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Abstract: Household data are frequently used in estimating vaccine efficacy
because it provides information about every individual’s exposure to vacci-
nated and unvaccinated infected household members. This information is
essential for reliable estimation of vaccine efficacy for infectiousness (V EI),
in addition to estimating vaccine efficacy for susceptibility (V ES). However,
accurate infection outcome data is not always available on each person due
to high cost or lack of feasible methods to collect this information. Lack of
reliable data on true infection status may result in biased or inefficient esti-
mates of vaccine efficacy. In this paper, a semiparametric method that uses
surrogate outcome data and a validation sample is introduced for estima-
tion of V ES and V EI from a sample of households. The surrogate outcome
data is usually based on illness symptoms. We report the results of simula-
tions conducted to examine the performance of the estimates, compare the
proposed semiparametric method with maximum likelihood methods that
either use the validation data only or use the surrogate data only and ad-
dress study design issues. The new method shows improved precision as
compared to a method based on the validation sample only and smaller bias
as compared to a method using surrogate outcome data only. In addition,
the use of household data is shown to greatly improve the attenuation in
the estimate of V ES due to misclassification of the outcome, as compared
to the use of a random sample of unrelated individuals.

Key words: Mismeasured observations, semiparametric model surrogate out-
come, vaccine efficacy for infectiousness, vaccine efficacy for susceptibility,
validation sample.

1. Introduction

Estimation of vaccine efficacy has traditionally focused on the vaccine-induced
reduction in susceptibility to infection, or vaccine efficacy for susceptibility (V ES).
However a vaccine, such as a prophylactic HIV vaccine, may also lower the in-
fectiousness of a vaccinated person who became infected (Longini et al., 1996).
The relative reduction in infectiousness due to a vaccine is the vaccine efficacy for
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infectiousness or V EI . Both V ES and V EI are measures of the true biological
effects of a vaccine.

In general, V E is expressed as 1-RR, where RR is a measure of relative risk in
vaccinated individuals compared to unvaccinated individuals, under the assump-
tion of equal exposure to the infectious agent. Different levels of information are
required to estimate V ES depending on what parameterization is used (Hallo-
ran et al., 1997). Haber et al. (1991) defined V ES in terms of the transmission
probability to a susceptible individual who makes a contact with an infectious
person. V ES is defined as one minus the ratio of the transmission probabilities
to a vaccinated and an unvaccinated susceptible person when both are exposed
to the same source of infection. V EI measures the effect of a vaccine on infec-
tiousness of a vaccinated infected person. It is defined as one minus the ratio
of the transmission probabilities from a vaccinated and an unvaccinated infected
individual when they make contacts with a susceptible person (Koopman and
Little, 1995). Estimation of V EI is challenging because it requires information
on exposure to infection, and gathering this type of information is often expen-
sive, difficult or even impossible. Therefore, V EI cannot be estimated from a
sample of unrelated individuals. Data based on a sample of households provide
information on everyone’s exposure to both vaccinated and unvaccinated infected
individuals. The information on infections contracted from vaccinated persons
who became infected is essential for reliable estimation of V EI . Davis and Haber
(2001) developed a maximum likelihood method for the estimation of V ES and
V EI from household data.

The problem of estimating V ES and V EI is further complicated by the fact
that reliable infection outcome data is often expensive or difficult to collect from
each individual in a vaccine study. For example, in an influenza vaccine study,
a culture or a quick test of a sputum or a blood sample would be required to
confirm infection (Halloran and Longini, 2001). Confirming all individuals in the
study by cultures or samples can be very expensive and time consuming. Often,
a closely related outcome may be used as a surrogate for the infection outcome.
For example, an illness outcome defined as ’any respiratory illness,’ can be used
as a surrogate for the infection outcome in an influenza vaccine study.

The use of surrogate outcome variables is common in medical research, es-
pecially in clinical settings (Prentice, 1989; Wittes et al., 1989; Fleming et al.,
1994). In identifying ’valid’ surrogates, Prentice (1989) suggested the criteria
that a test of the null hypothesis using a surrogate w provides valid inference
regarding the true outcome x. He also provided general guidelines for choosing
variables to satisfy this definition of surrogacy. According to his definition, a
key property of a potential surrogate is that P (x|w,m) = P (x|w) almost surely,
where m is a covariates or a treatment indicator. This implies that the effect of
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treatment on the true outcome should act solely through the surrogate w. This
is the foundation for making inference about the true outcome based solely on
the surrogate. However, this assumption may not be satisfied in many applica-
tions. For example, in the case of an infectious disease it is possible that the
vaccine affects the probability that an ill person is indeed infected. To relax this
assumption, Pepe (1992) proposed a semi-parametric method that uses a vali-
dation sample to relate the true and surrogate outcomes. She showed that this
semiparametric method allows direct inference regarding the association between
the true outcome and the covariates.

