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Reducing Subjectivity in the Likelihood
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University of California, Riverside

Abstract: Some scientists prefer to exercise substantial judgment in for-
mulating a likelihood function for their data. Others prefer to try to get
the data to tell them which likelihood is most appropriate. We suggest here
that one way to reduce the judgment component of the likelihood function
is to adopt a mixture of potential likelihoods and let the data determine
the weights on each likelihood. We distinguish several different types of
subjectivity in the likelihood function and show with examples how these
subjective elements may be given more equitable treatment.

Key words: Mixture likelihood, model averaging, subjectivity.

1. Introduction

We propose methods for modeling the likelihood function that will require
fewer subjective judgments. We first discuss the nature of the problem of subjec-
tivity in the likelihood function; then we review some related research; and finally,
we define a mixture likelihood function and suggest estimation procedures that
reduce the effects of subjective views imposed on the observed data.

1.1 Statement of the problem

It is sometimes desirable that beliefs of experimenters should be brought
into a scientific analysis in ways that minimally distort the measured data (see,
for example, Hogarth, 1980; Kyberg and Smokler, 1980; Lad, 1996). But that
having been said, scientists observing data sometimes interpret the data points
subjectively, according to what they want the data to show, and according to
how precisely they believe the data points were measured. The latter procedure
is of course quite common. This subjective interpretation of observed data may
be totally at the unconscious level, or it may be purposeful (with the purposeful
interpretation, the analysis may become fraudulent; see for example, Grayson,
1995, 1997; Howson and Urbach, 1990; and Press and Tanur, 2001).

The subjective interpretation of empirical data in medicine was discussed by
Kaptchuk (2003). He stated (page 1, op. cit.):
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Doctors are being encouraged to improve their critical appraisal
skills to make better use of medical research. But when using these
skills, it is important to remember that interpretation of data is in-
evitably subjective and can itself result in bias. Facts do not accu-
mulate on the blank slates of researchers’ minds, and data simply do
not speak for themselves. Good science inevitably embodies a tension
between the empiricism of concrete data and the rationalism of deeply
held convictions. Unbiased interpretation of data is as important as
performing rigorous experiments. This evaluative process is never to-
tally objective or completely independent of scientists’ convictions or
theoretical apparatus.

Statistical analysis of a data set most often proceeds by summarizing the dis-
tribution of the data in terms of its likelihood function. In order to specify the
form of the likelihood function, various assumptions are made about the data,
such as mutual independence, identical distributions, unimodality, etc. After
the likelihood function has been specified, additional assumptions are sometimes
made (significance levels thought to be appropriate are specified, a prior distri-
bution about the underlying unobservable quantities may be brought in, etc.).
Analysis of the data generally proceeds by trying to keep the likelihood function
treatment of the data as simple as possible, so that the scientist or analyst will
introduce minimal distortion of the data. The analyst tries not to discard data,
and tries to maximize the chance of understanding what nature is trying to tell
us through the revealed data about the underlying phenomenon. In this way,
when the analysis of the data has been completed, the claim can reasonably be
made that the conclusions drawn from the analysis approximate, if not precisely
reflect, the laws of nature, rather than the possible misinterpretations and mis-
understandings of the laws of nature by human beings. It will be useful to first
briefly define what we mean by objectivity and subjectivity, in this context.

According to Mandik (2001)1,

The word objectivity refers to the view that the truth of a thing
is independent from the observing subject. The notion of objectivity
entails that certain things exist independently from the mind, or that
they are at least in an external sphere. Objective truths are inde-
pendent of human wishes and beliefs. The notion of objectivity is
especially relevant to the status of our various ideas, and the ques-
tion is to what extent objectivity is possible for thought, and to what
extent it is necessary.

1Mandik, P. (2001). The Internet Encyclopedia of Philosophy, see
http://www.utm.edu/research/iep/o/objectiv.htm.
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This is but one of many definitions that have been suggested. The elusive
quest for objectivity in science has been, and remains, an important topic of
discussion among historians and philosophers of science (for extensive additional
discussions of the meaning of “objectivity”, see for example, Bower, 1998; Porter,
1995, 1996; and Daston and Galison 1992). For some, scientific objectivity in-
volves the search for certainty in knowledge about one of nature’s well-kept
secrets, independent of what human beings believe; but in many cases, we find
that what we earlier thought to be true about nature, turns out later to be
questionable.

