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Abstract: In this paper we analyze the weight loss behaviour of Mexican
garlic under different storage conditions. Garlic is an important Mexican
export product. Quality losses during storage are important to understand
due to cost and sale opportunity implications. Weight losses profiles for each
experimental conditions, represented as functions, are modeled by means of
functional linear models and hypotheses tests are performed to compare
treatments. Monte Carlo sampling version of permutation tests are used
to obtain p-values. Using the functional approach clearly defined storage
regimes that significantly decrease the speed of deterioration of the product
relative to traditional Mexican agricultural practices.
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1. Introduction

Garlic (Allium sativum L.) is one of the most important products from Mex-
ican agriculture. Mexico has the second place in the Americas as garlic producer
cultivating 9,850 hectares with 75,810 ton per year (Heredia, 1995; SAGAR,
1997); garlic in Mexico is important from an economic perspective because 26%
from its total production goes to USA markets (Heredia, 2000). Its production
cycle goes from February to August; during the period of low availability, har-
vested garlic is strored without any control. It is important to understand the
effects of different storage conditions on its quality features.

The global objective of this research was to longitudinally study quality
changes in garlic due to six different storage regimes (treatments), 0◦C , 20◦C,
30◦C, 5◦C, 0◦C / 70% of relative humidity, and no control, this last one being
the traditional storage condition of garlic in Mexican agriculture. In this paper
we concentrate in weight loss changes; for each storage regime a batch of garlic
(with 360 bulbs) was screened during 190 days. From each batch, three 5-bulbs
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sets were used as three replicates, therefore 18, the total number of experimen-
tal units, were assigned completely at random to the different storage regimes.
Weight loss of every experimental unit was repeatedly measured every 10 days
(from 0 to 190 days).

Then the corresponding experimental design is a completely randomized one
factor design with three replicates. The response is the weight loss profile along
190 days.

In the context of the described experiment, there exist multiple alternatives
for the statistical analysis. In this paper we show an application of what is
called a functional linear model to estimate contrasts of interest among storage
conditions. We will make statistical inference by means of permutation tests
(Good, 2000). In the next section basic ideas of functional data analysis and
linear modelling are presented. In section 3 we comment on the alternatives to
carry out hypothesis testing in the context of the functional linear model. Section
4 is devoted to the application and discussion of the results about the comparison
of storage regimes.

2. Functional Modeling

2.1 Functional representation of discrete data

Functional Data Analysis (FDA) is a useful approach to study variation of
responses such as the one described above. Let N be the number of experimental
units, n the number of times that the weight loss was recorded and yij the weight
loss values for i = 1, . . . , N and j = 1, . . . , n. These values could be thought of
as a discrete manifestation of a weight loss function yi (t) , such that

yij = yi (tj) + εij , εij �
(
0, σ2

)
independent,

tj , j = 1, . . . , n, the so-called knots.
Then the first step in FDA is to represent these values by a function yi (t) ,

t ∈ [0, 190(= T )]. Assuming observational errors, the estimation process of yi (t)
involves smoothing techniques. A popular criterion (Green and Silverman, 1994)
to estimate yi (t) is minimizing

n∑
j=1

{yij − yi (tj)}2 + λi

T∫
0

{
y′′i (t)

}2
dt (2.1)

where λi ≥ 0 is a smoothing parameter which represent a trade-off between
the goodness of fit yi (t) to the data, the first term in (2.1), and its smoothness
measure by the integral of y′′i (t) , the second derivative of yi (t) used as a measure
of its smoothness.
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Given (2.1) an important point is where to search for yi; a searching strategy
having a sound theoretical background (see for instance Wahba, 1990) is to think
of yi (t) as

yi (t) =
M∑

m=1

cimBm (t)

where {Bm (t)}M
1 is a set of basis functions to represent yi, and {cim} the corre-

sponding set of coefficients of yi. Under this representation, (2.1) can be written
as

n∑
j=1

{
yij −

M∑
m=1

cimBm (tj)

}2

+ λi

T∫
0

{
M∑

m=1

cimB′′
m (t)

}2

dt

‖yi−Bci‖2 + λicT
i Rci

where yi=(yi1, . . . , yin)T , ci= (ci1, . . . , ciM )T , B a matrix with columns Bm (tj) ,m =
1, . . . ,M, and R = {Rmu},

Rmu =

T∫
0

B′′
m (t)B′′

u (t) dt.