Golm et al. (1998, 1999) explored the use of semiparametric methods with
validation samples for exposure-to-infection information to estimate V EI in trials
of human immunodeficiency virus vaccines. Their methods assume that exposure-
to-infection, which is a covariate, may be mismeasured while the outcome (in-
fection) is always correctly assessed. Halloran and Longini (2001) illustrated the
use of validation sets to correct the attenuated estimate of V ES for mismea-
sured outcome data. They used an example of influenza vaccine efficacy and
effectiveness trials under the assumption that the group of influenza-like cases
includes true and misspecified influenza infection cases. Halloran and Longini
multiplied an estimated probability (which is assumed constant over time) of an
influenza-like case being true influenza infection in each vaccination stratum (i.e.,
vaccinated or nonvaccinated) when estimating V ES alone from final attack rates.
Currently, there is no method available for estimating V ES and V EI from data
with mismeasured outcome information.

The purpose of this work is to develop and evaluate a semiparametric method
for simultaneous estimation of V ES and V EI from household data when the true
infection status is observed on everybody in a validation sample of households and
a surrogate illness outcome is observed on every study participant. We extend
the method of Pepe (1992) to the case where the units of analysis are house-
holds of various sizes, the true outcome is the array of the (correlated) infection
statuses of all household members, the surrogate outcome is the corresponding
array of illness statuses and the treatment indicator is the corresponding array
of vaccination statuses. As we mentioned earlier, household data is used because
it contains information on the vaccination and infection or illness status of each
household member. In other words, it provides information about every individ-
ual’s exposure to vaccinated and unvaccinated infected or ill household members,
which is necessary for reliable estimation of the vaccine effect on infectiousness.
One should note that for a study participant in a household where the true infec-
tion statuses may be misclassified, we have incomplete information on both the
outcome variable (her/his own infection status) and the exposure variables (the
infection statuses of all other household members).
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2. Estimation Methods

2.1 Study design

We consider an outbreak of an infectious disease which is transmitted from
person to person in a closed community. Once a susceptible person becomes
infected, she or he is infectious to others for a relatively short time and then
becomes immune at least until the outbreak is over. The community consists of
many small transmission units, which will be referred to as households. (Sexual
partnerships can be viewed as households of size two). For simplicity, we assume
that everybody, except for a small number of initial infectives, is susceptible at
the beginning of the study. (Individuals who are initially immune can be ex-
cluded from the study without loss of any relevant information). A susceptible
person can become infected from an infectious household member or from ’the
community’, i.e. from an infectious person in another household. Prior to the
outbreak, individuals may be vaccinated with a ’leaky’ vaccine, i.e., a vaccine
that reduces their susceptibility by lowering their probability of becoming in-
fected. The vaccine may also reduce an individual’s infectiousness by lowering
her/his probability of infecting others in the case she/he becomes infected (a vac-
cine breakthrough). The main purpose of the study is to evaluate the vaccine’s
effects on the susceptibility and infectiousness of a vaccinee as compared to an
unvaccinated person.

For the purpose of the study, we assume that two samples of households are
selected from the community. In the first sample, which will be referred to as
the validation sample, both the true infection outcome and a related surrogate
outcome, which is usually based on illness symptoms, are available for all the
members of every household. We denote the number of households in the vali-
dation sample by Nv. In the second sample, which will be called the surrogate
sample, only the surrogate illness outcome is known for everyone. There are
N − Nv households in the surrogate sample, where N is the total number of
households in the study.

Consider a household with s = s0 + s1 initial susceptibles, where s0 and s1

are the number of unvaccinated and vaccinated susceptible household members,
respectively. Let mi denote the vaccination status of person i, with mi = 1 for
vaccinated and mi = 0 for unvaccinated. The array m = (m1, ...,ms) denotes
the vaccination statuses of all the susceptible household members. Let xi be
the infection status of person i at the end of the outbreak, with xi = 1 for
infected and xi = 0 for uninfected. Finally, let wi be the surrogate outcome (i.e.,
illness) of person i with wi = 1 for ill and wi = 0 for not ill. For households in
the validation sample, the true infection outcome array x = (x1, ..., xs) and the
surrogate outcome w = (w1, ..., ws) are known. For households in the surrogate
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sample, only the surrogate outcome array w is known. Table 1 describes the data
structure.

