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Abstract: Consider the problem of selecting independent samples from
several populations for the purpose of between-group comparisons. An im-
portant aspect of the solution is the determination of clusters where mean
levels are equal, often accomplished using multiple comparisons testing. We
formulate the hypothesis testing problem of determining equal-mean clus-
ters as a model selection problem. Information from all competing models
is combined through Bayesian methods in an effort to provide a more re-
alistic accounting of uncertainty. An example illustrates how the Bayesian
approach leads to a logically sound presentation of multiple comparison re-
sults.
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1. Introduction

Consider the problem of selecting independent samples from several popula-
tions for the purpose of between-group comparisons, either through hypothesis
testing or estimation of mean differences. A companion problem is the estima-
tion of within-group mean levels. Together, these problems form the foundation
for the very common analysis of variance framework, but also describe essen-
tial aspects of stratified sampling, cluster analysis, empirical Bayes, and other
settings.

Procedures for making between-group comparisons are known as multiple
comparisons methods. The goal of determining which groups have equal means
requires testing a collection of related hypotheses. We examine this hypothesis
testing problem from a Bayesian viewpoint. In Section 2, we detail how the deter-
mination of equal mean clusters can be formulated as a Bayesian model selection
problem. Posterior model probabilities are computed via the Bayesian informa-
tion criterion. Bayesian model averaging is introduced as a tool for combining
information from all competing models in an effort to provide a more realistic
accounting of uncertainty. An example in Section 3 illustrates how the Bayesian
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approach to multiple comparisons testing leads to a logically sound interpretation
of the results.

Section 4 addresses Bayesian estimation of within-group mean levels for the
multiple comparisons problem. Similar to Stein estimation, a type of shrinkage
is performed. The approach is more general, however, because shrinkage is not
necessarily toward an overall mean, but rather toward means deemed likely to be
equal.

2. The Multiple Comparisons Problem

Consider independent samples from I normally distributed populations with
equal variances:

X11,X12, . . . ,X1n1 ∼ iid N(µ1, σ
2)

...
XI1,XI2, . . . ,XInI

∼ iid N(µI , σ
2). (2.1)

The goal of the multiple comparisons problem is to determine where within-group
means are equal in order to create clusters of groups with equal mean levels. Thus,
one is testing H(a,b) : µa = µb for each (a, b); a total of I(I − 1)/2 distinct but
related hypotheses. A typical frequentist test will decide in favor of H(a,b) when

|x̄b − x̄a| ≤ Qa,b.

The definition of Qa,b depends upon the approach. A point of difficulty common
to classical multiple comparison testing procedures of this form is illustrated by
the case where one decides in favor of µ1 = µ2 and in favor of µ2 = µ3, but
against µ1 = µ3. Such cases are difficult to interpret since a single choice of a
clustering is not obtained.

Employing a Bayesian philosophy, one might be inclined to state the goal
as quantifying the evidence in favor of H(a,b) : µa = µb for each (a, b). The
existence of equal mean levels is considered physically plausible for the multiple
comparisons problem, so Bayesian testing of these precise hypotheses will require
a measure of prior/posterior belief in H(a,b), and a measure of prior/posterior
belief in the effect size δ(a,b) = µb−µa if H(a,b) is not true. Thus, the distribution
over (µ1, . . . , µI) need consist of two components to reflect the possibility of equal
means. A measure of belief in the precise nulls {H(a,b)} will be represented by
point mass probabilities, while a continuous portion of the distribution will reflect
belief in the size of the differences between means when H(a,b) is not true.

The determination of prior probabilities over the hypotheses {H(a,b)} is com-
plicated by the fact that the collection does not consist of mutually exclusive
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events. For example, H(1,2) true (µ1 = µ2) may occur with H(2,3) true (µ2 = µ3)
or with H(2,3) false (µ2 �= µ3). One cannot develop a prior by comparing relative
beliefs in each of the hypotheses.

Furthermore, certain combinations of hypotheses in {H(a,b)} represent deci-
sions which are logically inconsistent. For example, the event previously consid-
ered with H(1,2) true (µ1 = µ2), H(2,3) true (µ2 = µ3), H(1,3) false (µ1 �= µ3)
should be assigned zero probability.

