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Abstract: This paper estimates the interest rate term structures of Treasury
and individual corporate bonds using a robust criterion. The Treasury term
structure is estimated with Bayesian regression splines based on nonlinear
least absolute deviation. The number and locations of the knots in the
regression splines are adaptively chosen using the reversible jump Markov
chain Monte Carlo method. Due to the small sample size, the individual
corporate term structure is estimated by adding a positive parametric credit
spread to the estimated Treasury term structure using a Bayesian approach.
We present a case study of U.S. Treasury STRIPS (Separate Trading of
Registered Interest and Principal of Securities) and AT&T bonds from April
1994 to December 1996. Compared with several existing term structure
estimation approaches, the proposed method is robust to outliers in our
case study.
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1. Introduction

It is well known that least squares estimates can be sensitive to outliers. Un-
fortunately, bond prices often exhibit heavy tails with possible outliers (Schwartz
1998; Jarrow, Ruppert, and Yu 2004). Schwartz (1998) uses a robust measure
and finds that almost 10% of the US Treasury securities in the Fixed Income
database are outliers. This paper considers term structure estimation of Trea-
sury and corporate bonds using a robust approach. We extend the normal linear
Bayesian regression splines model of Denison, Mallick, and Smith (1998) to the
nonlinear term structure model based on the least absolute deviation criterion.

The term structure of interest rates of the bonds describes how interest rates
evolve over time. The interest rate term structures of both government and cor-
porate bonds have important applications in economics and finance, as described
in detail in Li and Yu (2005). Obtaining accurate estimates of both Treasury and
corporate term structures is essential.
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Many methods have been developed for term structure estimation. For ex-
ample, McCulloch (1971, 1975) and Shea (1984) use regression splines but with
fixed knots to estimate the discount function. Chambers, Carleton, and Wald-
man (1984) fit non-linear least squares on the exponent of the discount function.
Fisher, Nychka, and Zervos (1995), JRY (Jarrow, Ruppert, and Yu 2004) and
Li and Yu (2005) present penalized (smoothing) splines approaches where the
forward rate curve is smoothed with roughness penalty. In all these works, the
least squares method is used and is not robust to outliers.

Schwartz (1998) estimates the term structure by modeling the forward interest
rate with a piecewise constant curve using fixed knots, minimizing the usual sum
of squared residuals. A subjective measure is then used to find and remove outliers
in the estimation process. Many outliers are found. According to Schwartz
(1998), there could be outliers in bond prices in the term structure data due to a
variety of reasons: out-of-date bond ratings; large spreads in illiquid bonds; non-
synchronous trades or data entry errors; use of the wrong interest rate function.
However, the use of a piecewise constant curve in Schwartz (1998) for the interest
rate gives large fitted bond pricing errors.

This paper presents a robust approach to term structure estimation by adopt-
ing the nonlinear least absolute deviation criterion. We model the interest rate
with Bayesian regression splines. From our limited experience, this method is
robust to outliers and is able to price bonds accurately. The number and loca-
tions of the knots are adaptively chosen by the reversible jump Markov chain
Monte Carlo (MCMC) method of Green (1995). Most of previous term structure
methods consider using regression splines or penalized (smoothing) splines with
fixed knots. For example, in Shea (1984), the number and locations of the knots
are specified subjectively and unrealistic term structure shape occurred. In JRY
and Li and Yu (2005)’s penalizes spline approaches, the number and locations of
the knots are fixed and smoothing is achieved through a roughness penalty.

With very few individual corporate bonds available, it is challenging to obtain
both good term structure estimation and valid statistical inference. This paper
estimates the term structures of individual corporate bonds by borrowing strength
from (adding a credit spread to) the estimated Treasury term structure with a
Bayesian approach as in Li and Yu (2005), but under Laplace errors. A credit
spread is the excess return on a corporate bond over an equivalent Treasury
bond. The knowledge that the credit spread is positive can be easily incorporated
into our Bayesian model as prior information. Moreover, statistical inference is
straightforward within this Bayesian framework.

We present a case study of U.S. Treasury STRIPS and AT&T coupon bonds
on October 31, 1995 to illustrate the effectiveness of the proposed method in
handling outliers. A rather extreme outlier is created and several competing
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methods are compared with the proposed method. The proposed method is able
to mitigate the effect of the outlier better than the other methods.

The remainder of the paper is organized as follows. We present a robust ap-
proach to estimating the Treasury term structure in Section 2. We then illustrate
the Bayesian estimation of individual corporate term structure with informative
priors in Section 3. Section 4 contains the case study. Some concluding remarks
follow in Section 5.