Table 1: Sample data structure of a household study with a validation sample
of Nv households and a surrogate sample of N − Nv households; s is the size
(number of initial susceptibles) of the household; m is the array of vaccination
statuses of all household members; x is the true infection outcome; w is the
surrogate illness outcome. � is an indicator with 1 representing a household in
the validation sample and 0 representing a household in the surrogate sample.

Household s m x w �
1 3 (0,1,0) (0,0,1) (0,1,1) 1
2 2 (1,1) (0,0) (0,1) 1
. . . . . .
. . . . . .
. . . . . .
Nv 4 (0,1,1,0) (1,0,1,0) (1,1,0,1) 1
Nv + 1 2 (1,0) – (0,1) 0
Nv + 2 4 (0,1,0,1) – (1,1,0,1) 0
. . . . . .
. . . . . .
. . . . . .
N 3 (1,0,0) – (1,0,0) 0

2.2 Calculation of P (x|m)

To write an expression for the probability P (x|m) of infection outcome x in
a household with vaccination pattern m, we first need to define the transmission
probabilities and the effects of the vaccine. Let β denote the probability that
an unvaccinated susceptible becomes infected from the community during the
course of the epidemic, and let γ denote the probability that the same person is
infected from an unvaccinated household member while the latter is infectious.
The vaccine efficacy for susceptibility, V ES , is the relative reduction due to vac-
cination in the transmission probability to a vaccinated susceptible. The vaccine
efficacy for infectiousness, V EI , is the relative reduction due to vaccination in the
transmission probability from a vaccinated infectious person. Define θ = 1−V ES

and ϕ = 1 − V EI . Then the transmission probability from the community to
a vaccinated susceptible is β · θ. The transmission probability from an infected
person to a susceptible household member is γ · θ when the susceptible person
is vaccinated and the infected is unvaccinated; it is γ · ϕ when the susceptible
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is unvaccinated and the infected is vaccinated; and it is γ · θ · ϕ when both are
vaccinated.

For the infection outcome x, let j0 and j1 be the number of infected persons
among the unvaccinated and vaccinated household members, respectively. Then
j = j0 + j1 =

∑
xi. Let J denote the subset of the j household members who

became infected. Then for j = 0, 1, 2, ..., s−1 (i.e., not everybody in the household
became infected):

P (x|m) = P (1|J)(1 − β)s0−j0(1 − θβ)s1−j1(1 − γ)j0(s0−j0)(1 − θγ)j0(s1−j1)

(1 − ϕγ)j1(s0−j0)(1 − θϕγ)j1(s1−j1). (2.1)

The first term in (2.1) denotes the probability that everybody in subset J
became infected if there were no other members in the household. The second
and third terms are the probabilities that all non-infected unvaccinated and vac-
cinated household members, respectively, escaped infection from the community.
The next two terms are the probabilities that all non-infected unvaccinated and
vaccinated household members escaped infection from the j0 unvaccinated in-
fected members. The last two terms are the corresponding escape probabilities
from the j1 vaccinated infected members. For a proof of (2.1) see Longini et al.
(1988).

The probability that everybody in the household became infected, i.e., P (x =
1|m), is obtained as one minus the sum of all the expressions (2.1) over j =
0, 1, 2, ..., s − 1. Thus, a recursive computation is involved in calculating the
probabilities of the infection outcomes, x. For a household of size s, one needs to
first calculate the probabilities of all possible outcomes for all the households of
sizes s′ = 1, 2, ..., s − 1.

If the true infection outcome is available for all the study participants, then
the likelihood function is obtained as the product of all the terms P (x|m) over
all the households in the study. Maximization of the likelihood will then provide
estimates of the parameters β, γ, θ and ϕ (Davis and Haber, 2001).

2.3 The semiparametric method

We propose a semiparametric method to estimate θ and ϕ (i.e., V ES and
V EI) using the surrogate and validation samples. The validation sample is used
to relate the true and the surrogate outcomes (x and w) and thus to reduce the
bias of the parameter estimates. The surrogate sample is used to improve the
efficiency of the estimates. A semiparametric method is used to avoid specification
or misspecification of the relationship between the true outcome and the surrogate
outcome while still making valid inference on the parameters of interest (Pepe,
1992). A semiparametric method that places no structure on the conditional
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probability function P (w|x,m) is desirable since the relationship between the
true outcome x and the surrogate outcome w is not of primary interest.