It is clear that the hypotheses must be taken as a whole when assigning prior
belief. Allowable decisions can be reached through the formation of equal mean
clusters among the I populations. For example, the clustering µ1 = µ2, µ3 = µ4

implies H(1,2) true, H(3,4) true, and all others false. Designating a clustering of
equal mean levels will define a model nested within (2.1). When two or more
means are taken as equal, we merely combine all relevant samples into one. The
smaller model is of the same form as (2.1), only for I ′ < I. The problem can now
be stated in terms of Bayesian model selection, where each allowable combination
of hypotheses will correspond to a candidate model.

We provide a short review of Bayesian model selection in the general setting
using the notation of Neath and Cavanaugh (1997). Let Yn denote the observed
data. Assume that Yn is to be described using a model Mk selected from a set of
candidate models {M1, . . . ,ML}. Assume that each Mk is uniquely parameter-
ized by θk, an element of the parameter space Θ(k). In the multiple comparisons
problem, the class of candidate models consists of all possible mean level cluster-
ings. Each candidate model is parameterized by the mean vector µ = (µ1, . . . , µI)
and the common variance σ2, with the individual means restricted by the model-
defined clustering of equalities. That is, each model determines a corresponding
parameter space where particular means are taken as equal.

Let L(θk|Yn) denote the likelihood for Yn based on Mk. Let π(k), k = 1, . . . , L,
denote a discrete prior over the models M1, . . . ,ML. Let g(θk|k) denote a prior
on θk given the model Mk. Applying Bayes’ Theorem, the joint posterior of Mk

and θk can be written as

f(k, θk|Yn) =
π(k)g(θk |k)L(θk|Yn)

h(Yn)
,

where h(Yn) denotes the marginal distribution of Yn.
The posterior probability on Mk is given by

π(k|Yn) = h(Yn)−1π(k)
∫

Θ(k)
g(θk|k)L(θk|Yn) dθk. (2.2)

Posterior probability on the hypothesis H(a,b) can be found by summing over
the probabilities on those models for which µa = µb. This gives a very reasonable
approach to determining the evidence in favor of each of the pairwise equalities.
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We remark that placing a continuous prior in I dimensions over (µ1, . . . , µI)
will not provide a satisfactory answer to the problem of multiple comparisons
testing. Under this approach, P [H(a,b)] = 0 both a priori and a posteriori .
Thus, the problem of interest is not addressed, since the precise hypotheses of
primary focus are rendered impossible.

The integral in (2.2) requires numerical methods or approximation techniques
for its computation. Kass and Raftery (1995) provide a discussion of the vari-
ous alternatives. An attractive option is one based upon the popular Bayesian
information criterion (Schwarz, 1978). Define

Bk = −2 ln L(θ̂k|Yn) + dim(θk) ln(n),

where θ̂k denotes the maximum likelihood estimate obtained by maximizing
L(θk|Yn) over Θ(k). It can be shown under certain nonrestrictive regularity con-
ditions (Cavanaugh and Neath, 1999) that

π(k|Yn) ≈ exp(−Bk/2)∑L
l=1 exp(−Bl/2)

. (2.3)

An outline of the proof is given in the Appendix.
The advantages to computing the posterior model probabilities as (2.3) in-

clude computational simplicity and a direct connection with a popular and well-
studied criterion for Bayesian model selection. The justification of approximation
(2.3) is asymptotic for the general case of prior g(θk|k), but Kass and Wasserman
(1995) argue how the approximation holds under a noninformative prior on θk

even for moderate and small sample sizes.
Now, let ∆ = ∆(θk) denote a parameter of interest. For the multiple com-

parisons problem, focus may be on the difference between means δ(a,b) = µb−µa,
or perhaps on the components of the mean vector µ. The posterior distribution
of ∆ given the data Yn is

f(∆|Yn) =
L∑

k=1

f(k,∆|Yn)

=
L∑

k=1

f(∆|k, Yn)π(k|Yn). (2.4)

Thus, the posterior of ∆ is found by taking an average of the posterior distribu-
tions under each candidate model, weighted by the posterior model probabilities.
The fundamental idea behind Bayesian model averaging (BMA) is to provide
a realistic accounting of the uncertainty inherent in selecting a model. Result
(2.4) is the foundation of our inferential approach to the multiple comparisons
problem.
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3. An Example

We illustrate the Bayesian approach to multiple comparisons testing through
an example involving I = 5 population means. The data appear in Montgomery
(1997) with the objective of determining which pairs of means are significantly
different using common frequentist methods of multiple comparisons. See Table 1
for the summary statistics and Figure 1 for a graphical display.

