
Journal of Data Science 4(2006), 147-168)

A Growing Self-Organizing Neural Network for
Lifestyle Segmentation

Reinhold Decker
Bielefeld University

Abstract: Lifestyles can be used to explain existent and to anticipate future
consumer behavior, both in a geographical and a temporal context. Basing
market segmentations on consumer lifestyles enables the development of pur-
poseful advertising strategies and the design of new products meeting future
demands. The present paper introduces a new growing self-organizing neu-
ral network which identifies lifestyles, or rather consumer types, in survey
data largely autonomously. Before applying the algorithm to real marketing
data we are going to demonstrate its general performance and adaptability
by means of synthetic 2D data featuring distinct heterogeneity with respect
to the arrangement of the individual data points.
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1. Introduction

1.1 Lifestyles and consumer typologies

Lifestyle is an important consumer characteristic and a determinant of indi-
vidual purchasing behavior (Assael 1995; Engel, Blackwell, and Miniard 1995;
Jobber and Lancaster 2003). It is represented by individuals’ activities, inter-
ests and opinions. Cognitions from lifestyle segmentations influence marketing
decisions in several ways, e.g. in media planning/selection and new product de-
velopment for mass markets. The latter field of application can be motivated
by the fact that many products and services are only successful in an econom-
ical respect, when they are purchased by thousands or even millions of people.
Thus the focus of marketing researchers and marketers is on the identification
of broad trends and patterns corresponding to the consumers’ daily life, leisure
behavior, and spending habits. Referring to plausible lifestyle segments proves
to be more promising in marketing planning than the isolated use of demo- and
psychographic data (Wedel and Kamakura 2000).
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However, it should be recognized that lifestyles are continuously changing
(Mowen and Minor 1998) and depend on cultural and sociological developments.
New lifestyles develop from time to time. In this respect existing consumer typolo-
gies or segmentations, such as AIO (‘activities, interests, and opinions’) by Wells
and Tigert (1971) or VALS (‘values and life-styles’) by the Stanford Research In-
stitute (Mitchell 1983) are always a compromise between universality and speci-
ficity. The VALS typology, e.g., results from a market segmentation based on the
individual’s resources, mainly income and education, and self-orientation, i.e. at-
titude towards oneself, one’s inspirations and the things one does to communicate
and achieve them (Brassington and Pettitt 2005). In many cases an additional
analysis of current primary data is indispensable to complete standardized in-
formation services such as VALS. This particularly applies if special consumer
areas in daily life, such as nutrition behavior, are in the center of interest. Ad-
vances in automatic data production, e.g. by electronic micro test markets like
IRI BehaviorScan or online panels, enable vivid portraits of different consumer
types.

The reliable detection of meaningful lifestyle patterns and the empirical de-
termination of consumer typologies from survey data is an elementary task of
marketing research and contributes to a deeper understanding of existing rela-
tionships between products/services and consumers. Following Brassington and
Pettitt (2005, p. 119) lifestyle segmentation methods ‘can open the door to a
better-tailored, more subtle offering to the customer on all aspects of the market-
ing mix’. Therefore different approaches, most of which apply traditional cluster
or factor analysis, have been discussed in the past to address this topic. In both
cases the analyst has to control the grouping process to a large extent. In hierar-
chical cluster analysis the selection of the similarity measure (e.g. the Tanimoto
coefficient, which presents itself in case of binary coded consumer attributes), the
fusion method (e.g. average linkage, where the distance between two clusters or
segments is assumed to equal the average distance between pairs of observations,
one in each cluster), and the criterion for determining an adequate number of clus-
ters or consumer types (e.g. cubic clustering criterion according to Milligan and
Cooper (1985)), influence the final structure of the resulting typology. Partition-
ing algorithms such as k-means, on the other hand, necessitate a pre-specification
of the number of clusters (consumer types) to be considered. Similar problems
arise from applying factor analysis as well, e.g. regarding the number of factors
(consumer types) to be extracted or assumed, the communality estimation and
the factor rotation. The adequate use of the respective algorithms requires exten-
sive knowledge about the internal structure of the data to be analyzed. But the
more intervention an algorithm requires from outside, the more subjectivity is in-
volved regarding the final typology. Therefore, a methodology is desirable which
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enables the determination of meaningful consumer typologies as autonomously as
possible. In this respect self-organizing neural networks applying unsupervised
learning techniques seem to be a promising alternative. The so-called prototypes
(see subsection 2.1) resulting from the application of this kind of neural networks
to appropriate data provide an almost ‘natural’ and easy-to-interpret basis for
consumer typologies.