2. A Robust Model for the Treasury Term Structure of Interest Rates

This section presents the robust procedure for Treasury term structure esti-
mation. Section 2.1 outlines the term structure model. Section 2.2 presents the
Bayesian estimation procedure using the reversible jump MCMC algorithm. The
details of using the reversible jump MCMC method to choose the number and
locations of the knots are presented in Section 2.3.

2.1 Term structure model

The term structure of interest rates of the bonds can be determined by any of
the discount function D(0, T ), the yield curve y(0, T ), or the forward rate f(0, T ),
where T is time to maturity from today (time 0). If we consider current time to
be fixed at 0, the relationships among these three functions are:

D(T ) = exp{−Ty(T )} = exp{−
∫ T

0
f(s)ds} (2.1)

Once one of the three is obtained, the rest of them are determined. The
discount function D(T ) represents today’s price of a zero-coupon bond (paying
no interest or principal until maturity) that pays one dollar at maturity date T .
The yield curve y(T ) =

∫ T
0 f(s)ds/T is the average of the forward rates between

today and the maturity date T . Intuitively, the forward rate f(s) is the rate
one can lock in today for future borrowing or lending at time s. It is a variable
interest rate and gives the marginal return. To estimate the term structure, a
spline may be used to model the discount function D(T ), the yield curve y(T ),
or the forward rate f(s). However, it is best to estimate the term structure of
the forward rate, as argued in Fisher et al. (1995) and Li and Yu (2005).

The forward rates in term structure are not observable but implied by the
price of the bonds. The forward rates and thus the term structure can only be
estimated using a pricing model. The price of a risk free zero-coupon bond P (T )
on date 0 maturing on date T with a face value of $1 is the same as the discount
price D(T ) in our notation. The “empirical” forward rate (JRY) can be found
by f = ∆{− log(P (T ))}/∆T , where ∆ is the differencing operator. It provides a
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Figure 1: Price versus years to maturity for treasury STRIPS on October 31,
1995.
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Figure 2: Empirical forward rates and the fitted forward rate curve (using
the reversible jump MCMC and minimizing the sum of the absolute residuals)
versus years to maturity for treasury STRIPS on October 31, 1995. Note that
the empirical forward rates are not the true observed data (forward interest
rates are not observable). The fitted forward rate curve is not obtained from
fitting a model to the empirical forward rates but rather by fitting model (2.5)
to the price as explained in Section 2.2.



Interest Rate Term Structure Estimation 173

rough estimate of the unobservable forward rate. Figure 1 and Figure 2 plot the
price P (T ) and the empirical forward rates versus years to maturity T for U.S.
Treasury STRIPS on October 31, 1995. Our objective is to estimate the forward
rate based on the bond price.

Many bonds make regular coupon payments during the life of the bonds.
Coupon bonds may be viewed as a collection of zero coupon bonds and the fol-
lowing notations are adopted. Each bond pays fixed coupons and principal Ci(tij)
due on dates tij, where j = 1, . . . , zi and zi is the total number of coupon and
principal payments for the i-th bond. Therefore, ti1 is the first coupon payment
date and tizi is the maturity date of bond i. The model price for the coupon
bond, µi, is related to the forward rate f through the discount function:

µi =
zi∑

j=1

Ci(tij)D(tij) =
zi∑

j=1

C(tij) exp{−
∫ tij

0
f(s)ds}, (2.2)

where the current time is assumed to be 0. Let P (i), i = 1, . . . , n, be the market
price of the i-th bond on the current date (date 0). Given the observed price Pi

of the i-th coupon bond, the statistical model becomes:

Pi = µi + εi (2.3)

where εi is the error term.

2.2 A Bayesian regression spline model for the term structure of trea-
sury bonds

The Treasury forward rate curve f(s) is modeled with a regression spline
f(s) = δ′B(s), where δ is a vector of spline coefficients and B(s) is a vector of
some basis functions. Let Pi be the i-th observed bond price and µi(δ) be the
model price from the regression spline model. For a fixed spline basis function
B(s), the sum of the absolute deviations between and µi(δ) is minimized:

min
δ

n∑
i=1

|Pi − µ(δ)|.

The estimator obtained from this criterion has been shown by Koenker and Bas-
sett (1978) to be resistant to outliers in the data.