In an interesting example from physics, Folger, 2003, pointed out that:

Pioneer 10, launched in 1972, is now some 8 billion miles from
home. But is has been slowing down, as if the gravitational pull on
it from the sun is growing progressively stronger the farther away it
gets. Milgrom proposed (see the MOND pages-MOdified Newtonian
Dynamics) 2 that Newton’s laws might change at these accelerations.
If Milgrom is right, Newton’s and Einstein’s laws will be in for some
major tweaking.

Sometimes the scientist has such deep understanding and insight into the
phenomenon he/she is studying that the scientist’s own predictions of what should
be found from the analysis are far superior to what the data analysis seems to
indicate. In some cases the beliefs of the scientist or analyst are so strong, even
before actually taking any data that bear on the phenomenon, that the data are
interpreted or manipulated so that they will reflect these preconceived views of
the scientist. Any preconceived personal views (views held before taking any
data), weak or strong, are what we refer to in this context as subjectivity.

1.2 Related Research

One approach to reducing the effects of differing assumptions about like-
lihoods may be found in a line of research that involves use of the empirical
likelihood function. In this approach, most useful in large samples, a discretized,
binned, version of the empirical cdf, instead of a specific likelihood function, is
used. Inference is then made from a multinomial distribution. An unfortunate
feature of this approach is the additional unknown parameters that are concomi-
tantly introduced into the model. See: Owen, 1988, 2001. For typically small
and moderate size samples this could be a problem, but for the massive data sets
typical of data mining applications (see, for example: Berry and Linoff (1997);
and Hastie, Tibshirani, and Friedman, 2001) such an approach could be a helpful
alternative.

2MOND pages — http://www.astro.umd.edu/ ssm/mond/
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We show in the next section how we might understand and account for some
types of subjectivity that sometimes enters the likelihood function, and might not
be desired. We will use the definition and form of the likelihood function in which
for absolutely continuous random variables, up to a proportionality constant, it is
the joint probability density function of the observables given the unobservables.

2. Types of Subjectivity in the Likelihood Function

We distinguish three of the types of likelihood subjectivity problems that may
occur:

(a) how to determine the distributional form of the likelihood function in a way
that is largely objective, but permits the data themselves to guide the modeling as
to whether the data are Normally-distributed, or Gamma-distributed, or possibly
follow some other convenient distribution. We call this problem, “distributional
subjectivity”;

(b) how to treat observed data that have possibly been weighted subjectively so
that some data points are valued more heavily than others, and some are even
ignored; we call this problem, “weighted-data subjectivity”;

(c) how to account for the nature of the experiment used to obtain the data
that may have favored one type of response over another; we call this problem,
“experiment subjectivity”.

We treat each of these types of subjectivity in Section 3.

3. Reducing Likelihood Subjectivity

3.1 The mixture likelihood

We use a convex mixture of various likelihoods for the data; the usual likeli-
hood function results as a special case.

Suppose an experiment is repeated n times with the resulting one-dimensional
data outcomes: x1, x2, . . . , xn. We suppose that there are J models for the data
that potentially we might reasonably entertain. For simplicity, merely to suggest
a general type of approach, we consider problems involving only one unknown
parameter, namely, the means of the J distributions, ω.

In some situations, the parameters may be quite different from one another
but they can generally be related functionally. For example, the case of distin-
guishing between the means of normal and log-normal distributions, where the
mean parameter has different meanings in the two cases is sometimes particu-
larly interesting. In such cases, functional relationships among the parameters
are required.
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Suppose, in the one-parameter problem, we can assume these data to be
mutually independent and identically distributed, and we agree to adopt the
likelihood function for Model mj:

�j(x1, . . . , xn |mj, ω) ≡ �j(x |mj , ω).