1.2 Related methodical work

Self-organizing neural networks have been an integral part of the data ana-
lytical instruments of natural and social sciences for several years. The spectrum
of applications ranges from automatic image, text, and speech processing (Koho-
nen 2001) through the analysis of gas chromatographic patterns (Questier, Guo,
Walczak, Massart, Boucon, and de Jong 2002), to financial data and industry
analysis (DeBoeck and Kohonen 1998; Simula, Vasara, Vesanto, and Helminen
1999), qualification analysis in business administration (Wagner 2004), as well
as market segmentation in e-commerce (Vellido, Lisboa, and Meehan 1999) and
market basket analysis (Decker and Monien 2003).

As a consequence thereof this class of neural networks is the subject of con-
tinuing efforts for improvement. Corresponding research interests are devoted
to both their individual design for specific areas of application and the elimi-
nation of existing methodological problems. Some of these problems, e.g. the
flexible determination of network structure and size, have been solved or at least
significantly reduced by algorithms such as the neural gas network (Martinetz
and Schulten 1991), the growing neural gas network (Fritzke 1995), the grow-
ing self-organizing map (Villmann and Bauer 1998), the growing hierarchical
self-organizing map (Dittenbach, Rauber, and Merkl 2002), and the grow-when-
required network (Marsland, Shapiro, and Nehmzow 2002). In addition proposals
with regard to a speeding-up of the adaptation process are already available for
particular neural networks, e.g. for neural gas networks (Atukurale and Sugan-
than 2000). However, the efficient determination of adequate parameter settings
continues to be a crucial practical problem, which has to be solved for each data
set by a more or less troublesome trial-and-error process, if the internal structure
of the data is unknown. This applies to neural networks with an a priori defined
topology as well as to growing ones.

1.3 Motivation of the new approach

In contrast to natural and technical sciences, where unsupervised pattern de-
tection has been an established subject of current research for a number of years,
corresponding work is still in its infancy in marketing and consumer research.
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This, among other things, results from the fact that the application of most
of the available self-organizing neural networks requires considerable experience
regarding the adequate specification of the relevant control parameters. Experi-
ences of this kind are rarely available on the part of marketing practitioners.

Against this background we are going to introduce a self-organizing neural
network approach, where the number of parameters to be preset by the user at
the beginning of the data analysis process is limited to a minimum. The Growing
Neural Network with Autonomous Parameter Specification (GNNAPS) presented
in this paper determines the majority of the control parameters required for an
adequate network adaptation more or less autonomously. To our knowledge the
present study is the first to use a growing self-organizing neural network within
the scope of lifestyle segmentation and provides an impression of the insights
attainable in this way.

The remainder of the paper is organized as follows: In section 2 we briefly
reflect some basic methodological aspects and outline the GNNAPS algorithm.
Its performance and adaptability is demonstrated by means of a synthetic 2D
data set in section 3 before real survey data collected from a German household
panel are analyzed in section 4. The paper concludes with a brief discussion and
an outlook on future research.

2. A Growing Neural Network with Autonomous Parameter Specifi-
cation (GNNAPS)

2.1 Preliminary remarks

The methodology underlying the GNNAPS algorithm is vector quantization,
the basic idea of which is to represent J K-dimensional input vectors (consumer
profiles) tj = (tj1, . . . , tjk, . . . , tjK), with j ∈ {1, . . . , J}, by an adequate number
H of weight vectors ηh = (ηh1, . . . , ηhk, . . . , ηhK), with h ∈ {1, . . . ,H}. Each
weight vector ηh defines one node (‘neuron’) of a neural network and will be
interpreted in the following as the prototypical representative of a lifestyle seg-
ment. In the course of network adaptation each input vector (consumer profile)
tj is assigned to one weight vector or prototype ηh so that the distance between
them is minimal. For H < J , which is the default, the assignment of J input
vectors to H prototypes equals a compression of the data set considered (Ger-
sho and Gray 1992). At the end of the network adaptation process the whole
set of consumer profiles is represented by a set of ‘prototypes’ characterizing the
individual lifestyle segments.

Striving for an algorithm, which requires as little as possible prior knowledge
concerning the structure of the data to be analyzed, special attention is devoted to
the autonomous or rather data-driven determination of network parameters. In
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the present case only two control parameters have to be preset by the user, namely
the so-called compression level CL and the maximum number of adaptation steps
L considered to be necessary to adequately represent the available data. The
former determines the extent of data reduction, whereas the latter influences
the accuracy of data representation. To receive acceptable results L should be
significantly larger than the number of observations J .

Setting CL close to 0 is tantamount to the objective of only slightly compress-
ing the available data set and the permission of representing the relevant patterns
by a comparatively large number of prototypes. If a compression level close to
1 is selected, only a few prototypes are generated, which involves a high level of
generalization and the acceptance of comparatively large distances between the
prototypes (weight vectors), if the data features heterogeneous patterns. In any
case 0 < CL < 1 must apply.

