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Abstract: Among many statistical methods for linear models with the mul-
ticollinearity problem, partial least squares regression (PLSR) has become,
in recent years, increasingly popular and, very often, the best choice. How-
ever, while dealing with the predicting problem from automobile market,
we noticed that the results from PLSR appear unstable though it is still
the best among some standard statistical methods. This unstable feature is
likely due to the impact of the information contained in explanatory vari-
ables that is irrelevant to the response variable. Based on the algorithm of
PLSR, this paper introduces a new method, modified partial least squares
regression (MPLSR), to emphasize the impact of the relevant information of
explanatory variables on the response variable. With the MPLSR method,
satisfactory predicting results are obtained in the above practical problem.
The performance of MPLSR, PLSR and some standard statistical methods
are compared by a set of Monte Carlo experiments. This paper shows that
the MPLSR is the most stable and accurate method, especially when the
ratio of the number of observation and the number of explanatory variables
is low.

Key words: Modified partial least squares regression (MPLSR), multicollinear-
ity, partial least square regression (PLSR), ridge regression (RR), principal
components regression (PCR), variable subset selection method (VSS).

1. Introduction

In automobile market, the auction price of two-year-in-service vehicle is an
important indicator of that vehicle’s market value, which is of great interest to
manufacturers, dealers, financial institutions and consumers. When linear model
is used to predict the auction price, multicollinearity arises. Multicollinearity
often exists when the number of explanatory variables is large compared to the
number of observations, and it causes difficulty estimating parameters.

To solve multicollinearity problem, many statistical methods have been sug-
gested. The variable subset selection method (VSS) is used to avoid the multi-
collinearity caused by too many variables, and the stepwise version is used here.
The ridge regression (RR) was suggested by Hoerl and Kennard (1970) as a
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method for stabilizing regression estimates in the presence of multicollinearity,
which assumes that the regression coefficients are not likely to be very large.
Principal components regression (PCR), introduced by Massy (1965), tries to re-
duce the dimension and avoid multicollinearity by using just a few components,
the linear combinations of the explanatory variables.

Being a comparatively new method, the partial least squares regression (PLSR)
has became the most popular regression method in chemometrics. PLSR was sug-
gested by Wold (1975), Wold et al. (1984), Martens (1985, 1989), Helland (1988)
and Garthwaite (1994). The PLSR can be traced from general systems-analysis
methods of Wold. It is a useful tool when multicollinearity exists among ex-
planatory variables and when the number of explanatory variables is very large
compared to the number of observations. PLSR has been studied in great de-
tails. Frank (1993) and Goutis (1996) proved properties of PLSR estimates.
Ruscio (2000) studied the relationship between the PLSR algorithm for univari-
ate data and Cayley-Hamilton polynomial expression. Stone (1990) introduced
continuum regression based on OLS, PLSR and PCR. Goutis (1996) introduced
a modification of PLSR using a roughness penalty. Wold (1992) and Durand
(1997) extended PLSR into nonlinearity using spline functions. Presently PLSR
have been applied in many fields, especially broadly in chemistry as “the use of
mathematics and statistics on chemical data” (Martens, 1989). PLSR have been
compared with other methods in chemistry, see Phatak (1993), Phatak (1997)
and Ter Braak (1998). PLSR was also combined with neural network as a new
subject in nonlinear analysis (Ham, 1997). The software for the PLSR regression
is available in some packages such as Unscrambler 7.5 (a PLSR and experimental
design software), SAS and SIMCA 8.0 (a PLSR software).

When the four methods (PLSR, RR, PCR and VSS) are used to predict the
auction price referred in the first paragraph, although the algorithms of PLSR
and RR reach better results compared to the very large average relative errors
from using VSS and PCR, their performances on five different vehicle lines are
unstable, and therefore unsatisfactory, despite the fact that the five vehicle lines
have very similar position in automobile market.

While studying this practical question, we discovered the reason behind the
unstable performance of PLSR and developed the more stable modified partial
lease square regression (MPLSR), a modification of PLSR.