Given that no structure is specified for P (w|x,m), we assume that P (w|x,m)
is independent of Θ, where Θ = (β, γ, θ, ϕ). In other words, the parameters
related to transmission and vaccine effects do not affect that probability that
an infected person develops illness symptoms. On the other hand, we allow the
probability of illness given infection to depend on the actual vaccination status.
Then, an empirical estimator of P (w|x,m) is found using the validation sample:

P̂ (w|x,m) = P̂ (w,x,m)/P̂ (x,m),

where

P̂ (w,x,m) =
1

Nv

∑

i∈V

I[wi = w,xi = x,mi = m],

P̂ (x,m) =
1

Nv

∑

i∈V

I[xi = x,mi = m].

I[.] is the indicator function, V denotes the validation sample and Nv is the
number of households in the validation sample.

Define P̂Θ(w|m) =
∑

x PΘ(x|m)P̂ (w|x,m).
Then the estimated likelihood function is:

L̂(Θ) =
∏

i∈V

PΘ(xi|mi)
∏

j∈V̄

P̂Θ(wj|mj). (2.2)

2.4 Properties of the maximum estimated likelihood estimates

Under regularity conditions, the maximum estimated likelihood estimates Θ̂
satisfies the score equation ∂ l̂og L(Θ)/∂Θ = 0 and is consistent (Pepe, 1992).
If derivatives are available, the Newton-Raphson iteration scheme can be used
to find Θ̂. The estimates of V ES and V EI are obtained as 1 − θ̂ and 1 − ϕ̂,
repectively. The properties of Θ̂ (details of the proof can be found in Pepe,
1992) are:

a. If the validation sample fraction Nv/N has a nonzero limit ρv then n
1
2 (Θ̂−

Θ) converges in distribution to a mean zero normal random variable with variance

J−1(Θ) +
(1 − ρv)2

ρv
J−1(Θ)κ(Θ)J−1(Θ),

where

J (Θ) = ρvE{−∂2logPΘ(x|m)
∂Θ2

} + (1 − ρv)E{−∂2logPΘ(w|m)
∂Θ2

},
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κ(Θ) = var[E{DΘ(wv̄|mv̄)
PΘ(wv̄|mv̄)

− DΘ(w|mv̄)
PΘ(w|mv̄)

|xv̄ = x,mv̄ = m,x,w}]

DΘ(...|...) = ∂PΘ(...|...)/∂Θ, v̄ denotes an arbitrary household in the surro-
gate sample, and mv̄ is the vector of vaccination statuses of that household.

b. The estimate Ĵ (Θ) = n−1∂2logL̂(Θ)/∂Θ2 is consistent for J (Θ), and

κ̂(Θ) = (Nv)−1
∑

i∈V

{Q̂v̄
i (Θ)}{Q̂v̄

i (Θ)}T

is consistent for κ(Θ) where

Q̂v̄
i (Θ) =

1
NvP̂ (xi,mi)

∑

j∈v̄

{(I[wj = wi] − P̂ (wj|xi,mi))I[mi = mj]}

× {DΘ(xi|mj)

P̂Θ(wj|mj)
− D̂Θ(xi|mj)

P̂ 2
Θ(wj|mj)

PΘ(xi|mj)}.

3. Simulation Results

We conducted a simulation study to investigate the empirical bias and preci-
sion of the estimates of θ and ϕ, and to compare the performance of the parameter
estimates with different validation sample sizes and misclassification probabili-
ties. Four estimation methods were used. (1) The full data method, i.e., the ML
method that one would use if the true infection outcome could be measured on
every study participant. (2) The validation method that uses only the true out-
comes in the validation sample. (3) the surrogate method that uses the surrogate
outcomes from all the N households. (4) The semiparametric method that uses
the true and the surrogate data from the validation sample and the surrogate
data from the surrogate sample. One expects the first method to produce the
most accurate and precise estimates as it uses the true infection outcome for all
the households in the study. Obviously, this method cannot be used when the the
true outcome is only observed on a subset of households, but we included it in the
simulation study for comparisons with the other methods. The second method
completely ignores the surrogate outcomes. The third method ignores the true
outcomes in the validation sample; this method was included in the simulation
study as it is based on the data that would be available if it was impossible to ob-
tain the true outcome on any study participant. The fourth method uses all the
available data, hence it is expected to produce estimates that are more accurate
than in method 3 and more precise than in method 2.