Define a “mixture likelihood function”,

LM(x1, . . . , xn |ω) ≡ LM (x |ω),

such that:

LM (x |ω) = E{ likelihood } = EModel[�(x) |ω]] =
J∑

j=1

�j(x |ω)P (mj |ω) (3.1)

where �j(x|mj , ω) denotes the usual likelihood function of the data under model
mj , �(x|ω) denotes a model-independent likelihood function, and P (mj |ω) de-
notes the prior probability of model mj. The mixture likelihood function is of
course a likelihood function itself. If there were only one model (J = 1), LM

reduces to the ordinary likelihood. The mixture likelihood function explicitly
assumes that we should combine different models in a linear way. Other possibil-
ities exist of course, and perhaps in certain cases, they are even more desirable.
But because for a wide variety of cases, the linear assumption seems appropriate,
we will retain this assumption throughout. We next address the issue of how to
reduce model subjectivity (how to choose the weights).

3.2 Reducing “model subjectivity”

In some instances, the scientist has very strong, theory-based, beliefs about
how the data were generated, and how the corresponding likelihood function
should behave. In such instances, especially in small samples, the analyst should
surely use that information to permit the desired likelihood function to emerge.
In other situations where the scientist/analyst wants the data to speak as loudly
as possible relative to the scientist’s pre-conceived beliefs, there is no unique
way to accomplish this objective. The approach suggested here is to take equal
weights in the mixture. Accordingly, take all P (mj |ω) in eqn. (3.1) to be equal
(discrete uniform distribution). This interpretation of equal treatment for the
different models is:

(1) in keeping with the approach frequently used for weighting in mixture models
to express indifference or ignorance among the various components in the mixture;
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(2) it is the procedure suggested by Laplace when he adopted his Principle of
Insufficient Reason (Laplace, 1812, 1814);

(3) it is consistent with a basic result of information theory that the distribution
that corresponds to maximum entropy, or minimum information, is the uniform
distribution.

This gives the mixture likelihood function (equally-weighted average likeli-
hood):

LM (x |ω) =
1
J

J∑
j=1

�j(x |mj , ω). (3.2)

For example, suppose there are just two potential models (J = 2) that might
reasonably represent the data: N(ω, 1) and a Student t-distribution centered at
ω, with 3 degrees of freedom (a fat-tail distribution that has a population mean).
Then, the mixture likelihood function becomes:

LM (x |ω) =
1
2

{
n∏

i=1

1√
2π

exp{−1
2
(xi − ω)2} +

n∏
i=1

mm/2/B(1/2,m/2)
[m + (xi − ω)2](m+1)/2

}
.

(3.3)
Clearly each term in equation (3.3) is non-negative and integrates to one (with

respect to x), so LM{x|ω} is a bone fide likelihood function for the data (as
would be the case whichever models we choose). In some situations, one scientist
might favor the normal distribution for representing the distribution of the data,
while another might favor the Student t-distribution. By using LM{x|ω} to
represent the likelihood function for all inferences, the analyst reduces the model
subjectivity in the description of the data distribution. Maximum likelihood
estimation of ω is now more complicated numerically than it would be with use
of either the normal or the Student t distributions separately, but the numerical
problem is straightforward (see numerical example below) and easily generalizes
to more than two possible ordinary likelihoods.

We next numerically illustrate the example suggested in this section of how to
reduce model subjectivity when the models under consideration are the N(ω, 1)
and the Student t3 centered at ω. We randomly generated a total of 20 ob-
servations, 10 observations from t3, a Student t-distribution with 3 degrees of
freedom centered at x = 10, and 10 observations from N(10, 1). The resulting
data are shown in columns 2 and 3 of Table 1a. Then, using the Newton-Raphson
method, we calculated the mixed MLE. It is given at the bottom of Column 2 as:
ω̂ = 9.9168. To illustrate variability, there are four replications of this entire pro-
cess shown in Table 1a; the four resulting mixed maximum likelihood estimates
(mixed MLE’s) are also shown in Table 1a.
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Table 1a: Four replications of model subjectivity