For regression splines, the number and locations of the knots need to be
selected. Many methods have been proposed: Friedman (1991), Smith and Kohn
(1996), Denison et al. (1998, 2002), Lindstrom (1999), Zhou and Shen (2001),
DiMatteo, Genovese, and Kass (2001), etc. Denison et al. (1998) apply the
reversible jump MCMC (Green, 1995) scheme to select locations of the knots in
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the linear regression model. After knot locations are selected using the reversible
jump MCMC, the coefficient estimates are computed using the least squares
method. All these smoothing methods are for linear models (linear in coefficients).

The term structure model (2.3) is nonlinear in the regression spline coeffi-
cients. We extend Bayesian regression splines of Denison et al. (1998) using
nonlinear least absolute deviation. As in Denison et al. (2002), the number and
locations of the knots are selected using the reversible jump MCMC method. To
find the coefficient estimates for the nonlinear term structure function, we imple-
ment an iterative re-weighted least squares method, minimizing the sum of the
absolute residuals. This can be regarded as a hybrid Bayesian and frequentist
approach. A fully Bayesian procedure (e.g. DiMatteo et al. 2001) would be to
impose priors on the coefficients. However, computation becomes too burdensome
in the reversible jump MCMC implementation.

For the basis function in the regression spline model, we adopt the d-th degree
truncated power basis:

f(s) = δ′B(s) = δ0 + δ1s + · · · + δds
d +

K∑
k=1

δd+k(s − tk)d+, (2.4)

where δ = [δ0, δ1, . . . , δd+K ]′, B(s) = [1, s, . . . , sd, (s − t1)d+, . . . , (s − tK)d+]′,
s − tk)+ = max(0, , s − tk), and {tk}K

k=1 are K spline knots. The number of
knots K and locations of the knots ti will be adaptively chosen. δ0, δ1, . . . , δd are
the polynomial coefficients and δd+1, . . . , δd+K are the spline coefficients. From
our experience, d = 2 is sufficient for the data available. Power basis has the
advantage of being simple and allows easily modeling of credit spreads for cor-
porate term structure in the next section. Moreover, setting some polynomial
coefficients to zero allows convenient modeling of sub-models. Other basis, such
as B-spline (de Boor 1978), can also be used. However, truncated power basis
can be easily transformed during computation to B-spline basis for numerical
stability, as in many regression packages (Ruppert, Wand, and Carroll 2003, P.
71).

The model relating the observed market price Pi and the model price µi,
defined in (2.2), for the i-th bond is: Pi = µi + εi. In matrix notations, the model
we are working with is

P = µ + e (2.5)

with

P = [P1, P2, . . . , Pn]′

µ = [µ1, µ2, . . . , µn]′,
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µi =
zi∑

j=1

Ci(tij) exp{−
∫ tij

0
δ′B(s)ds},

where tij is the years to maturity for the j-th coupon payment of the i-th bond
and zi is the total number of coupon and principal payments for the i-th bond.
We integrate the forward rate:∫ tij

0
f(s)ds =

∫ tij

0
δ′B(s)ds = δ′

∫ tij

0
B(s)ds = δ′BI(tij), (2.6)

where

BI(tij) =
∫ tij

0
B(s)ds

=

[
tij,

t2ij
2

, · · · , td+1
ij

d + 1
+ · · · + (tij − t1)d+1

+

d + 1
, · · · , (tij − tK)d+1

+

d + 1

]
. (2.7)

Then the model price for the ith coupon bond can be expressed as

µi =
zi∑

j=1

C(tij) exp{−δ′BI(tij)}. (2.8)

The parameters to be estimated are K, t1, . . . , tK , and σ2. The number
K and locations of the knots t1, . . . , tK are selected by the reversible jump
MCMC method and details are provided in the next section. Once the num-
ber of knots K and the knot locations t1, . . . , tK are selected, the coefficients
δ0, δ1, . . . , δd, δd+1, . . . , δd+K can be determined from the data (knot locations) by
applying a nonlinear iteratively re-weighted least squares method (see Seber and
Wild 1989). This nonlinear iteratively re-weighted least squares method is out-
lined in the appendix. σ2 is generated in a Gibbs step after the coefficients are
estimated (the detail is provided in the next section). A number of simulation
steps are carried out. To start, a few equal spaced knots (1, 2, or 3 knots equally
spaced) are selected. The estimation steps are summarized in the algorithm at
the end of Section 2.3. The iterative re-weighted least squares method automat-
ically weighs large residuals (outliers) less and removes them in effect. This is
in contrast with Schwartz (1998) who adopts a subjective measure to manually
remove the outliers.
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2.3 Reversible jump MCMC to select the number and locations of the
knots

We use θ to denote the parameter vector: θ = (K, t1, . . . , tK , σ2). Minimizing
the sum of absolute residuals is equivalent to assuming the errors to be the Laplace
distribution. The likelihood is

LK(P |θ) =
1

(
√

2πσ)2
exp

{
−1
σ

n∑
i=1

|Pi − µi|
}

. (2.9)

We follow the general framework by Green (1995) and Denison et al. (2002):
including a birth step (add a knot), a death step (delete a knot), and a movement
step (move a knot) in the reversible jump MCMC algorithm. We model the
forward rate curve with a spline as in (2.4):

f(s) = δ0 + δ1s + · · · + δds
d +

K∑
k=1

δd+k(s − tk)d+.