This paper is organized as follows. Section 2 provides the background of
the practical problem, predicting auction price, and the results from using the
four methods (PLSR, RR, PCR and VSS). Section 3 presents the idea of the
PLSR method and analyzes its shortcoming, which motivates us to introduce a
new MPLSR method. Section 4 introduces the algorithm of the new MPLSR
method. Section 5 applies the MPLSR in our practical problem on automobile
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market and compares its prediction results with those of other four methods.
Section 6 presents a simulation study to compare the performance of MPLSR,
PLSR, VSS, RR and PCR.

2. Automobile Market Prediction Results

In the automobile market, the auction price of a two-year-in-service (2YIS)
vehicle is of special interest because it is the base of many important decisions.
For example, it is used to calculate the lease end value. When a consumer leases
a vehicel on January 2005 for 2 years, he will return the vehicle on January 2007.
The manufacturer suggested price minus the lease end value is his payment for 2
years lease. In this case, manufactor needs to know the auction price of a 2YIS
vehicle on January 2007. The auction price of 2YIS vehicles is highly correlated
with the quality of the vehicle. A vehicle with good style and durabality will be
fetched a good price. On the other hand, if a vehicle is a trouble maker, it has
less chance to be sold at a good price. The Compact Utility segment is one of the
most popular segments in the United States. It has attracted a lot of attention
recently. We select five major vehicles from this segment: Explorer, 4Runner,
Grand Cherokee, Cherokee and Blazer. Our goal is to predict their auction price
of 2YIS vehicles.

The data used in the study includes the auction prices and twenty major fac-
tors (indexes) including APEAL Score (APEAL is referred to as Automotive Per-
formance, Execution and Layout) measuring an owners* delight with the design
and features of their vehicle, customer satisfactory indexes, durability indexes,
money against market (incentive), manufacturer suggest price (MSRP), style age
and used-car consumer price index (UCPI). On the auto market, the manufac-
turers modify their vehicles and introduce new model year vehicles each year.
For example, on October 1998 the manufacturers introduced 1999 model year
vehicles that are modified based 1998 model year vehicles. Most modifications
are minor. But some modifications are major that are called major refreshing. In
major refreshing the exterior styling and interior styling are changed. The style
age equals current model year subtract the model year of last major refreshing.

The OLS method is used at first and only three independent variables are
significant under the t-test with the coefficient of determination R-square greater
than 0.8 while the all twenty independent variables are present. If only the
three significant variables are used as independent variables, the R-square is only
0.3. Collinearity is naturally suspected, and among the twenty condition indexes,
nine are larger than 60 and one is greater than 1000. Collinearity can be also
expected by just looking the original meanings of these independent variables.
For example, the vehicle lines with higher APEAL and better durability will
have higher MSRP, lower incentive and higher customer satisfactory index.
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Our study particularly covers two-year-in-service leased vehicles. The auction
prices are the auction prices from automakers to dealers. Linear model is built
on this data set. The auction price of one kind of vehicle line from January 1995
to June 1999 is the response variable, and all twenty other major variables of this
kind of vehicle line from the corresponding two-year-in-service periods, which is
from January 1993 to June 1997, are explanatory variables. Here, the auction
price on January 1995 and the values of other variables on January 1993 are from
the same batch of vehicles because the auction price of a new vehicle produced
on January 1993 become available only after two years. This linear model is for
capturing the relationship between vehicle’s attributes and its auction price two
years later.

The Regression ARIMA is the first model we try to use in this study. But this
is a long term (24 months) forecast and the multicollinearity makes the problem
complicated, the time series method doesn’t have an advantage.

The methods of VSS(stepwise), RR, PCR and PLSR are natural candidates.
Firstly all the four methods are applied to the five kinds of compact utility vehi-
cles, and the prediction results are analyzed.