t normal t normal t normal t normal

1 11.1861 9.6734 8.1266 11.182 8.9931 8.331 11.476 9.8325
2 9.9749 11.542 11.092 10.175 10.641 10.131 10.922 11.051
3 8.5632 10.259 11.374 11.720 9.8717 7.8108 10.270 10.642
4 5.5471 9.4442 9.3422 10.757 8.8824 8.3177 8.3906 9.0293
5 9.5188 10.779 13.189 9.8871 9.7579 9.4354 11.899 8.8359
6 10.994 9.3448 9.6007 9.715 10.385 10.092 9.5234 10.566
7 9.1875 9.9779 9.9069 9.7106 13.659 9.4326 14.559 9.495
8 11.283 9.2274 8.3785 9.8394 9.5543 10.361 10.177 10.247
9 8.7574 10.724 10.073 11.637 9.2285 9.0399 10.155 9.0938
10 7.9804 11.263 10.379 9.4837 11.274 9.7291 9.2795 10.366

Mixed MLE 9.9168 10.240 9.6237 10.116

For comparison purposes, we also computed the separate ordinary MLE’s
assuming all 20 observations were generated from a normal, and then, that all
20 observations were generated from a t3 distribution. Results are given in Table
1b.

Table 1b: Separate MLE’s For normal and Student data

Normal MLE 9.761 10.278 9.7463 10.291
t3-MLE 9.924 10.187 9.6104 10.111

Thus, it may be seen that in the first instance, while the mixed MLE is 9.9168,
the MLE assuming all 20 observations came from a normal is 9.7614, whereas the
MLE assuming all 20 observations came from a t3 is 9.9240. Results for the other
3 cases are shown in Tables 1a and 1b as well. Depending upon the assumptions
made for the modeling, results for the mixture MLE obtained from the model
averaging may differ substantially from those of the separate models, or not.

3.3 Reducing “weighted-data subjectivity”

We examine two distinct cases of weighted data subjectivity and model the
two cases separately below.

Case 1 — Several Observers (Scientists) Rate the Same Data Points Differently

In this case, different observers (scientists) might interpret the same points
differently. Some observers might view certain points as mistakes (outliers that
were generated from different distributions from the other points), and there-
fore delete them from the analysis; and others might, according to their own be-
liefs, weight certain points more heavily than others (perhaps difficult-to-measure
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points might be weighted less heavily because the error associated with the mea-
surement might be greater than with most of the other points; perhaps certain
points obtained were measured under censored conditions; etc.).

For simplicity, assume the data points are mutually independent. We define
the likelihood function for Observer Ok as:

�(x |ω) =
n∏

j=1

[f(δjkxj |Ok, ω]pk(δjkxj |Ok), (3.4)

where: pk(δjkxj |Ok) = 1, if Observer Ok includes the data point xj in the anal-
ysis, and pk(δjkxj |Ok) = 0 if not; δjk denotes the weight that Observer k places
on observation xj, f(xj |ω) denotes the pdf (probability density function) of Xj ,
conditional on ω. The mixure likelihood function may be defined as:

LM (x |ω) = E{likelihood} = Edata{�k(x |ω)}

=
K∑

k=1

�k(x |ω)Pk(Ok), (3.5)

where Pk(Ok) denotes the prior probability that the data analyst places on the
model that has been developed by Observer k. To be objective (or indifferent
among the choices), in the sense we have been discussing, we take Pk(Ok) = 1/K,
for all k. Then,

LM (x |ω) =
1
K

�k(x |ω) (3.6)

As a simple example, suppose that all K observers adopt the same distribution
for the data, say, N(ω, 1) (in Section 3.2 the analyst adopted two different possible
distributions for the data), and assume that they weight the points in the same
way, so that δjk = 1 for all k, for all points they include in their analyses, but they
may include different points. Then, since the n observations are independent,

�k(x |ω) =
n∏

j=1

[
1√
2π

exp{−1
2
(xj − ω)2}

]pk(xj |Ok)

. (3.7)