2.2 The algorithm

Self-initialization:

At the beginning of the adaptation process, i.e. in adaptation step l = 1, the
neural network, or rather the associated set of nodes (‘neurons’) U , contains only
two non-connected nodes u1 and u2, i.e. U = {u1, u2} applies, with associated
K-dimensional weight vectors η1 and η2, both initialized with positive random
values. The set of edges (‘connections’) C between nodes is empty. In the final
neural network or rather its graphical visualization the edges are connecting those
nodes which represent similar lifestyle segments. Both sets together determine
the topological structure of the initial neural network. The size of these sets,
and therewith the size of the whole network, grows in the course of network
adaptation. This process comprises two aspects, namely the addition of new
nodes and the adaptation of the weight vectors of already existing nodes. The
latter is frequently equated with the term ‘learning’.

The decision as to whether a new node has to be added to the current network
or not in network adaptation step l depends on the extent to which the best
matching node uhBest

fits the current input vector. The best matching node is
the one whose weight vector has the smallest Euclidean distance to the current
input vector. According to Marsland, Shapiro, and Nehmzow (2002) we call this
the activity vhBest

of the best matching node. A formal definition is given later.
The smaller the aforesaid distance, the higher the activity is. If the activity of
the best matching node falls below threshold

vThres = exp
(

SMax

2

(
(1 − CL)

1
4 − 1

))
,

we can take this as a hint at an insufficient fit between the respective weight vector
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and the input vector considered. Depending on the compression level vThres can
have values between exp(−SMax

2 ), for CL → 1, and 1, for CL → 0, where SMax

denotes the maximum Euclidean distance between two input vectors. A simple

but also quite rough approximation is SMax =
√∑K

k=1(maxj tjk − minj tjk)2,
where maxj tjk and minj tjk are the maximum and the minimum value of all
input vectors with respect to dimension k. A methodologically more elegant
way of approximating SMax is to calculate a random sample of Euclidean dis-

tances D = {dj1 , . . . , dji , . . . , djn}, with dji =
√∑K

k=1(tjik − tji′k)
2, for ji, ji′ ∈

{1, . . . , J}, ji �= ji′ , and n < J , from the available data set and to define
SMax = max{dj1 , . . . , djn}. In doing so the distribution of D can be found and
an estimation of the standard deviation becomes possible. The approximation
of SMax spares us the time-consuming calculation of

(
J
2

)
distances required for

determining the true maximum Euclidean distance.
The addition of new nodes is internally controlled by two further variables,

namely the firing counter yhBest
and the training requirement whBest

∈ [0, 1] of
the best matching node. The former allows us to take into account how often
uhBest

has been the best matching node in the network adaptation process so far.
The more often a particular node matches the current input best, indicated by its
firing counter, the lower its training requirement is. Both variables are initialized
as follows: y1 = y2 = 0 and w1 = w2 = 1.

Similar to the addition of new nodes the learning process, i.e. the adaptation
of the existent nodes (weight vectors) to the current input, is controlled by special
variables as well. The learning rates εBest and εSecond determine the degree to
which the best and the second best matching node are adapted to the input.
Restricting this process to two nodes is not unusual in the relevant literature (cf.
e.g. Fritzke 1995). The higher the learning rates, the stronger the weight vectors
concerned are adapted to the present data. For the best matching node we define:

εBest = 0.1 + 0.5
(

1 − exp
(
− CL · SMax√

L

))
.

Learning rate εBest is positively correlated with compression level CL and max-
imum distance SMax and it has an anchor point at 0.1. In that way we refer to
the prerequisite that, as a rule, the larger the range of data, the faster the adap-
tation of weights should be. εBest decreases with an increasing maximum number
of adaptation steps L, which equals a smoother and more moderate adaptation
of the weight vectors. The learning rate of uhSecond

corresponds directly to that
of uhBest

:
εSecond =

εBest√
L

.

The smaller L, the more we have to extend the adaptation to the second best
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matching node and vice versa. A small maximum number of adaptation steps
causes the algorithm to adapt the topological neighbors of the best matching
node to a high degree in order to achieve a fast generation of the neural network.
A large L, on the other hand, causes a rather moderate adaptation of weights.

Starting from these presets one network adaptation step of the algorithm
comprises the following sub-steps S1 - S10:

(S1) Input selection and determination of the best matching nodes:

An input vector tj = (tj1, . . . , tjK), with j ∈ {1, . . . , J}, is randomly selected
from the data base, and the Euclidean distances to all nodes of the current neural
network are calculated:

dist(tj ,ηh) = ‖tj − ηh‖ =

√√√√ K∑
k=1

(tjk − ηhk)2 ∀ h with uh ∈ U .

The smallest distance of all determines the best matching node uhBest
:

hBest = arg min
h∈{1,...,H}

dist(tj ,ηh).

The second best matching node uhSecond
follows from:

hSecond = arg min
h∈{1,...,H}\hBest

dist(tj,ηh).