The monthly average of auction prices from July 1999 to December 2000 (18
months), not used in regression, are used to verify the prediction result. For
analyzing the prediction results, we calculate the errors between predicted and
the actual auction price. The average of the relative prediction errors (ARE)∑18

t=1 |yt − ŷt|/(18ȳ) is used as a criterion to test the predicting capability of a
model. Here, ȳ is the mean of the auction prices from January 93 to June 99, yt is
the actual auction price and ŷt is the predicted auction price. The relative errors
(yt − ŷt)/ȳ, t = 1, ..., 18 from using the four methods are plotted together for
comparison. Because the ARE is a commonly used index in practical, it is used
here, while we will use a similar measure, statistic average prediction squared
error (PSE), in Section 6. Table 1 shows the average relative prediction errors of
the five kinds of SUV vehicle lines using all the four methods. The results show
that the PLSR is the best method among five methods.

Table 1: Average relative errors of the four methods

Methods Vehicles
Explorer 4Runner Cherokee Grand-Cherokee Blazer

PLSR 4.4% 2.4% 3.3% 6.4% 14.6%
VSS(Stepwise) 11.4% 9.7% 16.7% 26.7% 21.8%
PCR 9.4% 7.9% 26.9% 17.1% 16.5%
RR 4.5% 3.9% 5.6% 17.4% 8.9%
(ridge parameter) (0.008) (0.34) (1) (1) (0.14)
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Here, the one-at-a-time cross validation is used to select the cut-off place of the
PCR. The independent matrix is standardized in RR. For the detail information
about PLSR, please see the Appendix. Since one of the important assumptions
of RR is that the regression coefficients are not likely to be very large. So the
ridge parameter is usually selected from the range [0,1] in practical problems. In
Table 1, the ridge parameters are the optimal ones in [0,1], which provide the
lowest ARE. From Table 1, the other three methods produce larger predicting
errors than the PLSR on average.

However, the performance of PLSR is inconsistent among the five kinds of
vehicle lines. It obtains satisfactory prediction result for first three kinds of
vehicle lines but not the last one. When PLSR method is used, the prediction
auction prices of Blazer have large bias from its actual value. It is this case that
causes our attention. Discovering the reason that the PLSR becomes inefficient
in this case may lead to the key of overcoming the shortcoming of PLSR method.
Figure 1 shows the relative errors in predicting auction prices of the five kinds of
SUV vehicle lines.
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Figure 1: Relative errors in predicting of auction price

From Figure 1, the predicted values of Blazer from all the four methods are
much higher than the actual auction value. This inefficiency of all methods may
be caused by the irrelevant-to-the-response information contained in explanatory
variables during the prediction period.
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3. The Situation Where the PLSR Method Does Not Work Well

As we have seen in the last section, PLSR method does not work well in all
situations. It provides a very inaccurate prediction of auction price for Blazer
although the prediction results of other 4 vehicle lines are reasonable. This phe-
nomenon is caused by the irrelevant information in the explanatory matrix to the
response variable.

Let the linear model (here only univariate response is considered) be

Y = Xβ + ε,

where Y is an n × 1 response vector and X a known n × k explanatory matrix,
and ε is a noise term with the same dimensions as Y. Matrix X of explanatory
variables contains two types of information. One type is relevant to the response
variable Y and therefore useful in predicting the value of Y. The other type is
irrelevant to Y and hence causes inefficiency in the prediction. The idea of PLSR
algorithm is to extract components (factors) {ti} from X, which are relevant to
Y. These components are extracted in decreasing order of relevance measured
by covariance Cov(ti, Y ). Let T be the matrix of the selected components ti’s,
and therefore T = XW, where the columns of W are weight vectors for the X
columns. Then ordinary least squares procedures for the regression of Y on the
matrix T are performed to produce the coefficient vector V or ŶPLS = TV. Then
the estimator β̂PLS of the original β has the form of β̂PLS = WV. A version of
detailed PLSR algorithm is provided in Appendix.

In PLSR, despite different approaches, each factor ti is selected to maximize,
in the sense of absolute values, the covariance Cov(ti, Y ), where

Cov(ti, Y ) = Corr(ti, Y )
√

Var(ti)Var(Y ) ∝ Corr(ti, Y )
√

Var(ti).