Let K be the number of knots in the model with knots located at: (t1, t2, . . . , tK).
Both K and knot locations (t1, t2, . . . , tK) are random variables and need to
be estimated. Green (1995) adopts the Poisson prior on K and the Poisson
mean needs to be specified. A better choice is the discrete uniform distribu-
tion or the Geometric distribution (Smith and Kohn 1996, Hansen and Kooper-
berg 2002). We impose the discrete uniform distribution as the prior on K.
This ensures that the number of knots is not influenced by subjective priors.
Given the number of knots K, locations of the knots t = (t1, t2, . . . , tK) are
also assumed to be from a uniform distribution (see Denison et al. 2002). Each
model with K knots should be equally likely to be selected and this probability is
K!(nknots − K!)/nknots!), where nknots is the total number of candidate knot lo-
cations. Any combination of K knots are distinct and selected with replacement.
The ordering of these K knots does not matter in the reversible jump MCMC
knots selection process. Thus, the prior probability for the locations of the knots
becomes p(t) = [K!(nknots − K)!/nknots!] × (1/kmax + 1)) (K ≤ kmax, where
kmax is the maximum number of knots chosen to be in the model and nknots

is the total number of candidate knot locations. Candidate locations of knots
are at data points. The birth, death, and move probabilities are chosen to be
bK = dK = mK = 1/3 (K = 2, . . . , kmax−1) with b1 = m1 = 1/3, bkmax = d1 = 0,
and dkmax = mkmax = 1/2. Any of the three birth, death, and move steps gives a
candidate model.

The acceptance probability for the birth step is the product of the likelihood
ratio, the prior ratio, the proposal ratio, and the Jacobian. The likelihood func-
tions for both the current model and the candidate model are evaluated using
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the parameter estimates of δ0, δ1. . . . , δd, δd+1, . . . , δd+K , and σ2. The polynomial
and spline coefficient estimates are computed using the iterative re-weighted al-
gorithm outlined in the appendix. The variance can be treated as an auxiliary
parameter. The inverted Gamma distribution IG(a, b) is chosen to be the prior
distribution for σ2. The conditional posterior distribution of σ2 given the other
parameters and data is proportional to

σ−2(a+n/2+1) exp

(
− 1

bσ2
− 1

σ

n∑
i=1

|Pi − µi|
)

. (2.10)

Here a is chosen to be a small positive number and b is chosen to be a large
positive number. Therefore, the prior distribution of σ2 is the usual diffuse prior
and has little impact on the posterior distribution. Since the conditional posterior
distribution of is not in a closed form, a Metropolis step is used to generate its
estimate.

Once all parameter estimates are computed, the likelihood ratio can be formed:

Laplace(µc, σ
2
c In)

Laplace(µ, σ2
c In)

(2.11)

where the subscript c denotes the candidate model and Laplace(µc, σ̂
2
c In) denotes

the Laplace density function with corresponding mean and variance matrix. This
ratio is the Bayes factor, approximately. However, DiMatteo et al. (2001) point
out the likelihood ratio in the normal (least squares) model always favors the
model with more parameters. This is also true for the least absolute deviation
model here. DiMatteo et al. (2001) argue that the likelihood ratio based on
the least squares methods in Denison et al. (1998) should include a penalty
factor as in BIC. We also replace (2.11) with BIC (Schwarz 1978) to penalize the
dimensionality of the model. According to Schwarz (1978), −2 log(Bayes Factor)
can be approximated by BIC:

BIC = −2 log
[
Laplace(µc, σ

2
c In)

Laplace(µ, σ2
c In)

]
− (Paramc − Param) log n,

where the likelihood is evaluated at the maximum likelihood estimates, Paramc

is the number of parameters in the candidate model, and Param is the number
of parameters in the current model. Thus, the Bayes factor is approximately
exp[−BIC/2]. This relationship is used to approximate (2.11) and thus to pe-
nalize more complex models. To compute the acceptance ratio, the prior ratio
and proposal ratio also need to be found. The prior ratio is (K +1)/(nknots −K)
and the proposal ratio is (dK+1/bK)[(nknots −K)/(K + 1)]. The Jacobian equals
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1 in that the model space is discrete. Thus, the acceptance probability for the
birth step is