(S2) Calculation of the activity of the best matching node:

The activity of the best matching node is a function of its (Euclidean) distance
to the current input vector:

vhBest
= exp ( − dist(tj ,ηhBest

)).

(S3) Calculation of the threshold for the training requirement:

Due to the fact that a node can adequately represent a subset of the data
only after a certain number of adaptations, the training requirement has to fall
below threshold

wThres = εBest ·
(
1 − 1√|U|

)

before a new node is inserted. The larger the learning rate εBest, the higher
this threshold is and the less intensively uhBest

has to be adapted before a new
node may be added. The threshold increases with the number of nodes |U| in
the network as well. That is to say the more nodes included in the network, the
less intensive each of them has to be trained before a new node may be added.
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The motivation of this is simple: The more advanced the adaptation process, the
better the data set is represented by the available weight vectors. Due to the fact
that new nodes are always inserted in the neighborhood of already existing ones,
the former have to be trained the less intensively, the later they are added to the
neural network.

(S4) Generation of connections between uhBest
and uhSecond

:

The nodes uhBest
and uhSecond

will be connected, if either the distance between
the respective weight vectors is so small that no further node can be inserted
between them or at least one of both is not yet adapted sufficiently. In this case
the age ahBesthSecond

of the concerning connection is set to 0:

If exp
(
− dist(ηhBest

,ηhSecond
)

2

)
≥ vThres or whBest

≥ wThres or whSecond
≥ wThres

then do
If (hBest, hSecond) /∈ C then do C = C ∪ {(hBest, hSecond)} end,
ahBesthSecond

= 0,
end.

The above condition guarantees the generation of correct masked Voronoi poly-
hedra (Martinetz and Schulten 1994).

(S5) Addition of a new node:

If both the activity and the training requirement of the best matching node
fall below the respective thresholds and if also the current number of nodes is
smaller than the number of input vectors to be represented, then a new node or
weight vector is added to the network. Formally, this procedure looks as follows:

If vhBest
< vThres and whBest

< wThres and |U| < J
then do

U = U ∪ {uhNew
},

ηhNew
= 1

2 · (ηhBest
+ tj),

C = C \ (hBest, hSecond),
C = C ∪ {(hNew, hBest), (hNew, hSecond)},
yhNew

= 0, whNew
= 1, yhBest

= 0, whBest
= 1,

go to sub-step S7,
end.

By inserting the new node between the current input vector tj and the best
matching node ηhBest

the concerning Voronoi polyhedron is divided, which causes
an improvement of data representation. The connections of nodes are changed
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in such a way that the Delaunay triangulation (Martinetz and Schulten 1994) is
preserved. The firing counter yhNew

and the training requirement whNew
of the

new node are initialized, whereas the corresponding control variables of the best
matching node are reset.

(S6) Adaptation of weight vectors:

If no new node is added in sub-step S5 the weight vector of the best matching
node as well as those of its topological neighbors are adapted by using learning
rates εBest and εSecond. For the best matching node we define:

ηhBest
= ηhBest

+ ∆ηhBest
with ∆ηhBest

= εBest · w
ln(l+exp(1))
ln(L+exp(1))

hBest
· (tj − ηhBest

).

With exponent ln(l + exp(1))/ ln(L + exp(1)) the training requirement is related
to the current state of network adaptation. At the beginning of the training
process the strength of adaptation declines slowly, but the speed increases the
more the algorithm approaches the maximum number of adaptation steps L. So
the nodes have more time to fit the given data structure. Weighting the extent
of adaptation resulting from (tj −ηhBest

) with the training requirement provokes
that a node is adapted the less intensively, the more frequently this took place in
the past. For the neighboring nodes the basic form is sufficient:

ηhi
= ηhi

+∆ηhi
with ∆ηhi

= εSecond ·whi
· (tj −ηhi

) ∀ i with (hBest, hi) ∈ C.

Accordingly the extent of adaptation declines faster for the neighboring nodes
than for the best matching one.

(S7) Update of control variables:

The firing counter and the training requirement of the best matching node
are updated as follows:

yhBest
= yhBest

+ 1 and whBest
=

1
yhBest

+ 1
.

(S8) Removal of old connections:

All connections between the best matching node and its topological neighbors
are aged by 1:

ahBesthi
= ahBesthi

+ 1 ∀ (hBest, hi) ∈ C.

The current maximum age of a connection is aMax = |U| − 1 and equals the
maximum number of edges emanating from a node uh, if all the other nodes are
topological neighbors of uh. The latter results, if uh is always the best or second
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best matching node, and if the probability of becoming the best or second best
matching node is equal for all the other nodes. All connections exceeding the
maximum age, and ergo being dispensable, are removed:

C = C \ (hi, hi′) ∀ hi, hi′ with (hi, hi′) ∈ C, and ahihi′ > aMax.