The solution to this minimization problem corresponds to

ĉi =
(
BT B + λiR

)−1
BTyi

Then

ŷi (tj) = (B1 (tj) , . . . , BM (tj)) ĉi.

The estimated function resulting from the above describe process belongs to
the so-called natural cubic smoothing splines (Green and Silverman, 1994). A
set of basis functions that efficiently expands a natural cubic spline from the
computational perspective are the so-called B-splines. The specification of a B-
spline basis requires augmentation of knots t1 < . . . < tn. Let t0 and tn+1 denote
boundary knots. The augmented knot sequence is defined as follows;

τ1 ≤ τ2 ≤ . . . ≤ τM ≤ t0;
τj+M = tj, j = 1, . . . , n
tn+1 ≤ τn+M+1 ≤ τn+M+2 ≤ . . . ≤ τn+2M
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The values of the additional knots are arbitrary, and it is customary to fix them
all the same and equal to t0 and tn+1, respectively. Denote by Bu,m (x) the
B-spline function of order m for the sequence of knots τ, m ≤ M, recursively
defined as:

Bu,1 =
{

1 if τu ≤ t ≤ τu+1

0 otherwise

for u = 1, . . . , n + 2M − 1;

Bu,m (t) =
t − τu

τu+m−1 − τu
Bu,m−1 (t) +

τu+m − t

τu+m − τu+1
Bu+1,m−1 (t) ,

for m = 1, . . . , n + 2M − m. Thus with M = 4, Bu,4 (t) , u = 1, . . . , n + 4 are the
n + 4 cubic B-spline basis functions for the knot sequence t′js. So defined each
B-spline function has a compact support; this implies computational efficiency;
for further details see for instance Hastie, Tibshirani and Friedman (2001).

The smoothing parameter λi is a key component in the estimation process
because if λi → 0, ŷi (t) will be just as rough as yij, j = 1, . . . , n, while if λi

increases without limit, ŷi (t) will be forced to a linear function (ŷ′′i (t) = 0) . One
way to choose λi is by minimizing the cross - validation score

CV (λi) = n−1
n∑

j=1

{
yij − ŷ

(−l)
i (tj;λi)

}2
,

where ŷ
(−l)
i (tj;λi) represents the estimated function once yil has been omitted

from the estimation process.

2.2 A functional linear model

Being yi (t) the functionally represented weight loss function for experimental
unit i along storage time, the objective is to study changes in {yi (t)}N

1 due to
the above mentioned six storage conditions. Ramsay and Silverman (1997) (see
also Ramsay and Silverman, 2002), introduced the following linear model

yi (t) = xT
i β (t) + εi (t) , (2.2)

where β (t) represents a vector of parameter functions of interest, εi (t) an ex-
perimental error function. In our case the purpose is to compare all storage
treatments versus the no control condition; therefore model (2.2) is used in this
application taking the following form

ykl (t) = α (t) + βk (t) + εkl (t) , k = 1, . . . , 6; l = 1, . . . , 3; (2.3)
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where β6 (t) = 0 and βj (t) is interpreted as the difference effect of treatment j and
treatment 6 (no control), j = 1, . . . , 5; α (t) represents the expected functional
response from treatment 6, and then it may be interpreted as a baseline against
which the rest of the treatments are going to be compared.

An estimation criterion of β (t) is to minimize in model (2.2)

N∑
i=1

T∫
0

∥∥yi(t) − xT
i β (t)

∥∥2
dt.

If Y (t) represents a N− vector with elements yi (t) , i = 1, . . . , N, the N profiles
from N experimental units, and X an N × q design matrix of full rank (q = 6
in this application) with rows x′

i, i = 1, . . . , N, for actual computation of β̂ (t) an
unconstrained minimum of a sum of squares

‖Y (t) − Xβ (t)‖2 (2.4)

should be obtained. Taking advantage of the basis representation of each yi (t)
described in the previous section,

Y (t) = YB (t)

where B represents a M -vector of basis functions and Y gives the coefficients of
the observed vector Y of functions. Expand the estimated parameter vector β̂ (t)
in terms of the same basis, that is,

β̂ (t) = BB (t)

for a q × M matrix B. Then B can be obtained from

XT XB =XTY.