To be specific, suppose that n = 102, and that there are two observers, O1 and
O2. Suppose further that O1 believes x102 is an outlier, and O2 believes that both
x101 and x102 are outliers, but they agree that the first 100 points (x1, . . . , x100)
should be included in their analyses. Then,

p1(xj‖O1) = 1 for j = 1, 2, . . . , 101,
= 0, for j = 102,



Reducing Subjectivity in the Likelihood 315

also,

p1(xj‖O2) = 1 for j = 1, 2, . . . , 100,
= 0, for j = 101, 102,

Then,

�1(x |ω) ≡ �1 =
(

1√
2π

)101

exp{−1
2

101∑
j=1

(xj − ω)2}, (3.8)

and

�2(x |ω) ≡ �2 =
(

1√
2π

)100

exp{−1
2

100∑
j=1

(xj − ω)2}, (3.9)

Then,

LM (x |ω) =
1
2

⎧⎨
⎩

(
1√
2π

)101

exp{−1
2

101∑
j=1

(xj − ω)2}

+
(

1√
2π

)100

exp{−1
2

100∑
j=1

(xj − ω)2}
⎫⎬
⎭ (3.10)

We may now estimate ω by maximizing LM(x|ω) with respect to ω. Note
first that if we let n1, n2 be the numbers of data points used in the respective
analyses of Observers O1 and O2, they are also the numbers of terms in the two
summations, and in this example, n1 = 101 and n2 = 100. We may readily find
by ordinary differentiation, the mixture maximum likelihood estimator (mixture
MLE) to be:

ω = α(ω)x̄1 + [1 − α(ω)]x̄2, 0 ≤ α(ω) ≤ 1, (3.11)

where:
α(ω) ≡ n1�1(ω)

n1�1(ω) + n2�2(ω)
(3.12)

x̄1 ≡ 1
101

101∑
j=1

xj , x̄2 ≡ 1
100

100∑
j=1

xj. (3.13)

That is, we find the interesting result that (ω̂|�,�2) is a weighted average
(actually a convex combination) of the separate MLE’s that the two observers
might adopt separately, and the weights are their respective proportions of their
ordinary likelihoods, an intuitively sensible result. But note that because α(ω)
depends upon ω, equations.(3.11) and (3.12) must be jointly solved numerically
for ω̂.
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While in large samples, the (continuous) data will generally ultimately swamp
any prior distribution weights placed on the data points (see Le Cam, 1956), in
small or moderate size samples, certain very influential points that may have
been deleted from an analysis can have substantial effects on the interpretation
of the experiment outcomes.

We next illustrate this example numerically. We randomly generated 18 points
from N(0, 1). We then ordered the points, and added 2 larger outliers. We as-
sumed the first observer dropped the largest point as an outlier, and the second
observer dropped the two largest points as outliers. We then calculated the mix-
ture MLE numerically from equation. (3.11) using the Newton-Raphson method.
We replicated the procedure four times to examine variation. Data are shown in
Table 2a.

Table 2a: Four replications of weighted-data subjectivity

Observation N(10, 1) N(10, 1) N(10, 1) N(10, 1)

1 8.3959 7.6748 8.1260 7.7977
2 8.4063 7.8796 8.5249 8.8122
3 8.559 7.9954 9.6225 8.9922
4 8.7975 8.7684 9.6490 9.0079
5 9.3082 8.9002 9.7041 9.0501
6 9.6001 8.9819 9.7444 9.1783
7 9.8433 9.2957 9.7660 9.2580
8 9.9802 9.3553 10.0400 9.3645
9 10.2570 9.3687 10.1180 9.4404
10 10.5710 9.5069 10.3150 9.7344
11 10.6690 9.6790 10.4280 9.8685
12 10.6900 9.8179 10.5690 10.0880
13 10.7120 9.8868 10.5780 10.2120
14 10.7140 10.0860 10.6230 10.2380
15 10.8160 10.3790 10.6770 10.3900
16 10.8580 10.4620 10.7310 10.4440
17 11.1910 10.5510 10.7990 10.5690
18 11.2540 10.9440 10.8960 10.7810
19 12.0000 12.0000 12.0000 12.0000
20 13.0000 13.0000 13.0000 13.0000