(S9) Removal of nodes:

All the nodes without a connection to any other node and whose contribution
to the goodness of data representation is negligible are removed:

U = U \ uhi
∀ hi with (hi, hi′) /∈ C, hi �= hi′ and yhi

< |U|.

(S10) Check of the stopping criterion:

After having updated the adaptation step counter according to l = l + 1 the
stopping criterion l > L is checked. If this holds, the algorithm stops and the
connection matrix C = (ch1h2)h1,h2=1,...,H=|U| is generated with

ch1h2 =
{

1, if (h1, h2) ∈ C
0, otherwise.

Otherwise it continues with sub-step S1.

2.3 Measures of network performance

At the end of the adaptation process each node uh represents a non-empty
subset of data points or rather a lifestyle segment. The goodness of data repre-
sentation within a segment can be assessed using the maximum distance MDh

between the data points (consumer profiles) concerned and the associated weight
vector (prototype) ηh. Considering the maximum of maxima across all segments
leads to the so-called maximum distance error

MDE = max
h

{MDh} with MDh = max
j|mj=h

dist(tj,ηmj
) ∀ h,

where mj = arg minh∈{1,...,H} dist(tj ,ηh) is the subscript of the weight vector
which best matches input vector tj. So MDE refers to the worst match of a
consumer profile to its associated prototype and assesses the balance of segmen-
tation. A very popular performance measure is the quantization error (Kohonen
2001)

QE =
J∑

j=1

dist(tj ,ηmj
),
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which assesses the distortion due to data compression and the effectiveness of
node placement in the neural network (Yerramalla, Cukic, and Fuller 2003). Both
measures should take lowest possible values.

In lifestyle segmentation, as can be seen in the empirical part of this paper,
we are not only interested in good data representation but also in an adequate
network topology. The latter is related to the number of nodes and the lengths
of the connections in the graph by which the neural network is represented. The
fewer nodes this graph has and the shorter the paths between individual nodes
(expressed by the edges or connecting lines), the more compact the neural network
is. In other words neighboring nodes should represent similar lifestyle segments
and should therefore be connected directly by an edge, whereas those nodes,
which are located further away from each other, should not. Thus, in the ideal
case, a well-trained neural network represents both the existent lifestyle patterns
and the similarity of these patterns. We are going to demonstrate this with the
synthetic 2D data in section 3. Referring to Marsland, Shapiro, and Nehmzow
(2002) the following simple measure of compactness can be defined

C1 =
H∑

h1=1

H∑
h2=h1+1

ch1h2 · dist(ηh1
,ηh2

) with dist(ηh1
,ηh2

) = ‖ηh1
− ηh2

‖,

where ch1h2 indicates whether nodes uh1 and uh2 are connected (ch1h2 = 1) or not
(ch1h2 = 0). To facilitate comparisons of different adaptation runs regarding the
compactness of the respective neural networks C1 can be related to the number
of connections:

C2 =
1
|C| · C1.

Again, both measures should take lowest possible values.
For more global comparisons we can additionally consider the geometric mean

GM of the above performance measures. Due to the congruence of the orientation
of the individual measures GM should be as small as possible, too.

3. Performance Study with 2D Synthetic Data

The performance and adaptability of the GNNAPS approach is analyzed by
means of a 2D synthetic data set, which is similar to that used by Martinetz and
Schulten (1991) as well as Fritzke (1995). It contains J = 19160 data points
(input vectors), which define manifold graphical objects. Figure 1 illustrates the
whole data set. Each object is characterized by the number Ji (with J =

∑7
i=1 Ji)

of its data points.
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Figure 1: Visualization of the 2D synthetic data set

The two single lines in particular are worth closer consideration. The significantly
different numbers of data points (J4 = 7260 vs. J6 = 100) result from the varying
‘density’ of the horizontal line on the right hand side. The more one goes to the
right on this line, the more data points are represented by the respective section
of the line. In contrast to this each of the five black rectangles in the ‘chessboard
pattern’, as well as the dotted rectangle on the left hand side, have been generated
with 1 600 data points only. This topological heterogeneity of the input data is a
special challenge to the algorithm’s adaptability.