Evaluation of the resulting fit can be done by using the following functions:

SSE(t) =
N∑

i=1

[
yi(t) − xT

i β̂ (t)
]2

,

MSE(t) = SSE(t)/(N − #independent parameters)

the functional versions of the sum of squared errors and the mean square error.
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3. Hypotheses Testing in Functional Models

There are many alternatives to test hypothesis about β (t) in model (2.2) . One
of these alternatives is to use analysis of variance of data from a repeated measures
design, measuring the experimental unit over time where time is one of the factors
in the treatment structure of the experiment. By measuring the experimental unit
at several different times, the experimental unit is essentially split into parts (time
intervals) and response is measured on each part, appearing a split plot structure
along time. Time is not randomly assigned, of course, and then the usual analysis
of variance may not be valid, because the errors corresponding to the respective
experimental units may have a covariance matrix that does not conform to those
for which the usual split plot analysis is valid. When usual assumptions do not
hold there exist different approaches to adjust the analysis of variance; imposing
a working assumption on the covariance matrix of errors (usually compound
symmetry on the experimental unit errors or the Huynh - Feldt condition on
errors within each experimental unit and for each experimental unit). See for
further details Milliken and Johnson (1992). Nevertheless the emphasis in this
approach is on means comparisons, therefore leaving aside the analysis of each
complete experimental unit profile as a whole.

Another alternative is to carry out a two - step modelling process (also called
a hierarchical modelling); in the first step it is proposed for the response a par-
simonious parametric linear or nonlinear model on time and then, in the second
step, modelling the estimated parameters as a function of the treatment structure
of the experiment. There is a vast literature on the use of this modelling strat-
egy, being representative Davidian and Giltinan (1995), Diggle, Liang and Zeger
(1994), Verbeke and Molenberghs (2000). Most of the corresponding inferential
procedures are based on an important number of assumptions and results are
approximate.

Another form to contrast hypotheses of interest in the context of model (2.2)
is to consider multivariate analysis based - methods, considering a grid of values
along the domain of the functional observations; as it is explained by Faraway
(1997), likelihood ratio statistics will become dominated by terms representing
unimportant sources of variation as soon as the size grid becomes large, as it is
the natural case with functional data. Faraway (1997) also proposed bootstrap
testing methods from the computation of residual curves under the null hypothesis
of interest.

An additional approach is testing hypotheses by a permutation based testing
approach. Ramsay and Silverman (1997) proposed the usage of this approach
in the context of functional linear modelling. Nichols and Holmes (2001) have
reported applications of this kind of tests for functional neuroimaging.
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Permutation tests were proposed in the early twentieth century, but now
with powerful computers, are feasible (Good, 2000). In an experimental context
in which treatments are compared, if treatment randomization was done, under
a null hypothesis of no treatment differences, the observed data can be observed
under any treatment labeling. Given a meaningful statistic T to test a null
hypothesis, effectively permuting the treatment labels, and computing for each
permutation T , gives us a way to calculate a p-value under a specific cdf F
governing the actually observed data under H0, F being completely specified. If
F is not specified under H0, the empirical cdf F̂ is minimal sufficient for F. For
instance in the case of the comparison of two means, H0 : µ1 = µ2 vs H0 : µ1 ≥ µ2,
where µ1 and µ2 represent the means for the respective populations, H0 does not
specify F ; however if we believe that cdf´s F1 and F2 have the special forms

F1 (·) = G (· − µ1) , F2 (·) = G (· − µ2) ,

for some unknown G, then H0 implies a common cdf for the populations; under
H0 Ĝ as sufficient statistics, is comprised of the ordered set of the pooled sample,
that is, the sufficient statistics S is the set of order statistics for the pooled sample
. Therefore the p-value is calculated as

p = Pr (T ≥ t |S = s,H0 ) . (3.1)

Actual computation of (3.1) , when S = s, implies that the pooled sample must
form a permutation of s. When H0 is true all such permutations are equally likely
and then

p =
# of permutations such that T ≥ t

total # of permutations
.

In a functional context, a nonparametric permutation test represents an im-
portant approach due to the difficulty to specify under H0 a non - stationary
stochastic process generating the observed functional data.

In the garlic experiment experimental units were assigned at random to the
different regimes, and then a permutation test is applicable permuting labels of
the functional observations.