α = min{1, exp(−BIC/2) × dK+1/b}. (2.12)

Similarly, the acceptance probability for the death step is

α = min{1, exp(−BIC/1) × bK−1/dK}. (2.13)

Each collection of knot locations represents a possible model and our task is
to choose the correct model. One approach to find the correct model is to choose
the mode, i.e., the knot locations that give the maximum likelihood for the model.
An alternative approach is to adopt the view of Bayesian model averaging and
find the weighted average of the estimated values for f based on a large number
of simulations from the predictive distributions. It is well-known that given the
predictive squared-error loss function for the model response, the Bayes estimator
is the expected response under the predictive distribution. This is equivalent to
finding the average of all models considered. Thus, given N reversible jump
MCMC samples, the posterior mean of f can be approximated by

1
N

N∑
i=1

E{f |B,P,θ(i)}. (2.14)

The algorithm is outlined below.

1. Initially, select k0 knot locations on data points.

2. Compute the spline coefficient estimates of δ’s using the nonlinear iterative
re-weighted least squares method described in the appendix.

3. Generate a uniform (0,1) random number v:

(i) If v < bk, perform the birth step. Add a knot by randomly choosing a
knot from the candidates. Perform step 2 and compute the acceptance probability
(2.12). Accept the birth step with the acceptance probability.

(ii) If bk < v ≤ bk +dk perform the death step. Randomly choose a knot from
the current model and delete it. Perform step 2 and compute the acceptance
probability (2.13). Accept the deletion with the acceptance probability.

(iii) If v > bk + dk, perform the move step. Relocate a knot and compute
the acceptance probability (the penalized likelihood ratio), exp(−BIC/2). The
move is accepted with the acceptance probability.

4. Repeat the steps 2 and 3 above until the mean absolute deviation (MAD =
(1/n)

∑n
i=1 |Pi − µi|) converges.
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5. Find the forward rate curve either using the mode or using the model
averaging estimate (2.14).

3. Bayesian Estimation of the Individual Corporate Term Structure

In this section, we estimate the term structures of individual corporate bonds.
The method here is similar to Li and Yu (2005) with the following differences:
(i) the errors are assumed to follow the Laplace distribution, not normal; (ii) the
type of credit spreads (constant, linear, or quadratic) is selected based on the
posterior odds ratio instead of the posterior interval. Only a brief description is
provided here and more details can be found in Li and Yu (2005).

Given the small sample size of individual corporate bonds traded on any
given day, we “borrow strength” from the estimated Treasury term structure and
estimate the credit spread between the two: fc = fTr+ spread, where fc is the
corporate term structures and fTr = δ̂

′
BI(tij) is the estimated Treasury term

structure from Section 2. A credit spread represents the excess return from a
corporate bond over the return from an equivalent Treasury bond. There is one
Treasury term structure curve with a large sample size but many corporate bonds
with very small sample sizes each. It is natural to estimate the Treasury term
structure once and then estimate different individual corporate term structures
by finding the spreads. For a constant spread, fc = fTr + β0 = δ′

cB(s), where
δc = [δ0 +β0, δ1, δ2, . . . , δd+K ]. The linear and quadratic spreads can be similarly
expressed. The sum of the absolute residuals from the corporate bond prices
is minimized. This is equivalent to having both the errors and the likelihood
function follow the Laplace distribution. For computation speed, the estimated
Treasury term structure used here is the model with the knot locations that give
the maximum likelihood, not the moving average estimate.

We first consider the estimation of a constant spread. As in Li and Yu (2005),
the spread is assumed to be distributed uniformly between 0 and a positive con-
stant g prior to estimation: [β0] = (1/g0I(0,g)(β0) ∝ I(0,g)(β0). The posterior
distribution for the constant spread is

[β0|P, σ2] ∝ [β0][P|β0, σ
2] ∝ I(0,g) exp(− 1

σ

n∑
i=1

|Pi − µi|),

given the errors (and thus the likelihood) are Laplace. This is not of any known
distribution. Adopting the usual inverted Gamma distribution IG(a, b) (small
a and large b) as the prior for the error variance, the corresponding posterior
distribution is again not a standard distribution:

[σ2|P, β0, a, b] ∝ [σ2][P|β0, σ
2]
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∝ σ−2(a+n/2+1) exp

(
− 1

bσ2
− 1

σ

n∑
i=1

|Pi − µi|
)

. (3.1)

The Metropolis algorithm is applied for both posteriors to generate sample
draws. The linear (β0 + β1s) and quadratic (β0 + β1s

2) spreads can be estimated
similarly.