Estimating Vaccine Efficacy 197

The input parameters for the simulations are δ, θ, ϕ, ε0, and ε1. δ is the
daily transmission probability from an unvaccinated infected person to an un-
vaccinated susceptible household member. ε0 and ε1 are the daily transmis-
sion probabilities from the community to an unvaccinated and a vaccinated
person, respectively. Note that the simulation program uses the transmission
probabilities in one day, and hence they differ from β and γ defined in Section
2.2. The probability of an unvaccinated person becoming infected in one day
is 1 − (1 − δ)x0 ∗ (1 − δ ∗ ϕ)x1 ∗ (1 − ε0). Here x0, and x1 are the numbers of
infected unvaccinated and vaccinated persons in the household, respectively, on
the previous day. The probability of a vaccinated person becoming infected in
one day is 1− (1 − δ ∗ θ)x0 ∗ (1 − δ ∗ θ ∗ ϕ)x1 ∗ (1− ε1). In all the simulations, the
length of infectious period was set to one day. Prior to the beginning of the ’out-
break’, each individual was ’vaccinated’ with a probability of 0.5, independently
of all other individuals. Based on the results from our earlier paper (Davis and
Haber, 2001), this random vaccination design produces the most precise parame-
ter estimates. For each scenario, we generated 200 simulations and reported the
mean parameter estimate and the mean estimated standard error over the 200
simulations.

The true infection outcome was obtained for each study participants in each
simulation. We now describe the generation of the surrogate outcomes. For a
given individual of vaccination status m, define P (w|x,m) as the probability of
surrogate outcome w given infection outcome x. Four probabilities were used to
generate the surrogate outcome given one’s infectious outcome and vaccination
status: P1 = P (w = 1|x = 1,m = 0), P2 = P (w = 1|x = 1,m = 1), P3 =
P (w = 1|x = 0,m = 0), and P4 = P (w = 1|x = 0,m = 1). To choose the
values for these four probabilities, we first followed the assumption made by
Halloran and Longini (2001) for an hypothetical influenza vaccine study. They
assumed that every infected person becomes ill, and that an uninfected person
may also develop illness symptoms. This implies that P1 = P2 = 1, P3 > 0,
and P4 > 0. We then varied the values of P3 and P4 to explore the effect of
the probability that an uninfected person becomes ill on the properties of the
estimated parameters. Later we relaxed the assumption P1 = P2 = 1 and chose
values less than 1.0 for these probabilities.

Fortran programs were used to generate the data and obtain the parameter
estimates along with their standard errors. Since the likelihood is very compli-
cated and there is no closed form for the derivatives, we followed conventional
ways of obtaining the standard errors from Fortran IMSL routines. The sub-
routine DB2ONF was used in maximizing the likelihood using a quasi-Newton
method and a finite-difference gradient. The Hessian matrix is obtained from this
subroutine and then the routine DLINRG was used to compute the information
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matrix.

Table 2: Mean θ̂ with mean standard errors for household sizes of 3 and 4.
Each set has 200 simulations. Input values: δ = 0.6, ε0 = 0.008, ε1 = 0.002.
Validation sample size=100 households; surrogate sample size=400 households.

Full Validation Surrogate Semiparametric

HH size P3 = P4� θ̂ se(θ̂) θ̂ se(θ̂) θ̂ se(θ̂) θ̂ se(θ̂)

θ = 0.4
3 0.2 0.400 0.061 0.389 0.139 0.342 0.085 0.472 0.075

0.4 0.400 0.061 0.389 0.139 0.305 0.133 0.493 0.068
0.6 0.400 0.061 0.389 0.139 0.298 0.246 0.499 0.081

4 0.2 0.400 0.043 0.409 0.103 0.372 0.060 0.424 0.045
0.4 0.400 0.043 0.409 0.103 0.353 0.085 0.461 0.048
0.6 0.400 0.043 0.409 0.103 0.332 0.157 0.498 0.053

θ = 0.6
3 0.2 0.607 0.070 0.625 0.172 0.528 0.094 0.646 0.076

0.4 0.607 0.070 0.625 0.172 0.486 0.148 0.665 0.081
0.6 0.607 0.070 0.625 0.172 0.431 0.230 0.689 0.086