Calculations of MLE’s for the data in Table 2a are given in Table 2b:
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Table 2b: MLE’s for data with outliers

Mixture MLE 10.0406 9.4205 10.0568 9.6267

x̄18 10.0346 9.4185 10.0506 9.6237
x̄19 10.1380 9.5544 10.1532 9.7487

We see that for the data in column 2 of Table 2b, for example, the mixture
MLE was 10.0406. Had the observers carried out separate MLE’s, with Observer
1 dropping only the last observation, he would have found his MLE to be 10.1380,
while Observer 2 who dropped both of the last 2 observations would have found
her MLE to be 10.0346. While the differences are not large they are intended to
be illustrative.

Case 2 — One Observer (Scientist) Rates Each Data Point Differently

The second case of weighted-data subjectivity involves a single scientist weight-
ing the importance of the data points differently from one another. Here we
envision a single scientist who has carried out an experiment many times, but
sometimes, for one reason or another, the scientist carried out the experiment
with extremely small error, whereas on some other occasions, the scientist as-
sociated the experimental outcomes with considerably more error. Thus, which
observed results had small associated error, and which had large associated error
might differ from one replication of the experiment to the next.

In this context there is just one scientist who rates his/her experimental data
differentially, according to how ”well” the data point was measured, or what
he/she thought should have occurred, or whatever. This is the more typical situ-
ation, compared with the first case. The mixture likelihood function is obtained
from equations (3.4) and (3.5), for K = 1, as:

LM(x |ω) = �1(x |ω)P1{O1} =
n∏

j=1

[f(δj1xj |O1, ω)]p1(δj1|O1) . (3.14)

To follow the paradigm suggested here we should take δj1 = 1 for every j. Of
course the individual scientist would often argue that he/she knows better than
anyone else that certain points were really not as good as others, and should
therefore be down-weighted.

A now-classical example of this type of subjectivity of special historical in-
terest has been documented with real data. It involves the data collected by R.
A. Millikan (1868-1953). Dr. Millikan was an American physicist who success-
fully measured the charge on a single electron, winning a Nobel Prize in 1923 for
this famous oil-drop experiment (as well as other prizes). Holton (1978) scruti-
nized Millikan’s laboratory notebooks and found that Millikan had repeated his
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oil-drop experiment 39 times, obtaining outcomes: x1, . . . , x39 for the charge on
the electron. Holton reported that Millikan had given each of his original sets
of observations a personal quality-of-measurement rating: “best”, “very good”,
“good”, “fair”, and no rating at all for discarded measurements (we interpret
his weights to represent his prior probabilities for these measurements). The
distribution of his rating results is summarized in the Table 3.

Table 3: Millikan’s measurements

rating effective δj1 = Weight number of
descriptions raating measurements

best 4 4/10 2
very good 3 3/10 7
good 2 2/10 10
fair 1 1/10 13
discard no rating —— 7

For Millikan, p1(·) = 1, for 32 data points and p1(·) = 0 for the discarded
7 points. We order the measurements according to their effective ratings, from
“best” to “fair”, and form the weighted average. The estimated value of the
charge on the electron is then given by the weighted average:

ê =
4
10

2∑
j=1

xj +
3
10

9∑
j=3

xj +
2
10

19∑
10

+
1
10

32∑
j=20

xj.

Millikan formed the weighted average of his measurements and accordingly
estimated the charge on the electron as 4.85 × 10−10 esu (electrostatic units).
The ordinary equally weighted average would have been 4.70 × 10−10 esu. In his
reported value he also averaged in the values obtained by other researchers. By
contrast, the accepted value for “e”, the charge on the electron, today, is 4.77 ×
10−10 esu. But the impressive closeness of Millikan’s values with today’s accepted
value is deceptive; it occurred only because his values were based upon, “a faulty
value for the viscosity of air, which when corrected, increases the discrepancy
with the modern value by over 40%” (Mathews, 1998).