If we apply the GNNAPS algorithm to this data with CL = 0.15 and if we
restrict the maximum number of adaptation steps to L = 107, the neural network
with H = 181 nodes depicted in Figure 2 results. The corresponding performance
measures are QE = 17343.50, MDE = 2.49, C1 = 801.62, and C2 = 3.09, which
leads to a geometric mean GM = 101.70. The dots and lines denote the nodes
and edges (connections) of the neural network. The larger a node is drawn, the
more input vectors are represented by the respective weight vector. Obviously all
graphical objects, including the horizontal ‘density line’ on the right hand side,
are represented adequately by the available set of nodes.
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Figure 2: Data representation with GNNAPS (CL = 0.15 and L = 107)

To draw comparisons we additionally applied the growing neural gas network
(GNGN) suggested by Fritzke (1995) to the present data. The GNGN algorithm
is a powerful benchmark because of its impressive results in earlier studies, e.g.
in a comprehensive comparison with k-means, growing k-means, and the original
neural gas network published by Daszykowski, Walczak, and Massart (2002).
Initializing the GNGN algorithm with control parameters similar to those used
by Fritzke (1995), and fixing the step width for adding new nodes equal to 55 249
in combination with a maximum number of adaptation steps L = 107, results in
a pattern representation with performance values QE = 12422.49, MDE = 3.83,
C1 = 870.44, C2 = 2.89, and GM = 104.60. The above-mentioned step width
ensures the comparability of results by causing the GNGN algorithm to generate
H = 182 nodes on the whole. The corresponding neural network is depicted in
Figure 3.

Again the attained representation looks adequate. In particular the repre-
sentation of the ‘chessboard pattern’ is without doubt convincing. But the data
pattern underlying the horizontal ‘density line’ claims a comparatively large num-
ber of nodes, which slightly hampers the representation of the graphical objects
in the lower right and left hand corner. The representation of the large rectan-
gle equals the GNNAPS solution. The visual conformity of both representations
is reflected in the individual performance measures as well. The superiority of
GNGN over GNNAPS regarding QE and C2 (with values 12 422.49 vs. 17 343.50
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and 2.89 vs. 3.09) is opposed to the superiority of GNNAPS over GNGN regard-
ing MDE and C1 (with values 2.49 vs. 3.83 and 801.62 vs. 870.44). Considering
the geometric mean one might conclude a slight superiority of GNNAPS over
GNGN, which results from the fact that the balance in pattern representation
turns out to be somewhat better with GNNAPS.

Figure 3: Data representation with GNGN (L = 107)

To get a closer impression of how GNNAPS learns the given topological re-
lations, the performance measures for an increasing number of adaptation steps
with compression level CL = 0.15 are shown in Table 1. The H values in the
second column quickly converge to their final level of 181. However GNNAPS
does not increase the number of nodes (starting with H = |U| = 2) monotonously
to achieve an acceptable representation of the data, but also reduces them, if this
is justifiable with the current stage of adaptation. The GNGN algorithm lacks
this flexibility per definition. At the same time the GM value of GNNAPS de-
clines continuously. As few as 106 (i.e. ≈ 50 · J) adaptation steps are sufficient
to approach a relatively stable representation of the relevant patterns. Larger
numbers of adaptation steps primarily cause a kind of fine-tuning.
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Table 1: Performance of GNNAPS and GNGN (in brackets) on the 2D data

L H QE MDE C1 C2 GM

103 71 29 605.96 10.70 970.15 8.51 226.14
(73) (57 254.56) (29.43) (809.16) (6.73) (309.50)

104 172 19 386.00 4.47 1 441.52 4.85 156.89
(174) (17 607.17) (12.32) (1 250.63) (4.22) (183.94)

105 187 18 394.51 2.49 1 139.28 3.91 119.52
(186) (12 958.07) (4.60) (896.91) (2.98) (112.35)

106 178 18 155.80 2.55 822.49 3.30 105.88
(179) (12 691.01) (3.73) (866.46) (2.96) (104.97)

5·106 179 18 762.75 2.50 803.48 3.13 104.22
(180) (12 427.32) (3.85) (846.39) (2.89) (104.01)

107 181 17 343.50 2.49 801.62 3.09 101.70
(182) (12 422.49) (3.83) (870.44) (2.89) (104.60)

For comparison purposes the performance measures of GNGN are given in
brackets. For each L the step width for adding new nodes was selected in such
a way that the GNGN solution is comparable to that of GNNAPS, as far as
possible. Once again the parametrization of GNGN was aligned with suggestions
by Fritzke (1995). The impressive performance of GNGN with respect to the
quantization error QE is opposed to the superiority of GNNAPS regarding the
maximum distance error MDE. The more advanced the adaptation process, the
better the measure of compactness C1 turns out to be with GNNAPS, whereas
C2 levels off close to 3 for both algorithms.