4 0.2 0.597 0.056 0.605 0.131 0.570 0.068 0.592 0.056
0.4 0.597 0.056 0.605 0.131 0.552 0.096 0.623 0.059
0.6 0.597 0.056 0.605 0.131 0.539 0.158 0.657 0.068

θ = 0.8
3 0.2 0.809 0.085 0.825 0.191 0.729 0.117 0.806 0.091

0.4 0.809 0.085 0.825 0.191 0.665 0.148 0.822 0.087
0.6 0.809 0.085 0.825 0.191 0.640 0.241 0.826 0.091

4 0.2 0.794 0.064 0.816 0.158 0.753 0.079 0.779 0.070
0.4 0.794 0.064 0.816 0.158 0.734 0.105 0.796 0.077
0.6 0.794 0.064 0.816 0.158 0.728 0.177 0.823 0.079


 P3 and P4 are the probabilities that an unvaccinated and a vaccinated person,
respectively, develop illness symptoms when they are infected.

3.1 Reduced model — estimating V ES when V EI = 0

A reduced version of our model for estimating vaccine efficacy can be obtained
by assuming that the vaccine affects only susceptibility, i.e., V EI = 0 (ϕ =
1). We explored the performance of θ̂ under different scenarios. One would
expect the bias of the methods that use surrogate outcomes to depend on the
misclassification probabilities P3 and P4.
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Table 3: Mean θ̂ with mean standard errors for a fixed sum of P3 and P4.
Household size=4. Each set has 200 simulations. Input values: δ = 0.6, ε0 =
0.008, ε1 = 0.002. Validation sample size=100 households; surrogate sample
size=400 households.

P3 + P4� P3/P4 Full Validation Surrogate Semiparametric

θ̂ se(θ̂) θ̂ se(θ̂) θ̂ se(θ̂) θ̂ se(θ̂)
θ = 0.4

0.2 1 0.400 0.043 0.409 0.103 0.383 0.050 0.409 0.043
2 0.400 0.043 0.409 0.103 0.396 0.049 0.398 0.042
4 0.400 0.043 0.409 0.103 0.407 0.049 0.392 0.042

0.4 1 0.400 0.043 0.409 0.103 0.372 0.060 0.424 0.045
2 0.400 0.043 0.409 0.103 0.394 0.057 0.406 0.045
4 0.400 0.043 0.409 0.103 0.414 0.057 0.389 0.042

θ = 0.6
0.2 1 0.597 0.056 0.605 0.131 0.580 0.060 0.577 0.055

2 0.597 0.056 0.605 0.131 0.594 0.063 0.569 0.054
4 0.597 0.056 0.605 0.131 0.605 0.061 0.563 0.051

0.4 1 0.597 0.056 0.605 0.131 0.570 0.068 0.591 0.056
2 0.597 0.056 0.605 0.131 0.593 0.069 0.572 0.053
4 0.597 0.056 0.605 0.131 0.612 0.070 0.555 0.052

θ = 0.8
0.2 1 0.794 0.064 0.816 0.158 0.770 0.071 0.772 0.070

2 0.794 0.064 0.816 0.158 0.787 0.071 0.767 0.069
4 0.794 0.064 0.816 0.158 0.798 0.073 0.762 0.067

0.4 1 0.794 0.064 0.816 0.158 0.753 0.079 0.779 0.070
2 0.794 0.064 0.816 0.158 0.779 0.082 0.759 0.064
4 0.794 0.064 0.816 0.158 0.801 0.082 0.746 0.065


 P3 and P4 are the probabilities that an unvaccinated and a vaccinated person,
respectively, develop illness symptoms when they are infected.

The case P3 = P4

Table 2 presents the mean of θ̂ and of its standard error for various input
parameter values for household sizes 3 and 4 when P3 = P4. The semiparametric
method is more robust than the surrogate method and more precise than the
validation method. This is more evident for larger values of θ and larger values
of P3 = P4. We also see that for larger household sizes all four methods perform
better (smaller bias and smaller standard error). In order to reduce the impact
of the simulation-induced variability, we chose the same seed in all the simulation
using a fixed value of θ. Therefore, the results for the full data and the validation
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methods, which do not depend on P3 and P4, are the same for the same value
of θ.

Table 4: Mean θ̂ with mean standard errors for various sampling fraction Pv

for the validation sample. Household size=4, P3 = P4� = 0.4. Each set has
200 simulations. Input values: δ = 0.6, ε0 = 0.008, ε1 = 0.002. Total number of
households in study=500.