Montgomery introduced the data in the context of a completely randomized
experiment designed to investigate the relationship between the tensile strength
of a new synthetic fiber and the blend of cotton in the fiber. The treatment
groups correspond to five different cotton blends. Five fabric specimens are tested
for each blend. The response measurements reflect tensile strength (in lb/in2).
Treatments are identified in ascending order of the observed sample means.

A glance at the data suggests a potentially strong clustering of µ1, µ2, and
a clustering to a lesser degree among µ3, µ4, µ5. We shall see how these notions
can be quantified from the computation of the Bayesian posterior probabilities
on the pairwise equalities.

Table 1: Data for example

group response
(cotton blend) (tensile strength in lb/in2) sample mean sample s.d.

1 7,7,9,11,15 9.8 3.35
2 7,10,11,11,15 10.8 2.86
3 12,12,17,18,18 15.4 3.13
4 14,18,18,19,19 17.6 2.07
5 19,19,22,23,25 21.6 2.61

Under the setting of independent sampling with normally distributed error
terms, the maximized log-likelihood is derived as

ln L(θ̂k|Yn) = −n

2
ln(σ̂2

(k)) + β,

where β is a constant, n =
∑I′

i=1 ni, and

σ̂2
(k) =

1
n

I′∑
i=1

ni∑
j=1

(Xij − X̄i)2. (3.1)

The Bayesian information for model Mk can be defined as

Bk = n ln(σ̂2
(k)) + dim(Mk) ln(n). (3.2)
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Figure 1: Scatterplot of response (tensile
strength) versus group (cotton blend).

A Bayesian model selection rule would favor the model Mk which is a posteriori
most probable, or equivalently, the model for which (3.2) is minimum.

The top five model choices and posterior probabilities are displayed in Ta-
ble 2. A clear selection as “best model” is the clustering µ1 = µ2, µ3 = µ4, µ5

(H(1,2) true,H(3,4) true). It is worthwhile to note that belief in the most proba-
ble model being correct is still rather small (π < .5), so the selection of a model
without a corresponding measure of uncertainty would be misleading.

Table 2: Posterior model probabilities

mean clusters π(k|Yn)

µ1 = µ2, µ3 = µ4, µ5 .4688
µ1 = µ2, µ3, µ4, µ5 .2286
µ1, µ2, µ3 = µ4, µ5 .1121
µ1 = µ2, µ3, µ4 = µ5 .0744
µ1, µ2, µ3, µ4, µ5 .0554

Posterior probabilities for the top five most likely pairwise equalities are in
Table 3. Posterior pairwise equality probabilities can provide a distinction that
their frequentist p-value counterparts cannot. One may fail to reject a null hy-
pothesis of equal means because either the data supports the decision of no effect
or there is not enough data to detect an effect. Frequentist p-values alone are
not necessarily able to distinguish between the two situations.
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The hypothesis µ1 = µ2 is well-supported by the data (P [H(1,2)] ≈ .8), as
was suspected. There is also some evidence in favor of µ3 = µ4 (P [H(3,4)] ≈ .6)
and a non-negligible probability of µ4 = µ5 (P [H(4,5)] > .1). Yet, there is good
evidence against µ3 = µ5 (P [H(3,5)] < .02). Let’s take a closer look at the clus-
tering among µ3, µ4, µ5. Tukey’s multiple comparison procedure gives a critical
range of Q = 5.37. A pair of means is deemed not equal if the corresponding
sample difference exceeds Q in magnitude. As can be seen from this example,
a single clustering is not necessarily obtained. One reaches the decision of ac-
cept µ3 = µ4, accept µ4 = µ5, but reject µ3 = µ5. Of course, this paradoxical
decision is explained by the fact that “equals” is only “no statistical significant
difference,” but the interpretation is still lacking any probabilistic detail. The
proposed Bayesian approach bridges this gap and provides a nice presentation
for multiple comparisons.