The differences between both algorithms with respect to QE and MDE can
easily be motivated. The GNGN algorithm minimizes the quantization error, i.e.
feature spaces showing a high density of data points are represented very well (cf.
the ‘chessboard pattern’), whereas the contrary applies to feature spaces with a
comparatively low density of data points (cf. the graphical objects in the lower
left and right hand corner). The GNNAPS algorithm, on the other hand, also
minimizes the maximum distance error MDE. Thus, it is less susceptible to data
heterogeneity and attains a more balanced pattern representation. Moreover,
since the number of nodes generated by the GNGN algorithm directly depends
on the number of input signals and the selected step width for adding new nodes,
its use requires some experience regarding the definition of the latter. Otherwise
the parametrization may degenerate into a troublesome trial-and-error process,
if the internal structure of the data is unknown. In this respect the adaptation of
GNNAPS is self-controlled to a high degree, which eases its use by non-specialists,
e.g. in marketing and consumer research.
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4. Application to Real Survey Data

4.1 The data

In this section we are going to use the new algorithm to empirically determine
a consumer typology from real survey data. The data underlying the following
considerations was made accessible by the German ZUMA Institute and is part
of a sub-sample of the 1995 GfK ConsumerScan Household Panel Data. For a
detailed description of this data set see Papastefanou, Schmidt, Börsch-Supan,
Lüdtke, and Oltersdorf (1999). It contains socio-economic and demographic char-
acteristics of several thousands of households/consumers as well as individual
attitudes towards nutrition (e.g. slimness orientation, plain fare, and brand prod-
ucts), aspects of daily life (e.g. traditional living, convenience-orientated cooking,
and mistrust towards new products), environment (e.g. ecological awareness, mo-
bility, and industry), and shopping (e.g. tendency to purchase new products, price
consciousness, and preference for small retail stores). A considerable number of
the respective statements or items are more or less concerned with individual
nutrition behavior (e.g.: ‘Multivitamin juices are an important supplement to
daily nutrition.’ ). The special relevance of food-related lifestyle analysis has al-
ready been emphasized by Grunert, Brunsø, and Bisp (1997), de Boer, McCarthy,
Cowan, and Ryan (2004) and others. Hollensen (2004), in particular, states that
food consumption habits may even be used as a general indicator of lifestyle in
international or global marketing. To identify existing lifestyle patterns we con-
sider the attitudes of J = 4266 households/consumers measured by means of
K = 81, mostly Likert-scaled items (with 1 ≡ ‘I definitely disagree.’, . . . , 5 ≡ ‘I
definitely agree.’). The scale is assumed to be equidistant, and therefore the data
can be treated as metric.

4.2 Selected results

From a practical point of view the given task requires a comparatively high
degree of generalization to get an easy-to-grasp set of prototypes representing
reasonable groups of consumers. Therefore GNNAPS was applied with a high
compression level, namely CL = 0.98. Together with a maximum number of
adaptation steps L = 107 we get H = 14 prototypes involving performance
values QE = 36355.28, MDE = 16.67, C1 = 193.71, and C2 = 5.87. Fixing CL
close to 1 causes a strong compression of the data, and ergo, provides a small
number of prototypes or consumer types respectively.

The numbers of consumers represented by weight vectors η1 = (η11, . . . , η1,81),
. . . , η14 = (η14,1, . . . , η14,81) range between 129 and 514. Each ‘lifestyle prototype’
can be described by considering its specific attitude profile. As to be expected
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Table 2: Profiles of selected ‘lifestyle prototypes’

Items considered in the survey η1 η5 η10

I like to have company. 4.54++ 3.96 3.49−−

I spend my spare time very actively. 4.20++ 3.69 2.52−−

Instead of saving one should spend money to
improve life.

3.65++ 2.99 1.95−−

I want to enjoy my life to the full. 3.60+ 3.21 1.74−−

I like the atmosphere in small shops. 4.21+ 3.50 3.12−

I like to try new products. 3.87+ 3.57 2.58−

Many products that I buy are still unknown to
other consumers.

3.10+ 2.60 1.67−−

I’m always on the lookout for new products
which suit my requirements better.

3.25++ 2.57 1.59−−

I am not willing to do without individual service
when shopping.

4.10++ 3.05 2.80−

I often buy products that are new on the market
sooner than my friends.

2.93+ 2.47 1.52−−

I watch my figure when eating and drinking. 4.35++ 3.88 3.18

I would characterize myself as being very
slimness-orientated.

3.56++ 2.99 2.05−

Multivitamin juices are an important supple-
ment to daily nutrition.

4.24++ 3.75 3.29

I frequently use vitamin and mineral products
to keep fit.

3.73++ 2.84 1.79

I only eat vegetarian food. 1.73 1.41 1.09−−

I often treat myself to a delicacy. 3.64+ 2.68 2.11

If one believed in all nutrition tips one couldn’t
eat or drink anything.

4.63++ 4.02 4.23

some of the respective weights differ more across the available prototypes than
others. To create expressive consumer types it is advisable to focus on those
items which show the clearest differences across all prototypes. In Table 2 the
prototypes of three exemplary groups of consumers are depicted. Each prototype
is represented by its weight vector, i.e. η1, η5 and η10. Item weights equaling
the maximum or minimum across all prototypes are marked with ++ and −−,
whereas signs + and − denote the second largest and smallest values. The ‘ex-
treme values’ indicate a clear approval or disapproval regarding the corresponding
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statement. For the sake of clarity only those items have been listed which have
an ‘extreme value’ either for η1 or η10.