For inference, the posterior interval, a 100(1−α)% central interval, can be ob-
tained easily from MCMC sample draws. Choosing the type of spread (constant,
linear, or quadratic) is the same as choosing the correct model. The posterior
odds can be used. For example, to select between a constant spread or a linear
spread, the posterior odds ratio

[β0|P]
[β0, β1|P]

=
[β0][σ2

Const][P|β0, σ
2
Const]/[P]

[β0, β1][σLin][P|β0, β1, σ2
Lin]/[P]

≈

[P|β0σ
2
Const]

[P|β0, β1, σ2
Lin]

, (3.2)

can be computed to choose the model. Here σ2
Const and σ2

Lin are error variances
from the constant and linear spread models respectively. The priors on the model
parameters are flat and only the likelihood ratio needs to be computed. However,
the posterior odds ratio is only an approximation from the MCMC sample draws.

Table 1: AT&T Bonds on October 31, 1995 from the fixed Income Database.
The coupon listed is the semi-annual dollar coupon payment.

Current date Issue date Maturity date Coupon Price

Oct 31, 1995 Jan 14, 1992 Jan 15, 2002 7.125 106.279
Oct 31, 1995 March 24, 1994 April1, 2004 6.750 102.406
Oct 31, 1995 June 1, 1994 June 1, 2006 7.500 110.197
Oct 31, 1995 Feb 28, 1995 March 1, 2007 7.750 110.175
Oct 31, 1995 May 12, 1995 May 15, 2005 7.000 106.583

4. A Case Study

A case study is presented in this section to illustrate the proposed method.
The data we use are the end-of-month U.S. Treasury STRIPS and AT&T Bonds
from April 30, 1994 to December 31, 1995. The U.S. Treasury STRIPS are zero
coupon bonds that are synthesized from the coupon and principal payments of
Treasury bonds. These data are obtained from the University of Houston Fixed
Income Database. The database contains over 28,000 instruments, including
publicly traded non-convertible debt with principal value no less than one mil-
lion dollars. The bond data that make up the Lehman Brothers Bond Indices
are reported with month-end flat prices, accrued interest, coupon, yields, current
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date, issue date, maturity date, S&P and Moody’s ratings, and option-like fea-
tures. The market price of a corporate bond equals the quoted flat price plus the
accrued interest. The time period the database covers is from January 1973 to
March 1997 and there have been no updates after March 1997.

There were five AT&T bonds traded on October 31, 1995. These five bonds
have semi- annual coupons with different maturities and have no embedded op-
tions feature, e.g., the right to prepay, for which our model does not apply. Table
1 shows current dates, issue dates, maturity dates, coupons, and market prices
of these five AT&T bonds. Treasury STRIPS data have the same format with no
coupons.

For estimation, the time-to-maturity and coupon payment times need to be
converted to the same unit scale. The converted current dates, issue dates, ma-
turity dates, and first coupon payment dates in terms of years from current dates
in Table 1 are listed in Table 2.

Table 2: AT&T Bonds on October 31, 1995. Dates and first coupon payment
time are converted to units of one year based on actual/365 day count. The
current date is set to time 0. The coupon listed is the semi-annual dollar coupon
payment.

Date (year) Issue (yr) Maturity (yr) First coupon Coupon Price

0 −3.7945 6.2082 0.2082 7.125 106.279
0 −1.6055 8.4164 0.4164 76.750 102.406
0 −1.4164 10.5836 0.0849 7.500 110.197
0 −6712 11.3315 0.3315 7.750 110.175
0 −30.4712 9.5370 0.0411 7.000 106.583

There are usually few individual corporate bonds available in a given month.
In fact on average, there were only 4.3 bonds available per month during the pe-
riod of April 1994 to December 1995. It is difficult to obtain a meaningful estimate
of the individual corporate term structure based on these few observations. On
the other hand, the average number of U.S. Treasury STRIPS per month during
the same period was 117, ranging from 115 to 120. Thus, “borrowing strength”
from other sources such as U.S. Treasury STRIPS becomes necessary in estimat-
ing the term structure of individual corporate bonds. Below the Treasury term
structure is estimated first and then the AT&T term structure is estimated by
adding a credit spread to the former.