Table 3: Probabilities of pairwise equalities

hypothesis posterior

µ1 = µ2 .7976
µ3 = µ4 .6015
µ4 = µ5 .1200
µ2 = µ3 .0242
µ3 = µ5 .0191

To evaluate the full posterior distribution of µ, a prior must be specified
under each model Mk. It is our choice to use Jeffreys’ noninformative priors for
{µ, σ2} given Mk. (As mentioned earlier, the choice of a noninformative prior
works well in companion to the Bayesian information approximation to model
probabilities.) The components of the mean vector then have marginal posterior
Student t-distributions:

µi|Mk, Yn ∼ t

(
µ̂i(k),

s(k)√
ni

, n − I ′(k)

)
, (3.3)

where t(m, c, v) represents the t-distribution with location parameter m, scale
parameter c, and degrees of freedom v. The data dependent quantities within
(3.3) are the sample mean µ̂i(k) for the cluster in model Mk containing group i,
and

s2
(k) =

n(
n − I ′(k)

) σ̂2
(k),

where σ̂2
(k) is given by (3.1).
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Conditional on model Mk, the posterior distribution of δ(a,b) = µb − µa takes
one of two forms. If the model restriction forces µa = µb (that is, groups a and
b are in the same cluster), then a point probability mass is placed at zero. If µa

is allowed to differ from µb (groups a and b are in different clusters), then the
posterior of δ(a,b), conditional on model choice, is

δ(a,b) ∼ t

(
d

(a,b)
k , s(k)

√
1

na(k)
+

1
nb(k)

, n − I ′(k)

)
, (3.4)

where d
(a,b)
k = µ̂b(k) − µ̂a(k).

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6

Figure 2: BMA posterior distribution for δ(1,2).

The BMA posterior distribution for δ(a,b) is the mixture of conditional dis-
tributions defined in (2.4). A spike at zero equals the sum of probabilities over
models for which P [δ(a,b) = 0|Mk] = 1. This sum matches with P [µa = µb]. The
continuous portion is a mixture of the t-distributions in (3.4).

Figures 2 and 3 display the BMA posterior distributions for δ(1,2) and δ(4,5).
The continuous curve is scaled to where the maximum height equals P [µa �= µb]
so that one can make a direct comparison between the two portions.

In Figure 2, the dominant characteristic is the large spike at zero. As men-
tioned earlier, the data provides support for the hypothesis µ1 = µ2. We have
P [δ(1,2) = 0] = .7976. In case µ1 �= µ2, we believe only a small to moderate
difference exists and that difference favors µ2. One may compute probabilities
backing this claim such as P [δ(1,2) < 0] = .0561, P [δ(1,2) > 0] = .1463, and
P [δ(1,2) > 5] = .0067.
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There is less belief in the precise hypothesis µ4 = µ5, P [δ(4,5) = 0] = .1200,
so the continuous portion is dominant in Figure 3. One tends to believe µ5 > µ4,
with a potentially large difference. Again, it may be informative to compute
probabilities such as P [δ(4,5) > 0] = .8736 and P [δ(4,5) > 5] = .3929.
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Figure 3: BMA posterior distribution for δ(4,5).

Table 4: Interval estimates from Bayes empirical Bayes

parameter posterior mean 90% interval

µ1 10.16 (8.03,12.31)
µ2 11.08 (8.97,13.28)
µ3 15.39 (13.19,17.50)
µ4 17.47 (15.29,19.59)
µ5 21.16 (18.85,23.31)
µo 14.86 (9.10,20.89)
σ/ni 0.592 (0.45,0.77)
τ 7.55 (3.14,15.55)

4. An Estimation Problem

We switch focus to the problem of estimating the within-group mean vector
µ. The most obvious approach to this problem is to simply use the within-group
sample mean vector µ̂w = (x̄1, . . . , x̄I). At first glance, this seems like a clear
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choice for an estimator. However, µ̂w does not take advantage of any possible
relationships between groups. In fact, µ̂w is inadmissible as an estimator for µ
under squared error loss when I > 3 (Stein, 1955). Improvement on µ̂w is at-
tained using an estimator where within-group mean estimates exhibit “shrinkage”
toward an overall mean.

To demonstrate the concept of shrinkage, or Stein estimation, consider the
following hierarchical approach to the estimation problem at hand. We have

{Xij}|{µi}, σ2 ∼ ind. N(µi, σ
2).

