would be false. For example analysis of array data involves
thousands of comparisons, consequently, if a per comparison error rate of 0.05
were used for our analysis, more than 413 of the 8256 tests would be expected
to be declared significant by chance alone. The most widely used approaches to
control Type I errors in multiple tests is based on controlling the family wise
Type I error rate (FWER) (Fernando et al., 2004). The FWER is the probability
of rejecting one or more true null hypotheses, i.e. the probability of accepting
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one or more false positives. A common method for controlling the FWER is the
Bonferroni or Sidak (1967) adjustments.

However, the FWER with those adjustments is too conservative if the cost
of false negatives is high relative to the cost of false positives, i.e. they sacrifice
power to avoid accepting false positives. Methods have been developed to address
this issue by allowing for some false positives among those declared significant,
such as the false discovery rate (FDR, Benjamini and Hochberg, 1995; Reiner. et
al., 2003; see Nguyen, 2005 for general discussion on this issue). Alternatives to
the FDR have since been proposed that take into account the expected number
of false null hypothesis and other modifications (see Fernando et al., 2004 for
review). However, all methods used to estimate an FDR make assumptions about
the distribution of truly expressed genes. As a result, the FDR will either be too
liberal or conservative.

Here we present an alternative that does not attempt to establish an FDR.
Rather the method is an extension of the FWER methodology to allow for a
higher family wise error rate. The development is as follows: Assume a strictly
null distribution from which N independent test statistics are computed, from
which N independent decisions are made at the same critical threshold level. The
probability that any one decision is incorrect is p. An incorrect decision is defined
as rejecting a true null hypothesis. With multiple tests, the probability of exactly
m incorrect and N − m correct decisions is

P (m = incorrect |N = decisions ) =
(

N

m

)
pm(1 − p)N−m (3.3)

The usual FWER = ξ(1) is the probability of rejecting 1 or more true null
hypotheses found as:

ξ(1) =
N∑

m=1

pm(1 − p)N−m (3.4)

or equivalently, 1 minus the probability of no incorrect decisions,

ξ(1) = 1 − (1 − p)N (3.5)

which is Sidak’s (1967) equation. The value of p per comparison (CWER) is
found such that the ξ(1) is achieved, i.e.

p = 1 − e[ln{1−ξ(1)}/N ] (3.6)

Stated in the reverse, there is a 1-FWER probability of no incorrect decisions
among the N decisions made, i.e.
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ω(k) =
k−1∑
m=1

(
N

m

)
pm(1 − p)N−m (3.7)

A generalization of this procedure is to divide the total probability of making
Type I errors into parts associated with how many errors are likely to be made at
a given probability. Among the N decisions made, define ξ(k) as the probability
of rejecting k or more true null hypotheses and ω(k) as the probability of rejecting
fewer than k true null hypotheses, ξ(k) + ω(k) = 1, where

ξ(k) =
N∑

m=k

pm(1 − p)N−m (3.8)

ω(k) =
k−1∑
m=0

pm(1 − p)N−m (3.9)

If for a given k, the value for ξ(k) is set to a small value, then among those
tests declared significant, one accepts that there will be a high probability of k−1
false positives plus a low probability of k or more false positives. Therefore, a
new type of error rate is defined as GFWER(k), which is strictly the probability
of making k or more incorrect decisions at a given level of p, and ignores the
probability of less than k Type I errors. The latter type of errors are considered
acceptable in order to gain power and decrease the Type II error rate. For a
more general development of the generalized family wise error rate see van der
Laan (2004). The GFWER(k) cannot be solved for directly, but solutions can be
found by iteration. SAS source code used to compute adjusted p values for any
ξ(k) and N is given at our web site. However, Equations (3.8) and (3.9) can also
be approximated by the normal as follows: If X is binomial with n trials and
probability of success p, then

P [X > r] ≈ Φ

(
r − np√
np(1 − p)

)
,

where Φ is the cumulative distribution of standard normal distribution.
Tables 3 and 4 give p values for, respectively, a one- and two-tailed alternative,

and ξ(k) = .05. Associated critical values of t are given in Tables 5 and 6 for
experiments with 6 and 60 df for estimating error variance. Note that for all k
values, the critical value of t for a one-sided test is between 12 and 13% smaller,
with corresponding increases in power. Table 3 shows that by allowing for 2 or
more false positives in a 1 sided t-test increases the adjusted p value by 6.5 times,
and thereby also increasing the power of the test. Results presented in Tables 3
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show that for the range of N examined (i.e. N > 1000) the ratios of p values for
GFWER(k) to that of GFWER(1) are independent of N . Thus, for such chips,
once the Sidak p values are found, GFWER(k) can be found by multiplication
using the constants given in the table.