We focus on one STRIPS data set on October 31, 1995 first and use it to illus-
trate the robustness of the proposed method by introducing a noticeable outlier
to the STRIPS prices. The raw prices range from 15.29 to 99.79 while the years
to maturity range from 0.04 years to 29.29 years. One price maturing in 27.79
years is $16.6. We change this price to $30 to make it an outlier and use this
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rather extreme outlier to demonstrate the effectiveness of the proposed method.
Comparison is made with several competing methods: the least squares (normal,
not Laplace errors) and penalized splines approaches. The least squares (LS)
method is implemented with the same knot selection scheme as in Section 2. The
frequentist penalized splines (Jarrow et al. 2004) method minimizes penalized
sum of squared errors and selects the smoothing parameter with EBBS (Em-
pirical Bias Bandwidth Selection) of Ruppert (1997). The Bayesian penalized
splines (BPS) method (Li and Yu 2005) assumes the errors to be normal. This is
equivalent to minimizing penalized sum of squared errors but the smoothing pa-
rameter is automatically obtained as a by-product (a ratio of posterior variances)
in estimation.
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Figure 3: The fitted forward rate curves for treasury STRIPS on October 31,
1995 using the proposed robust approach and other competing methods. Note
that the empirical forward rates are not the true observed data (forward interest
rates are not observable), but approximated (see Section 2.1). The STRIPS
price outlier at 27.79 years to maturity causes the empirical rate at that point
to swing dramatically, very different from the others. The fitted forward rate
curve is not obtained from fitting a model to the empirical forward rates but
rather by fitting model (2.5) to the price as explained in Section 2.2. The graph
has to be scaled and the outlier is not shown so that the fitted curves can be
clearly shown.
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The fitted curves from all methods are plotted in Figure 3. The outlier causes
a complete breakdown of the least squares method at the outlier, 27.79 years to
maturity (the graph has to be scaled and the outlier is not shown so that the
fitted curves can be clearly shown). Both frequentist (EBBS) and Bayesian (BPS)
penalized splines methods perform better but are still affected by the outlier. On
the other hand, the robust method proposed is little affected by the outlier.
We compute the mean absolute deviation (with the outlier included) MAD =∑n

i=1 |Pi −µi|/n, where µi is the model price. The MAD for the proposed robust
method is considerably smaller than the others: 0.16 versus 0.24 (LS), 0.26 (BPS),
and 0.26 (EBBS). In Schwartz (1998), outliers are identified using a subjective
measure and are then removed. The method proposed here does not require us to
identify or remove the outliers. Instead, it naturally weighs outliers less through
weighing the residuals in the iterative re-weighted least squares method and the
fitted curve is little affected by the outlier, as shown in the previous example.

The proposed method is also used to fit the STRIPS data on October 31,
1995 (without the outlier introduced earlier) and the fitted forward rate curve is
displayed in Figure 2 in Section 2.1. The results are based on the moving average
estimate (2.14).

Given this estimated Treasury term structure of interest rates, we apply the
method outlined in Section 3 to estimate the AT&T term structure on October
31, 1995 using the five AT&T bonds available on that date. A spread is added to
the estimated Treasury term structure and is estimated. 2,000 simulation draws
(with another 2,000 draws for the burn-in period) from the Metropolis method
are used to find the spread estimates and construct the posterior intervals. We
observe that 2,000 burn-in draws are more than enough before the Markov chains
mix adequately. First, a constant spread is added to the estimated Treasury
term structure and is found to be 0.0043 with a 95% posterior interval (0.0041,
0.0044). The proposal distribution is normal and only the samples that satisfy
the constraint are used.

A linear spread, β0 + β1s, is then considered. The two parameter estimates
are found to be 0.0036 and 0.00017. The 95% posterior intervals for both param-
eters are (−0.0003, 0.0063) and (−0.0005, 0.0011). The posterior odds ratio for a
constant spread compared to a linear spread is found to be 9.97 and the constant
spread model is favored. At maturity time 0, the risk of default by AT&T should
be negligible and the credit spread should be due to liquidity risk, not credit risk.
The name “credit spread” is a misnomer since it can be due to other factors in
addition to credit differences (see Marshall 2000). AT&T bonds are not as liquid
as Treasury bonds and they may not be sold immediately if necessity arises. A
premium in the interest rate is needed to compensate for this liquidity risk and
find an immediate buyer. The intercept of the credit spread can be interpreted
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as the liquidity risk and it does exist based on the posterior odds ratio. However,
the posterior odds ratio merely means that a constant spread is more likely and
it does not mean the spread is indeed constant. A sample size of only 5 may not
be sufficient to detect a difference from a constant spread. A constant spread
model can serve as a good first approximation for AT&T and many other corpo-
rate bonds with a minimal number of bonds available. For individual corporate
bonds with larger sample size, non-constant spreads may very well be found.