Full Validation Surrogate Semiparametric

Pv θ̂ se(θ̂) θ̂ se(θ̂) θ̂ se(θ̂) θ̂ se(θ̂)
θ = 0.4

0.2 0.400 0.043 0.409 0.103 0.353 0.085 0.461 0.048
0.4 0.400 0.043 0.405 0.070 0.353 0.085 0.468 0.047
0.6 0.400 0.043 0.402 0.057 0.353 0.085 0.454 0.046

θ = 0.6
0.2 0.597 0.056 0.605 0.131 0.552 0.096 0.623 0.059
0.4 0.597 0.056 0.593 0.087 0.552 0.096 0.635 0.057
0.6 0.597 0.056 0.596 0.072 0.552 0.096 0.631 0.056

θ = 0.8
0.2 0.794 0.064 0.816 0.158 0.734 0.105 0.796 0.077
0.4 0.794 0.064 0.802 0.105 0.734 0.105 0.813 0.071
0.6 0.794 0.064 0.796 0.085 0.734 0.105 0.810 0.067


 P3 and P4 are the probabilities that an unvaccinated and a vaccinated person,
respectively, develop illness symptoms when they are infected.

Unequal P3 and P4

We now consider situations when P3 and P4 are not equal. One can ex-
pect the performance of the methods that use surrogate data to depend on both
the magnitude and the ratio of the misclassification probabilities. The ratio is
important because if the misclassification probabilities for vaccinated and unvac-
cinated persons are very different then the ratio of the frequencies of ill persons
between vaccinees and nonvaccinees will be a biased estimate of the vaccine ef-
fect. To investigate the effect of the ratio on the performance of the estimates
we conducted simulations with a fixed value P3 + P4 while varying the ratio
P3/P4. Table 3 presents the results of these simulation for P3 + P4=0.2, 0.4,
and P3/P4 = 1, 2, 4. We can see that the semiparametric method is quite robust
even when P3/P4 = 4. It is intersting to note that as P3/P4 increases, the
standard error for the semiparametric method decreases while the standard error
from the surrogate method increases.
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Different sampling fractions for the validation sample

Let Pv denote the fraction of the validation sample size out of the total number
of households in the study. Table 4 lists the simulation results for various sampling
fractions with P3 = P4 = 0.4 and a total of 500 households of size 4 in the study.
We can see that the sampling fraction of the validation sample does not have a
significant effect on the bias of the semiparametric estimate of θ. For the standard
errors, a slight decrease is observed with increasing the sampling fraction of the
validation sample. Thus, it seems that the semiparametric method works as well
for a smaller sampling fraction (Pv = 0.2) as for a larger sampling fraction.

Table 5: Mean θ̂ and ϕ̂ with mean standard errors for P3 = P4� = 0.2. House-
hold size=4; each set has 200 simulations. Input δ = 0.6, ε0 = 0.008, ε1 = 0.002.
Validation sample size=100 households. Surrogate sample size=400 house-
holds.

Full Validation Surrogate Semiparametric
mean se mean se mean se mean se

θ = 0.4 and ϕ = 0.4
θ̂ 0.397 0.053 0.408 0.123 0.412 0.070 0.412 0.055
ϕ̂ 0.392 0.112 0.367 0.273 0.292 0.115 0.508 0.130

θ = 0.4 and ϕ = 0.6
θ̂ 0.397 0.052 0.410 0.121 0.402 0.071 0.415 0.052
ϕ̂ 0.589 0.113 0.582 0.262 0.455 0.114 0.674 0.125

θ = 0.6 and ϕ = 0.4
θ̂ 0.599 0.061 0.622 0.148 0.610 0.079 0.617 0.066
ϕ̂ 0.404 0.083 0.389 0.189 0.318 0.088 0.453 0.099

θ = 0.6 and ϕ = 0.6
θ̂ 0.604 0.062 0.616 0.153 0.617 0.081 0.611 0.065
ϕ̂ 0.595 0.091 0.603 0.205 0.474 0.091 0.670 0.108


 P3 and P4 are the probabilities that an unvaccinated and a vaccinated person,
respectively, develop illness symptoms when they are infected.

3.2 The full model — estimating V ES and V EI

In this section we drop the assumption V EI = 0 and compare the performance
of the four methods with respect to the simultaneous estimation of θ and ϕ. Table
5 presents the results for the case P3 = P4 = 0.2 when 100 out of a total of 500
households of size 4 are included in the validation sample. The estimates of
θ produced by the semiparametric method have small bias and standard error.
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The semiparametric estimates of ϕ have a positive bias, but this bias is usually
smaller than the (negative) bias of the surrogate method. On the other hand,
the standard errors of the semiparametric estimates are only slightly larger than
those produced by the surrogate method. Hence, the use of the true outcomes
from the validation sample improves the estimation of ϕ.