Since the ti is a linear combination of independent variable, its variance may
not be 1; the variances of all independent variables are standardized as 1. An
ideal situation is that both Var(ti, Y ) and Corr(ti, Y ) decrease monotonously as
Cov(ti, Y ) decreases during the process of selecting components; that means the
most representative (due to large variance) and the most relevant (due to large
correlation) elements in X would be used for the regression. Unfortunately, it is
not always true that a large Cov(ti, Y ) will guarantee that both Corr(ti, Y ) and
Var(ti) are all large at the same time. It is possible that a factor ti corresponding
to a large Cov(ti, Y ) caused by a large Var(ti) but relatively smaller Corr(ti, Y )
may be selected while another factor t∗i with a slightly smaller Cov(t∗i , Y ) caused
by a relatively smaller Var(t∗i ) but a larger Corr(t∗i , Y ) may be discarded.

As a consequence of discarding information relevant to Y, ŶPLS has lower
correlation with Y. Let us see a simple illustrative example, where no error term
is added for the obviousness.
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Example 1. Suppose our data is

Y =

⎛
⎜⎜⎝

3
0
0
0

⎞
⎟⎟⎠ , X =

⎛
⎜⎜⎝

1 0 0 0
20 1 0 10
65 0 1 9
0 0 0 0

⎞
⎟⎟⎠ ,

or X = (z1 +20z2 +65z3, z2, z3, 10z2 +9z3) where zi denotes 4×1 vector which
the ith element is one and the others are zero. We want to make regression
of Y on X. The solution of the regression is obvious: in the term of relation
between X and Y, Y = 3z1. Obviously the ordinary least squares (OLS) method
does not work due to the multicollinearity. What would PLS method say on this
example? We use PLS to find the factors t1, t2 and t3 according to their values of
Cov(ti, Y ) in descending order. The values of Cov(ti, Y ), Var(ti) and Corr(ti, Y )
for i = 1, 2, 3 are

Cov(ti, Y ) Var(ti) Corr(ti, Y )
t1 1.505 3.154 0.565
t2 0.221 2.102 0.102
t3 0.015 0.00014 0.819

With common criterion in cross-validation, the PLS method selects only t1 to
be the regressor because it has the largest variance Cov(t1, Y ), which however is
almost entirely due to the largest Var(t1) despite its small Corr(t1, Y ). The reason
for having these values of covariance, variance and correlation is the composition
of ti. With matrix notation, the relation between ti and zj are

(
t1 t2 t3

)
=

(
1, z1 z2 z3

) ·

⎛
⎜⎜⎝

1.525 0.208 −0.015
−0.020 0.013 0.029
−2.669 −2.172 0.015
−3.412 1.327 0.014

⎞
⎟⎟⎠ .

Clearly the chosen t1, which mainly composed with z2 and z3 through the last
three columns of Z, has little relation with Y or z1. On the contrary, the last
factor t3 which has no chance to be selected by Cross-validation even under the
least conservative criterion because of its small covariance although it is more
correlated with Y than the first two. Therefore the PLSR does not work in this
situation. To emphasize the information relevant to Y in the modeling process in
order to reach better prediction, next we introduce the following modified partial
least squares regression (MPLSR) algorithm.
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4. Modified Partial Least Squares Regression (MPLSR) Algorithm

The main idea of our MPLSR methods is to use an orthogonal projection that
removes from ŶPLS the elements irrelevant to Y. First, we find some factors which
are linear combination of independent variables and orthogonal with Y. Second,
the effect of irrelevant information in X are removed by projecting the ŶPLS on
orthogonal complement space of those factors. The following is the algebra of the
MPLSR algorithm.