The null hypotheses of interest are

H0j : βj (t) = 0, j = 1, . . . , 5. (3.2)

A permutation test to be done requires the following tasks (Good, 2000):

1. Analyze the problem.

2. Choose a test statistic.
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3. Compute the test statistic from the original labeling of the observations.

4. Rearrange (permute) the labels and recompute the test statistic for the
rearranged labels. Repeat until you obtain the distribution of the test
statistic for all possible permutations.

5. Accept or reject the hypothesis using this permutation distribution as a
guide.

In step 2, following Ramsay and Silverman (1997), we proposed a permutation
test using as the test statistic, avoiding the problem of multiplicity of testing
(Nichols and Holmes, 2001),

Sj = sup
t

∣∣∣β̂j (t) /
[
aj

√
MSE(t)

]∣∣∣ , j = 1, . . . , 5, (3.3)

where

a2
j = uT

j

(
XT X

)−1
uj,

and uj a q− vector with 1 in position j and zero elsewhere. We additionally used
the statistic

Ij =

T∫
0

∣∣∣β̂j (t)
∣∣∣ / [

aj

√
MSE(t)

]
dt. (3.4)

In step 4, among other approaches, we follow a Monte Carlo strategy to fix the
number of permutations (500) in order to build the permutation distributions of
above mentioned statistics.

4. Data Analysis

All computations were done using S-PLUS 6 for Windows and the subroutines
developed by Ramsay and Silverman (1997); beginning with these subroutines,
ad hoc modifications were done to set the specific functional model, building
statistics and to get permutation tests results.

Using M equal to 20 cubic B-spline functions were use to represent function-
ally each weight loss profile, using cross validation to choose λi, i = 1, . . . , 18.

In Figure 1 are shown the N = 18 weight loss profiles with n = 20 data each,
of the 3 replicates from each storage regime. Descriptively, from this figure there
are clear differences among treatment conditions. There are 3 groups: 0◦C and
0◦C / 70%RH with linear profiles and weight loss less than 10% until 190 days;
5◦C with the worst weight loss profile reaching around 30% of weight loss; and
30◦C, 20◦C and no - control with moderate weight losses at the of the period but
with different trends to reach their 190-day state, linear trend for 30◦C, quadratic
trends for 20◦C and no control.
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Figure 1: Weight loss profiles under different storage regimes



242 E. T. Castano et al.

days

w
e
ig

h
t 
lo

s
s

0 50 100 150

-2
0

-1
5

-1
0

-5
0

5
1
0

25 75 125 175

0°C - no control
20°C - no control
30°C - no control
5°C - no control
0°C/70RH - no control

Figure 2: Estimated effects β̂j(t)

Table 1: p-values from permutation tests on Sj and Ij , j = 1, . . . , 5

storage condition Sj Ij

0◦C – no control 0 0
20◦C – no control .284 .506
30◦C – no control .026 .046
5◦C – no control .002 .002
0◦C/70%RH – no control 0 0
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Estimated βj (t) from model (2.3) , are shown in Figure 2. In Table 1 are
shown the estimated p-values corresponding to the permutation distributions of
statistics (3.3) and (3.4) to test hypotheses (3.2) . Comparing to the no control
condition, both treatments under 0◦C induce a highly significant reduction in
weight loss during the storage period, specially after 75 days. In comparison to
the no control condition, 5◦C induces an important increment in weight loss after
150 days. Storage condition under 30◦C is different from no control condition
inducing a greater loss weight until 150 days, and then inducing a gradual decre-
ment in the weight loss. Finally with 20◦C the loss weight pattern is statistically
equivalent to the no control storage condition.

In Figure 3 are shown the average derivatives of the weight loss functions
showed in Figure 1. We can observe that the derivatives of weight loss functions
at 5◦C and no control show the most important changes in speed especially
after 100 days. The other treatments show relatively constant speeds along the
observation period.
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Figure 3: Derivatives of weight loss functions

Using the corresponding functional linear model (2.3) but with the velocities
of weight loss as functional responses, in Figure 4 are shown the corresponding
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functional estimated effects of d
dtβj (t) , j = 1, . . . , 5. We can observe that all

treatments, except 20◦C, show important differences from the no control condi-
tion especially after 100 days of storage; 5◦C showing the biggest speed after 100
days; 30◦C and both treatments with 0◦C are showing a lower speed in weight
loss after 100 days.
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Figure 4: Functional effects on velocity of weight loss
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