So far we have always assumed that P1 = P2 = 1, i.e., every person who is
infected indeed develops the illness symptoms. We now consider situations where
some of the infected persons remained symptom-free (silent infections). Here we
report the results for the case P1 = P2 = 0.9, P3 = P4 = 0.2, θ = ϕ = 0.4,
and all the remaining quantities are set to the same values as in Table 5. For
the estimation of θ, the surrogate method produced a severely biased estimate
of 0.69 while the the bias from each of the other three methods was very small.
For the estimation of ϕ, the estimates produced by the full, validation, surrogate
and semiparametric methods were 0.39, 0.37, 0.19 and 0.53, respectively. Thus,
the last two methods produces biased estimates. Of these three methods, the
semiparametric estimate has the smallest standard error (0.13), compared to
0.18 for the surrogate method and 0.27 for the validation method.

4. Discussion

Estimation of V ES and V EI is often complicated by lack of reliable infor-
mation on exposure to infection and on the true infection outcome. This paper
proposes a semiparametric method that uses data from two sample of house-
holds: (i) a surrogate sample, where only a surrogate outcome variable (such as
illness symptoms) is observed, and (ii) a validation sample where both the true
infection outcome and the surrogate outcome are observed. In estimating V ES

when V EI = 0, this semiparametric method performs better than maximum
likelihood methods that use the surrogate outcome data only or the true out-
come data only. The semiparametric estimates have smaller standard errors than
those based on the validation data only and smaller biases than those based on
the surrogate data only. This suggests that the proposed method gains efficiency
by including the surrogate data and corrects the misclassification bias associated
with the surrogate data by including the true outcome data from the validation
sample. In estimating V ES and V EI simultaneously, the semiparametric method
estimates V ES with very small bias and standard error, but it tends to underes-
timate V EI , even though this underestimation is not severe when the true V EI

is small. The bias in estimating V EI is always larger than in estimating V ES ,
even when the true outcome is observed for every study participant (Davis and
Haber, 2001). While we fixed the household size in each set of simulations, the
estimation methods can be used when households of different sizes are included
in the study.
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Several studies found estimates of vaccine efficacy (V ES) to be severely at-
tenuated when surrogate illness outcomes are used instead of the true infection
outcomes (Belshe et al., 1998, 2000; Nichol et al., 1999; Longini et al., 2000). In
this work we found that the use of household data from a study consisting of a
surrogate and a validation sample reduces the bias resulting from the inaccuracy
of the surrogate data. For example, Halloran and Longini (2001) used data from
a random sample of unrelated individuals and obtained an estimated V ES of 0.25
when the true V ES was 0.89. Using the semiparametric method and the study
design described in this paper we found that the bias in the estimate of V ES

was usually less than 0.1. In addition, using household data allows simultaneous
estimation of both V ES and V EI while data on unrelated individuals are not
suitable for the estimation of V EI (Davis and Haber, 2001).

Our simulation study shows that the semiparametric method is quite robust
even when the number of households in the validation sample size is quite small
(e.g., 20 percent) compared to the total number of households included in the
study. We also found that the performance of the semiparametric estimates
remains quite stable when the misclassification probabilities for vaccinated and
unvaccinated persons are very different.

The semiparametric method proposed in this study extends the method of
Pepe (1992) to the case where both the true and the surrogate outcomes are
arrays of infection or illness statuses of individuals in the same household. Our
simulations show that despite the multivariate nature of the outcome variable,
the semiparametric method is very robust when one is interested in estimating
V ES regardless of the value of V EI . The bias in the estimation of V EI is not
more severe than the bias associated with estimating V EI when the true infection
outcome is known for each individual.

Future studies can look into better ways to correct the bias in estimating V EI

with household data and may add a component in the semiparametric method
to correct this underestimation. It is also desirable to explore methods to find
the optimal sampling fraction for the semiparametric method proposed for the
household data. Finally, one may try to extend this method to cases where the
true infection outcome and the surrogate illness outcome are observed for some
of the household members while only the illness outcome is observed for other
members of the same household. Data of this type was collected in an influenza
vaccine trial described in Hurwitz et al (2000).
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