For our model Y = Xβ + ε, since X
′
Y Y

′
X is a real symmetric matrix with

rank 1, it has k−1 orthogonal eigenvectors correspondent to the zero eigenvalue.
Let b1, ..., bk−1 denote the k − 1 eigenvectors corresponding to zero eigenvalue
and B ≡ (b1, ..., bk−1), a k × (k − 1) matrix with columns of b1, ..., bk−1. Because
b
′
iX

′
Y Y

′
Xbi = 0, or Y

′
Xbi = 0 for i = 1, ..., k−1, the k-vectors {b1, ..., bk−1,X

′
Y }

form an orthogonal basis of a k-dimensional space. All those orthogonal to Y
can be expressed as XBα. Among unit vectors α (α

′
α = 1), we pick up those

that make variance of XBα maximum, which are the eigenvectors correspond-
ing to the maximal eigenvalues of B

′
X

′
XB. So we select a number of maximal

eigenvalues of B
′
X

′
XB, λ1, ..., λs, such that the cumulative eigenvalue contri-

bution proportion
∑s

i=1 λi/
∑k−1

i=1 λi is greater than a certain value, 99% say.
Let their corresponding eigenvectors be columns of matrix A ≡ (α1, ..., αs). Also
let U = XBA, which is orthogonal to Y. The projection of X orthogonal to U
is (In − PU )X ≡ X − U(U

′
U)−1U

′
X = X(Ik − BA(U

′
U)−1U

′
X) = XD with

D ≡ (Ik − BA(U
′
U)−1U

′
X). Let the original PLSR fitted vector be ŶPLS and

the estimated coefficient vector be β̂PLS . Then the fitted value from our MPLSR
algorithm is defined by ŶMPLS ≡ XDβ̂PLS . Let the estimated coefficients by
MPLSR be β̂MPLS = Dβ̂PLS.

The estimation ŶMPLS reduces from ŶPLS the element of irrelevant informa-
tion to Y and emphasizes the roles of relevant information during the estimation
process.

Since the MPLSR is based on the result of PLSR method, a better result will
be obtained when the prediction of Y by using PLSR methods includes more
relevant information.

5. A Comparison of the MPLSR with Four Methods for Auction Price
Case

In this section, we continue the discussion of the prediction problem in Sec-
tion 2. The proposed MPLSR is used to predict residual values of two-year-in-
service vehicles, and the results are compared to those from using the PLSR,
VSS, RR and PCR methods. Table 2 presents average relative errors of predict-
ing the five kinds of SUV vehicle lines using all the five methods (the results
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except MPLSR have been shown in Table 1).

Table 2: Average relative errors of the five methods

Methods Vehicles
Explorer 4Runner Cherokee Grand-Cherokee Blazer

MPLSR 1.64% 3.05% 3.6% 5.1% 1.7%
PLSR 4.4% 2.4% 3.3% 6.4% 14.6%
VSS (stepwise) 11.4% 9.7% 16.7% 26.7% 21.8%
PCR 9.4% 7.9% 26.9% 17.1% 16.5%

RR 4.5% 3.9% 5.6% 17.4% 8.9%
(ridge parameter) (0.008) (0.34) (1) (1) (0.14)

From Table 2, the other four methods produce larger predicting errors than
the MPLSR on average. Comparing to PLSR, the MPLSR method produces
smaller error, except that for 4Runner and Cherokee, which are very close, and
both methods produce similar error patterns that closely track each other along
different time (see Figure 2).

Unlike the PLSR, the performance of MPLSR is consistent when it is used
to predict the auction prices of the five similar vehicle lines. When the MPLSR
method is used, the average relative errors of the five vehicles are almost under
5%, and MPLSR’s result for Blazer is much better than those from the other four
methods.

The MPLSR method has a consistent performance not only on predicting
auction prices of different kinds of vehicle lines but also on predicting one kind of
vehicle’s auction prices on different time. Table 3 provides the standard deviation
of predicting errors that measure the deviation level of predicting errors of one
kind of vehicle line.

Table 3: Standard deviation of predicting errors of the five methods

Methods Vehicles
Explorer 4Runner Cherokee Grand-Cherokee Blazer

MPLSR 0.016 0.036 0.026 0.011 0.017
PLSR 0.047 0.029 0.036 0.012 0.056
VSS(stepwise) 0.02 0.07 0.045 0.117 0.08
PCR 0.04 0.02 0.31 0.07 0.04
RR 0.04 0.02 0.028 0.045 0.02
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As noted in Table 3, in most situations, the standard deviation of errors from
using MPLSR is less than that from using the other four methods on average
for the test data. That demonstrates the better predicting capability and more
stable results of MPLSR compared to the other methods.