3.4 Reducing “experiment subjectivity”

Suppose there are two experiments that might be performed: Eg (“g” for
“good”), and Eḡ (“ḡ” for “not good”). In Eg the scientist knows that the ex-
periment will contain one or more variables that might produce effects that will
be confounded with the effect of fundamental interest. In Eg, there are likely
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to be fewer such confounding variables, so the scientist believes that he/she is
more likely to be able to distinguish the effect he/she is seeking. Concomitantly,
it may be that by carrying out Eg, the scientist is missing the important vari-
ables that suggest that the effect sought is really artifactual, and the seeming
effect is explainable in other ways. Because the scientist is so convinced that the
effect sought is real and not artifactual, he/she reasons that Eg is a “cleaner”
and more promising experiment. The scientist might even argue, in a moment of
enthusiastic zeal, that Eg is cheaper and/or less subject to error.

In both experiments, for simplicity of interpretation, we assume the data are
normally distributed with variance equal to 1. Suppose that the scientist referred
to above, call him/her Scientist A, would like to show that the population mean
for the underlying phenomenon of interest is positive. If Scientist A carries out
Eg, it is more likely that the sample mean x̄ will be positive than if Scientist A
carries out Eḡ wherein the sample mean ȳ will imply the alternative hypothesis
Hḡ: that the population mean is not positive. If Eḡ is performed the scientist
believes results are either unlikely to be supportive of the theory, or they are
likely to be sufficiently marginal so that the theory will be in doubt. A priori,
the experimenter adjudges the chances for concluding Hg: the population mean
is positive, when performingEg as greater than the chances for concluding that
the population mean is positive when performing Eḡ. Consequently, Scientist A
decides to perform Eg.

Suppose some other scientist, say Scientist B, performs Eḡ, and subsequently
observes ȳ (using the same sample size, n). Let θ denote an indexing parameter
such that θ = 1 if the hypothesis Hg is true, and θ = 0 if the hypothesis Hg is
false.

LM{data | θ} = E{lokelihood} = Eexperiment[�(data | θ)]
= �(x̄ |Eg, θ)P{Eg} + �(ȳ |Eḡ, θ)P{Eḡ}

The mixture likelihood function becomes:

LM{data | θ} = P{Eg}
√

n√
2π

exp{−n

2
(x̄ − θ)2} + P{Eḡ}

√
n√
2π

exp{−n

2
(ȳ − θ)2}.

An investigator cognizant of both experiments has both and available. In
the same spirit of a desire for equity of treatment in the likelihood function, the
investigator takes P{Eg} = P{Eḡ} = 0.5. Then,

LM{x̄, ȳ | θ} =
1
2

[ √
n√
2π

exp{−n

2
(x̄ − θ)2} +

√
n√
2π

exp{−n

2
(ȳ − θ)2}

]
.

Define z = (x̄ + ȳ)/2. Then, combining terms shows that:

LM{z | θ} =
1
2

√
n√
2π

exp{−n/4} exp{−n(z − θ)2}.
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Thus, the MLE for θ is clearly: θ̂ = z = (x̄+ ȳ)/2. If Scientist A were correct
in his/her a priori assessments of what was likely to happen in the experiment, θ̂
is likely to be closer to zero than x̄ (or even negative), a result that would tend
to vitiate Scientist A’s conclusions.

For example, for Scientist A’s experiment, Eg, we generated 100 observations
from N(1, 1) and found x̄ = 1.0598. Then, for Scientist B’s experiment, Eḡ,
we generated 100 observations from N(−1, 1) and found ȳ = −.9531. So the
generalized MLE, θ̂, is 0.053, a sample value just barely positive, which might
not be convincing in many contexts for asserting that the population mean is
really positive.

4. Conclusions

We have been concerned with how to reduce the effects of a scientist’s pre-
conceived beliefs in the analysis of his/her supposedly objectively-observed data.
We have found that we can reduce the effect of some of those subjective inter-
pretations by using a mixture likelihood function, and then choosing the mixture
weights that weigh the various interpretations of the data equally.
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