Table 3: Adjusted p values for k = 1 to 5, chips of size 1,000 and 50,000 and a
one-tailed GFWER(k)=5%.

k Number of Tests

1,000 50,000

p-value×106 Ratio∗ p-value ×106 Ratio∗

1 51.29 1.025
2 335.02 6.5 6.70 6.5
3 783.41 15.3 15.66 15.3
4 1320.01 25.7 26.38 25.7
5 1913.31 37.3 38.23 37.3

∗ Ratio of p-values to that of GFWER(1)

Table 4: Adjusted p-values for k = 1 to 5, chips of size 1,000 and 50,000 and a
two-tailed GFWER(k)=5%.

k Number of Tests

1,000 50,000

p-value×106 p-value ×106

1 25.63 .521
2 167.5 3.35
3 391.7 7.83
4 660.0 13.19
5 956.65 19.15

An important issue is what value of k should one use. The value of k should be
set as small as possible without sacrificing too much power. For an experiment
of a given size, the rate at which power increases is dependent on the critical
value of t. Examination of Tables 5 and 6 shows that the greatest decrease in the
critical value of t, with either large or small experiment, comes from increasing k
from 1 to 2. For large experiments increasing k beyond 2, or for small increasing
k beyond 3, brings about much smaller incremental decreases in t. From these
results, some general guidelines can be deduced for choice of k. Regardless of the
number of spots on a chip, a k value of 2 or 3 should be adequate for large and
small experiments respectively.
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Table 5: The six genes for which the qRT-PCR assay detected no expression in
untreated wild type seed. Transcripts were detected in untreated pickle seeds.
Transcripts were also detected for both wild type and pickle seeds (Uwt and
Upkl) germinated in the presence of uniconazole-p, thus permitting calculation
of Upickle fold change relative to Uwt. The mean values from the arrays are
included for illustration. #Pr is the number of times Affymetrix Microarray
Suite software (v. 5.0) labeled a gene ’present’ for the 16 gene chips used for
this investigation.

AGI Code Mean values (4 chips) qRT-PCR fold change Putative ID/function

#Pr wt pickle Uwt Upickle wt pickle Uwt Upickle

At3g16410 16 4535 14225 3630 18074 − + 1 204.3 Jacalin type lectin
At4g27140 15 1000 2365 417 3214 − + 1 8.95 2S1 seed storage protein
At1g67330 4 170 701 97 1255 − + 1 3.75 uncharacterized
At5g13930 16 18459 37623 18471 46304 − + 1 1.75 TT4/chalcone synthase
At3g23220 16 1611 2606 1364 2560 − + 1 1.43 ERF1/transcription factor
At1g09750 16 2005 3200 2178 5193 − + 1 0.58 nucleoid-like protein

Table 6: Presence of uniconazole-p increases derepression of PICKLE-
dependent genes in pickle seedlings.

qPCR Ratios Putative Function

AGI Code pkl/Wt Upk/Wt Upk/pkl

At5g01600 2.90 8.82 3.04 maturation
At3g16420 4.75 11.41 2.40 defense
At1g73190 1.79 2.96 1.65 maturation
At2g28790 1.77 2.90 1.64
At1g20620 2.33 3.51 1.50 maturation
At5g54740 2.97 4.10 1.43
At4g19810 2.43 3.33 1.37
At3g52500 5.55 7.55 1.36
At3g16430 1.55 2.08 1.34 defense
At1g05510 1.88 2.53 1.34
At3g16460 4.64 5.22 1.13 defense
At4g08685 2.61 2.78 1.06
At2g35810 4.24 4.24 1.00
At2g19590 2.50 2.24 0.90
At4g37410 2.38 1.95 0.82
At5g12030 5.36 2.68 0.50 desiccation
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4. Biological Verification: QRT-PCR Analysis