We also consider a quadratic spread, β0 + β1s
2, and find the posterior odds

ratio to be around 1. The quadratic spread model is not favored and a simpler
constant spread is clearly a better choice. The 95% posterior intervals for both
parameters are (0.0032, 0.005) and (−0.00003, 0.00004). The case of including
both the linear and the quadratic spread is not considered for this AT&T data
set. It is not desirable to estimate three parameters with only five data points.
However, for other individual corporate bonds with a larger sample size, including
both the linear and the quadratic spreads may be considered.
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Figure 4: Fitted forward rate curves for US STRIPS over the 21-month period
of April 1994 to December 1995.

We have focused on the term structure of one data set of October 31, 1995.
However, modeling the evolution (over time) of the term structures of both Trea-
sury and individual corporate bonds is an important problem in pricing interest
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rate derivatives, among other applications in finance (Jarrow 2002). To study
this evolution, the method described in Section 2 is applied 21 times indepen-
dently to the 21 end-of-month U.S. Treasury STRIPS data sets from April 1994
to December 1995. Figure 4 displays the 21 fitted forward rate curves. The
STRIPS data are sparse after 25 years to maturity and only the forward rate
curves up to 25 years to maturity are plotted. The figure shows the evolution of
the end-of-month forward rates over 21 months as well as the forward rates based
on years to maturity from 0 to 25 years. The forward rate can be viewed as a
function of time at fixed maturity.
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Figure 5: Fitted forward rates curves for AT&T (upper sheet) and US STRIPS
(lower sheet) over the 21-month period of April 1994 to December 1995.

Given the 21 estimated STRIPS forward rate curves, we estimate the term
structures of the 21 end-of-month AT&T bond data sets from April 1994 to De-
cember 1995 by finding the spreads above the estimated STRIPS term structure.
A constant spread is favored according to the posterior odds ratios. Figure 5
plots the fitted forward rates for U.S. STRIPS and AT&T bonds over the 21-
month period of April 1994 to December 1995. The upper sheet contains 21
AT&T forward rate curves with constant spreads and the bottom sheet contains
the 21 STRIPS forward rate curves. The range of years to maturity for these
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21 end-of-month AT&T data sets is from 0.9 to 12 years and is used in the fig-
ure. Extrapolation beyond this range is not desirable. We notice that at a fixed
maturity, the forward rate curves (as a function of time) are rough. This is not
surprising in that interest rates move randomly and abruptly. Thus, smoothing
both maturity and time with a bivariate function is not desired.

5. Conclusions

In this paper, a robust approach is proposed to estimate term structures of
both Treasury and individual corporate bonds. For the Treasury term structure,
the forward rates are modeled with Bayesian regression splines and the number
and locations of the spline knots are adaptively chosen with the reversible jump
MCMC algorithm. The proposed approach is found to be robust against outliers
in bond prices. A Bayesian method is then used to estimate the term structure
of individual corporate bonds with very small sample sizes by borrowing strength
from the estimated Treasury term structure.

We need to point out here that though the proposed robust approach shows
promises in the case study, further research is necessary on possible error het-
eroscedacity and correlation. We hope to address these in another paper. Credit
risk derivatives pricing using the robustly estimated corporate bond term struc-
ture may be very much worth further exploring.
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Appendix. A Nonlinear Iteratively Re-weighted Least Squares Method1

1. Choose some starting values for and find the residual ei = Pi − µi.

2. Form a diagonal matrix U with
√

ei as the diagonal elements.

3. Let P be a vector of Pi’s. Find Z = PU−1 .

4. Let µ be a vector of µi’s and find A = µU−1.

5. Find

µ
[1]
i =

∂Pi(δ)
∂δ′

∣∣∣∣
δ

= −
zi∑

j=1

Ci(tij) exp{δ′BI(tij)}BI(tij)

1See Seber and Wild (1989) for computing the coefficients Given the Selected number and
locations of the knots using the reversible jump MCMC method.
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and use it to form the (n × (1 + d + K)) matrix µ[1].

6. At each iteration, find Ad(iter) = [µ(1)(δ[iter])]U−1. Update δ with a
Gauss-Newton step

δiter+1 = δiter +
(
Aditerprime

Ad(iter)
)−1

[Z −A(δ(iter))].
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