Figure 2 presents the relative errors in predicting auction prices of the five
SUV vehicle lines. In each picture, the relative errors from using the five methods
are put together for comparison. As shown in Figure 2, the errors of predicting
auction prices of Explorer by using the PLSR method are particularly large in
the last two months. This unexpected large error is partially caused by the noise
presented in the original data. The error is, however, significantly smaller when
the MPLSR method is applied. The MPLSR removes irrelevant information and
reduces the disturbance caused by noise. The errors of predicting auction price
using the MPLSR method have smaller fluctuation.

Relative error in Predicting Price
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Figure 2: Relative errors in predicting of auction price (with MPLSR)

The predicted results of 4Runner’s auction price, using PLSR and MPLSR,
are very close in the year 2000. The average of the errors by using PLSR is
smaller than that of MPLSR, and both methods result in similar patterns.

It is clear that the MPLSR produces significantly better-predicted results
for Blazer than the other methods. The predicted values of PLSR, VSS, PCR
and RR are much higher than the real auction value. All the four methods
are influenced by the same kind of irrelevant information, and this information
becomes very abnormal than usual in the last half year. Without removing the
irrelevant information, the PLSR produces results having a large bias, and due
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to the removal of irrelevant information, the MPLSR’s results track the trends
very well although the pattern of prediction errors is similar to that of PLSR.

For each of these five vehicles, the errors by the PLSR and the MPLSR follow
the same trend in time series, although their magnitudes appear to be different.
Because the MPLSR emphasizes the information relevant to Y, its predicted
results often follow the real values more closely than those of the PLSR method.

The five methods are also used to predict auction prices of five upper middle
vehicles. The results are similar. The MPLSR method provides the most accurate
and stable predicting auction prices among the five methods.

This practical example demonstrates that MPLSR algorithm does have advan-
tages over other four when the multicollinearity exists. For further investigation,
next we use Monte Carlo analysis to compare MPLSR method with the others.

6. A Simulation Comparison of MPLSR, PLSR, VSS, RR and PCR

To understand in what situations MPLSR can be expected to work well com-
pared to other standard methods, VSS (stepwise), RR, PLSR and PCR, a set of
Monte Carlo experiments is performed, and a summary of the results is presented
in this section.

The five methods are compared in 360 different situations with different
numbers of explanatory variables (k = 30, 60 and 100) and different levels of
collinearity in the explanatory matrix. This means that the correlation matrix
of explanatory variables have different structures (low collinear-all off-diagonal
elements 0.4; middle collinear-all off-diagonal elements 0.7; high collinear-all off-
diagonal elements 0.9). These situations also have different noise-to-signal ratio
{σ/Var(α

′
X)1/2 = 0.05 or 0.1} and different true regression coefficients (20 sets

of different regression coefficients β are generated randomly from normal distri-
bution N(0, 100)). So there are totally 3 × 3 × 2 × 2 = 360 situations studied.
For each situation, 100 data sets are generated and the results are reported as
means of the 100 replications. Each data set includes 150 observations. The
first 50 observations are training data that is used to estimate the regression
coefficients by using the five regression methods (MPLSR, PLSR, VSS, RR and
PCR) respectively. The last 100 observations are test data that is used to test
the performance of the five methods.

The average prediction squared error (PSE) over the 100 test observations is
used as the statistic to compare the performance of the five regression methods:

PSE =
1

100

150∑
i=51

(yi − ŷi)2.

The PSE values for each method in each situation are averaged over the 100
replications to compare the predicting capabilities of the five methods in different
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situations. The SDP values (standard deviation of PSE) for each method in
each situation are calculated over the 100 replications to measure the stability of
prediction of the five methods. The lower values of PSE and SDP indicate the
better performance of the corresponding method.