Those genes found significant with ANOVA were re-analyzed using qRT-PCR
to compare results. The qRT-PCR method, while more precise than the chip anal-
ysis, is still subject to error. The method is based on PCR amplification of mRNA
in the sample until a pre-determined threshold is obtained. Because the amplifi-
cation is a doubling with each cycle, the accuracy of the method is questionable
if there exists less than a 2 fold difference in mRNA between the two treatments.
qRT-PCR is also subject to biological variability between samples and should
therefore also be replicated and treated to statistical analysis. However, repli-
cated qRT-PCR analysis for each gene would be extremely expensive and time
consuming. Therefore within the limitations of this experiment, and recognizing
those limitations, we defined confirmation of PICKLE-dependent expression as
a two-fold or greater increase in expression level of a given gene in pickle versus
wild-type seed when grown in either the absence or presence of uniconazole-P.
qRT-PCR was used to compare transcript levels in pickle versus wild-type seed
grown in the absence of uniconazole-P as well as transcript levels in pickle versus
wild-type seed grown in the presence of uniconazole-P.

Quantitative RT-PCR was performed on an ABI sequence detection system
using RNA from one of the biological replicates previously generated (Rider et
al., 2003). Oligonucleotide primer sequences and primer concentrations used are
listed in supplementary Table 2S available at the web site.

5. Results and Discussion

5.1 Statistical issues

For this experiment, we used ξ(2) = .05. Allowing for one false positive
raised the adjusted p value from 6.21 × 10−6 to 4.1 × 10−5 and correspondingly
increased the power of the test The ANOVA method selected 43 genes, less than
one of which was expected to be a false positive based on the experimentwise
selection criteria that we employed (8256 × 4.1 × 10−5 = .33). Our qRT-PCR
analysis supported 36 of the 43 genes (Figure 1). A surprising result of this study
was that qRT-PCR did not detect transcripts in wild-type seeds for 6 of the 43
genes identified as having expression differences based on analysis of the array
data (Table 5). Although this observation is consistent with the hypothesis that
PICKLE represses expression of these genes in wild-type seeds to facilitate the
developmental transition from embryo to seedling, the array expression values
did not suggest absence of transcripts in wild-type seeds.
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Figure 1. qRT-PCR results for genes selected. The Arabidopsis Genome Ini-
tiative (AGI) code for each gene is provided along the x-axis. The y-axis
represents the fold change in pickle normalized to wild type expression levels.
The white bars denote fold change in pickle normalized to wild-type expression
levels imbibed in the absence in uniconazole-P (pickle/wt) whereas the black
bars denote fold change in pickle normalized to wild-type expression levels im-
bibed in the presence of 10-8 M uniconazole-P (Upickle/Uwt). Only those
genes whose expression was detected in all four cases are shown here. Expres-
sion analysis of those genes for which expression was not detected in untreated
wild-type seeds can be found in Table 5. Genes that were also identified by the
MFC method (Rider et al., 2003) are indicated by an asterisk

There are at least two possible explanations for the elevated number of ob-
served false positives. Affymetrix constructed this GeneChip when the sequence
of the Arabidopsis genome was only partially completed. Inflated expression val-
ues for some oligos may have arisen from cross hybridization to unintended tar-
gets. In fact, two of the false positives were false because qRT-PCR detected no
expression in germinating seeds under any condition. Alternatively, as previously
discussed, the discrepancy may be due to different criteria used to determine suc-
cess for each method. The qRT-PCR data should only be viewed as supporting
evidence, not confirmatory.

5.2 Biological Inferences

PICKLE is necessary to repress expression of embryonic traits in Arabidopsis
seedlings. Previous analysis of genes that exhibit PICKLE-dependent repression
identified genes associated with various stages of seed development. ANOVA
identified genes associated with seed development, including 2S albumin genes,
HSP17.6, and several lectin-like genes (Guerche et al., 1990; Lenman et al., 1993;
Ruuska et al., 2002; Sun et al., 2001). In all, 10 of the genes (28%) identified
and confirmed by qRT-PCR analysis were associated with embryo development
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or exhibit sequence similarity to genes involved in embryo development (Table
1S, available at the web site). Additional studies will be necessary to determine
if the other 26 genes that showed PICKLE-dependent expression in the germi-
nating seed are also involved in some aspect of embryo development. Previous
expression analysis did not suggest a specific role for uniconazole-P in increas-
ing penetrance of the pickle root phenotype in pickle seedlings (Rider et al.,
2003). This analysis revealed that the extent of derepression of many of the
genes that exhibit PICKLE-dependent repression is enhanced by the presence of
uniconazole-P (Figure 1, black bars versus white bars). The magnitude of this
enhancement, however, was often due in large part to the fact that the presence
of uniconazole-P resulted in decreased expression of the gene relative to wild-type
seed imbibed in the absence of uniconazole-P (data not shown).