Prototype η1 represents about 7.15 % (= 305) consumers with a rather hedo-
nistic way of life. Weight η13 = 4.54++ in the first row of the table, for example,
indicates their clear agreement, on average, with the statement ‘I like to have
company.’. Consumers of this type like to try new and unknown things and are
willing to take care of their body by attaching great importance to healthy nu-
trition. However they do not show a disposition to the extreme such as pure
vegetarian diet. This applies to all groups with the exception of number 9 where
a distinct refusal of ‘normal’ consumer behavior can be observed. Members of
this group have maximum weights on items such as ‘I regard most new products
on the market as unnecessary.’ (η91 = 3.95++) and ‘I am very distrustful of ad-
vertising messages.’ (η9,11 = 4.43++). They strictly disagree with the statement
‘There is too much fuss about diets.’. Members of the first group are called the
‘hedonists’ in the following.

Those 166 consumers (≡ 3.89 %) that are represented by prototype η10 may
be characterized as conservative and less health-orientated with a frugal diet and
lifestyle. They show little interest for new products and strictly decline extreme
forms of nutrition such as vegetarianism. We label this group the ‘conservatives’
in the following. Likewise the ‘hedonists’ they tend to question whether it helps
much trying to take into account all nutrition tips (see last row of Table 2). In
this respect both consumer groups stand out against those represented by pro-
totype η5. Due to the fact that this prototype represents the largest group of
consumers, namely 514, we can use it as a reference object. This becomes ap-
parent by the average level of the individual weights, which lie mostly between
those of prototype η1 and prototype η10. The comparatively low value of group 5
regarding the last item results from the less distinct profile of these ‘average con-
sumers’. Moreover, none of the 81 weights of prototype η5 equals the maximum
or minimum across all groups.

Further items which strongly discriminate between the 14 prototypes are, e.g.,
the relevance of product quality in purchase decisions, the preference for brand
products, the time spent to prepare a meal, the attention paid to mild/non-
irritant foods, the purchase of products without additives, and the preference
for domestic goods. The straight interpretability of the individual weights is a
considerable advantage over traditional segmentation tools such as hierarchical
cluster analysis and multidimensional scaling.

To get a global impression of the relations between the individual prototypes
we can look at the 2D projection of the neural network. The connection graph in
Figure 4 visualizes the topological structure of the network underlying the lifestyle
segmentation. The relative size of the nodes indicates the number of consumers
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being represented by the respective prototype. The age of the connections existing
in adaptation step L is represented by the thickness of the corresponding edges
in the connection graph. By this means the strength of the relations between the
prototypes or lifestyle segments is depicted. The thicker an edge is drawn, the
stronger the respective relation is.

Figure 4: Connection graph (with |C| = 33)

From Figure 4 we learn that there is no direct connection (edge) between
prototypes η1 and η10 which is in accordance with the dissimilarities between
both groups of consumers regarding their lifestyles. The missing connection to
the reference object η5 in both cases is plausible as well. The connection graph
as a whole expresses the complexity of the inter-segment relationships in the
considered population.

4.3 Managerial implications

Lifestyle analyses by means of GNNAPS are useful for decision making in
fields like product positioning and promotion strategy development (Mowen and
Minor 1998). The empirical results motivate, for instance, the creation of new top
quality food products with a distinct health-orientation. Top quality should also
include high standard taste requirements. This is conformable with Jago (2000)
who argues that health is one of the most important drivers of new product
development in food industry. Pronounced associations with vegetarian food
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should however be avoided here. Products of this type would precisely meet
the preferences of a considerable 7.15 % of the population represented by the
available data. The remaining consumer types or lifestyles can be analyzed in an
analogous manner with respect to their implications for new product development
or advertising planning for instance.

5. Conclusions

In this paper we have introduced a new algorithm which has proven its ability
to detect heterogeneous data patterns with a comparatively small number of
parameters to be controlled by the user. In contrast to the established GNGN
approach, which features significantly more parameters to be preset, GNNAPS
works highly satisfactorily with two external control parameters (L and CL) only.
The process of determining the size and the structure of the neural network is
quite autonomous in this respect. The comparatively small number of external
parameters facilitates the use of the new algorithm in practice, e.g. in exploratory
data analysis and marketing research, and reduces the total time required for
network adjustment.

In the empirical study we were able to show that the principle of computing
prototypes from consumer behavior data corresponds directly to classification
tasks in marketing research, and particularly in lifestyle segmentation. The poor
requirements of the algorithm regarding the prior knowledge about the internal
structure of the survey data enabled an exploratory analysis in the primary sense.
In the present example a straight interpretation of the individual weights towards
future food preferences and appropriate managerial implications was possible.
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