Frank & Friedman (1993) provided the optimal ridge parameter λ that mini-
mizes the mean squared error (MSE) of the prediction, and therefore the optimal
ridge parameter can be calculated in each situation to be the base of RR. The
results of the four regression methods (PLS, VSS, RR and PCR) are obtained by
SAS standard procedure (PROC PLS and PROC REG).

The results of the Monte Carlo experiments are presented in Figures 3-6.
Figure 3 shows the average PSE and SDP of the five methods over the 360
situations.

MPLSR PLS VSS RR PCR

(a) The Average PSE

Method

T
he

 a
ve

ra
ge

 P
S

E

0
50

0
10

00
20

00

MPLSR PLS VSS RR PCR

(b) The Average SDP

Method

T
he

 a
ve

ra
ge

 S
D

P

0
20

0
40

0
60

0
80

0

Figure 3: Average PSE (3.a) and SDP (3.b) of five methods over 360 situations.

Figure 3 demonstrates that our new method MPLS has the best performance
with smallest average PSE and SDP, which means accuracy and stability, and
VSS (stepwise) being the worst. Table 4 provides the percentages that the MPLS
method reduces the values of PSE and SDP from four other methods. Here in
the table PPSE and PSDP are

PPSE =
PSE of compared method − PSE of MPLSR

PSE of compared method
,

PSDP =
SDP of compared method − SDP of MPLSR

SDP of compared method
.
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Table 4: Reduced percentages based on all situations

Percentage Method
PLS VSS RR PCR

PPSE 6.8% 67% 52% 13%
PSDP 16% 72% 56% 23%

From Table 4, one can see that having the the smallest PSE among the
five methods, MPLSR reduces PSE by 6.8 percents compared to PSE of PLSR,
which has the second smallest PSE. This means that the MPLSR improves the
predicting capability significantly. Since the SDP of MPLSR is the lowest among
the five methods, MPLSR is the most stable method in the five methods. When
the MPLSR is used, the SDP improves by 16 percents compared to the result
of using PLSR method. The advantage of MPLSR on stability of prediction is
significant compared with the other four methods.

From Figure 3 and Table 4, the new method MPLSR provides the best average
overall performance significantly; the PLSR and PCR follow closely, and RR
gives an inferior overall performance just slightly better than VSS. Since the
performances of these methods may change with different situations, discussion
their performance in different situation is necessary.

Figures 4-6 present a graphical detailed summary of classified results from
this simulation analysis according to the characteristics of three kinds of data
characteristics (number of independent variables, collinear level and noise-to-
signal ratio).
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Figure 4: Performance comparison of five methods on PSE (4-a) and SDP (4-b)
for two levels of noise-to-signal ratio.

Figure 4 demonstrates MPLSR provides the best results in these levels of
noise-to-signal ratio. Also RR behaves in a different way from the others: when
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noises increase, RR’s predicting capability and stability level increases while those
of MPLSR, PLSR, VSS and PCR decrease.
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Figure 5: Performance comparison of five methods on PSE (5-a) and SDP (5-b)
on k = 30, 60 and 90.

Figure 5 shows that the result of MPLSR is the best except when k = 30. In
the situation where k = 30, RR (Note: the optimal parameter λ of RR is known
in the simulation while λ is almost impossible to know in a real problem) per-
forms slightly better than MPLSR. But this advantage of RR disappears rapidly
when the ratio of the number of observations and the number of explanatory vari-
ables (OVR) decreasing. the values of PSE increase sharply when the number of
explanatory variables increases.
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Figure 6: Performance comparison of five methods on PSE (6-a) and SDP (6-b)
on low, middle and high multicollinear situations.

Figure 6 shows that for the three kinds of collinearity levels, MPLSR gives the
best predicting model. When the collinearity increases, the advantage of MPLSR
method becomes more prominent.
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Figure 4-6 shows that MPLSR provides the best and the most stable pre-
dicting results (the lowest PSE and SDP) among the five methods in almost all
situations except one situation (see Figure 3, when k = 30), where the perfor-
mance of the RR is better.