In order to examine the effect of combining the pickle mutation with exposure
to uniconazole-P, we compared the fold change values of genes in pickle versus
wt seedlings (pkl/wt) and the fold change values of genes in pickle treated with
uniconazole-P versus wt seedlings (Upkl/wt) as determined by qRT-PCR (Table
6). In order to make this analysis comparable to previous analysis of the dataset,
either the ratio pkl/wt or the ratio Upkl/wt or both had to be ≥ 2 for a gene
to be included in this analysis. Genes for which a transcript was not detected in
wild-type seedlings were excluded from this analysis. Sixteen genes identified with
ANOVA met these expression criteria. We found that the presence of uniconazole-
P did increase expression of many of these genes in pickle seedlings; the transcript
level of 10 genes increased 33% or more when pickle seeds were imbibed in the
presence of uniconazole-P. In contrast, a previous analysis of the same array
data identified no genes for which the corresponding transcript was increased by
treatment of pickle seeds with uniconazole-P (Rider et al., 2003).

Uniconazole-P increases the probability that primary roots of the pickle mu-
tant will express embryonic differentiation traits (Ogas et al., 1997). Genes as-
sociated with seed development exhibit elevated expression in pickle seedlings,
suggesting that the expression of these genes contributes to the ability of pickle
seedling to express embryonic traits after germination (Rider et al., 2003). The
discovery that the presence of uniconazole-P enhances the expression of 10 genes
in pickle seedlings, 5 of which (50%) are involved in seed development or ex-
hibit sequence similarity to genes involved in seed development, suggests for the
first time that the increased penetrance of embryonic traits in pickle seedlings
treated with uniconazole-P may be mediated in part through changes in gene
expression. Specifically, our results are consistent with the hypothesis that GA
acts in concert with PICKLE during germination to repress expression of genes
that promote embryonic traits. Further characterization of the genes identified
here may facilitate subsequent genetic and biochemical analysis of the GA signal
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transduction pathway that mediates this response.

5.3 Utility

We have shown that a simple ANOVA method can identify a manageable
number of candidate genes for differential expression from a gene expression array,
most of which were real. Although we only applied the approach to an experiment
that incorporated a simple class-by-treatment design, it is applicable to any full
factorial design and is computationally straightforward. Previous analysis of the
array data employed a modified fold change (MFC) approach (Rider et al., 2003)
and failed to detect many of the genes identified by ANOVA. In addition, our
current analysis demonstrates that treatment of pickle seedlings with uniconazole-
P enhances the derepression of PICKLE-dependent genes during germination.
These results reinforce the power of ANOVA versus a method that emphasizes
fold-change.

The practical utility of the GFWER(k) method is derived from allowing the
user to influence the number of genes identified by selecting the appropriate value
for k, the number of false positives allowed above the threshold significance level.
A critical question is what value of k will result in the greatest increase in power
with the lowest number of Type I errors. A simple power analysis showed that
regardless of the number of spots on a chip, a k value of 2 or 3 should be adequate
for large and small experiments respectively. Although the GFWER(k) and FDR
are closely related and greatly increase the power of the experiment by relaxing
the Type 1 error rate, the application of the GFWER(k) does not attempt to
project an FDR, rather, we only set the maximum number of false positives under
the null hypothesis. Calculations for an exact FDR would require knowledge of
1) the number of truly expressed genes, 2) the signal to noise ratio, and 3) their
distribution. Without knowing these factors, the FDR as calculated by any of the
current methods is an approximation. As a result, the GFWER(k) may be more
or less conservative than FDR methods, depending on the particular experiment.
However, the GFWER(k) is constant and independent of the experiment, which
in itself is appealing. This gives rise to another interesting difference between
the methods. The expected number of false positives can be determined a priori
with the GFWER(k) because the rate is independent of the data, whereas with
the FDR (and newer methods as reviewed by Fernando et al., 2004) calculations
are dependent on the data and one has to wait until the list is generated to
determine what the expected number of false positives will be. This difference
could be critical in the planning stage of an experiment.
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