However, in our automobile market example, the predicting results of RR
are no better than MPLSR although the OVR is higher than 50/30. One of the
reasons is the difficulty of determining the ridge parameter in practice because it
is impossible to obtain the optimal ridge parameter in a real problem. Because
the RR method is sensitive to the ridge parameter, a bad ridge parameter will
produce a model that cannot obtain a reasonable prediction. From this point of
view, MPLSR is a more practicable method than the RR.

We should notice that the pattern of the five methods are similar in both
the practical example and in simulations. This ensures the advantage of MPLSR
method in different situations.

7. Discussion

In this paper, MPLSR method has been introduced when the explanatory
matrix X includes much information irrelevant to the response variable Y. It is
an algebraic algorithm based on the result of the PLSR method. Both Monte
Carlo experiments and the practical example demonstrate that the new method
produces more accurate and stable results than other standard statistical methods
(VSS, RR, PCR and PLSR), especially when the observations-variables number
ratio is low and the multicollinearity is high among independent variables.

We suggest that even in the steps of selecting components in PLSR, one should
select not only the components with large covariance with the dependent variable
Y but also the components with large correlation with variable Y.. One possible
way is to use PLSR between Y and XD instead of between Y and X; another is
to make compromise between Var(ti, Y ) and Corr(ti, Y ) in the criterion used for
selecting components in PLSR process.
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Appendix: The Algorithm of PLSR Method

Let Y be an n × 1 dependent vector and X a known n × p explanatory
matrix. Assume X and Y are standardized. The linear model is Y = Xβ + ε,



272 Bo Cheng and Xizhi Wu

where ε ∼ N(0, σ2In).
The following is a brief description of the PLSR algorithm (see Helland, 1988).

Let Ps = S(S
′
S)−1S

′
denote the projection matrix onto the space spanned by

column vector(s) of a matrix S.

(1) Selection of orthogonal component {ti}
(a) Calculating {ti} sequentially
Let X0 = X initially. The component tk is selected in step k and calculated

as:

wk = X
′
k−1Y/

√
Y ′Xk−1X

′
k−1Y , tk = Xk−1wk and pk = X

′
k−1tk/t

′
ktk (1)

and Xk = Xk−1 − tkp
′
k = (I − Ptk)Xk−1.

(b) Using cross-validation (CV) criterion at step k

Here, the CV (Stone, 1974) is used as the criterion to decide whether the
component k should be selected into the model. Let T k be the matrix which
has k columes and the i-th colume is ti. Let SSEk be the residual sum of the
regression model where the dependent variable is Y and explanatory matrix is
T k, and the partial SSE, or PSSE, is determined by

PSSEk+1 =
n∑

i=1

(yi − T k+1
{i} (T k+1

(i)

′
T k+1

(i) )−1T k+1
(i)

′
Y(i))

2 (2)

where symbol T k+1
{i} denotes the i-th row of T k+1, T k+1

(i) represents T k+1 without
its i-th row, and Y(i) is Y without its i-th element yi.

At step k the CV statistic Qk is defined as Qk = 1 − PSSEk+1/SSEk. If
Qk ≥ 0.0975, proceed with step k + 1; otherwise the selection process stops.

(2) Regression on chosen T q

With selected q components T q = (t1, ..., tq), the regression model where Y is
the dependent variable and T q is the explanatory matrix is fitted by OLS model

Y = T qrq + ε = r1t1 + · · · + rqtq + ε (3)

(3) and the estimation of the coefficient rq is obtained as r̂q = (T q ′
T q)−1T q ′

Y.
Then the estimation of Y is Ŷ = r̂1t1 + · · · + r̂qtq. From (1),

ti = Xi−1wi = X
i∑

j=1

(Ip − wjp
′
j).
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Let w∗
i =

∑i
j=1(Ip −wjp

′
j) and substitute ti in (3) with Xw∗

i , estimation of Y in
PLS is

ŶPLS = r̂1t1 + · · · r̂qtq = r̂1Xw∗
1 + · · · r̂qXw∗

q = X

q∑
i=1

r̂iw
∗
i . (4)

For simplicity, let β̂PLS =
∑q

i=1 r̂iw
∗
i , then ŶPLS = Xβ̂PLS .
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