Suppose

{µi}|µo, τ
2 ∼ ind. N(µo, τ

2).

Then

E(µi|µo, τ
2, σ2, {xij}) = cµo + (1 − c)x̄i, (4.1)

where

c = τ−2/(τ−2 + niσ
−2).

The conditional posterior mean of µi is a weighted average of the overall mean µo

and the within-group sample mean x̄i. The weights depend upon the between-
group variance τ2 and the within-group variance σ2/ni. If between-group vari-
ability is small relative to within-group variability, the estimates shrink to near
the overall mean µo. Otherwise, stronger weight is placed on individual sample
means.

Expression (4.1) requires estimates of the additional parameters (µo, τ
2, σ2).

Casella (1985) gives an empirical Bayes argument for deriving a point estimate.
The estimated weights are seen as functions of the F-statistic for testing equality
of all means. If F is small, the data supports the hypothesis of equal means
and greater weight is placed on the overall mean. As F gets larger, weight shifts
toward the individual means, consistent with the information from the data.

A Bayes empirical Bayes approach places a prior on the parameters (µo, τ
2, σ2).

The conditional posteriors for implementing Gibbs sampling are readily attain-
able (Carlin and Louis, 2000). We return to the data from Table 1. Holding with
our theme, a noninformative hyperprior is used. Specifically, we take

p(µo, ln τ, ln σ) ∝ τ.

The results are displayed in Table 4. Compare the point estimate µ̂EB from
Table 4 to µ̂w from Table 1. The shrinkage effect is evident, but slight. The
indication is against equality of all five mean levels.
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The idea behind our solution to the estimation problem is that intermediate
models exist between the model for which all means are equal and the model
for which all means are distinct. In Section 3, we showed how to compute the
Bayesian probability on submodels defined by a particular clustering of equal
means. An estimate of the mean vector under the BMA framework is given by

µ̂BMA =
L∑

k=1

µ̂(k)π(k|Yn), (4.2)

where µ̂(k) is the estimate of µ under model Mk.
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Figure 4: Group mean estimates by estimation in-
dex: 1 = model Mw; 2 = Stein; 3 = BMA; 4 =
model M∗.

Hoeting, Madigan, Raftery, and Volinsky (1999) present an overview of BMA
inference with applications and optimality results. In particular, BMA is seen to
improve estimation and prediction, and to adjust interval estimates which tend to
be overconfident if one proceeds as if a selected model is correct with probability
one.

For multiple comparisons estimation of the mean vector µ, a type of shrinkage
is performed in creating the BMA estimate (4.2). However, this is a more general
weighted average than a Stein estimate of the form (4.1). Shrinkage does not
have to be toward an overall mean, but rather toward means deemed likely to be
equal by the data.

Again consider the example. Denote the model of all means distinct as Mw

and the model of all means equal as Mo. We can calculate π(Mo|Yn) < .0001 and
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π(Mw|Yn) = .0554. The posterior probability of Mw is much greater than that of
Mo, which provides an alternate justification that the weight of a Stein estimate
should be primarily on the individual means. Yet neither posterior probability
is large, meaning neither of the models is well-supported by the data. The BMA
estimate shrinks predominantly toward the most probable model

M∗ : µ1 = µ2, µ3 = µ4, µ5.

Figure 4 provides a graphical comparison of the shrinkage properties of the esti-
mates. One can see the benefits of the BMA estimate in such an example where
the data indicates several potential clusters of equal means.

The full posterior distribution on µi is stated by the mixture in (2.4), with
distributions conditional on model choice shown in (3.3). Given a particular
model choice as correct, the Bayesian intervals under the noninformative prior
coincide with the standard frequentist confidence intervals. Table 5 displays both
BMA intervals and the intervals under model M∗.

As a demonstration, we can focus attention on estimating µ5. This is the
treatment level where, on the basis of observed sample means, the maximum
expected response occurs. The estimation problem involves the uncertainty of
determining which model is correct, and the uncertainty of estimation within a
given model. The choice of model M∗ as correct implies without question that
no clustering of treatment 5 occurs. We see from Table 2, for example, that
P [µ4 = µ5] = .1200, so the possibility of a clustering with other groups should
play a role.

The BMA intervals are wider, reflecting the uncertainty associated with the
selection of a clustering. Figure 5 displays the posterior distributions for µ5 un-
der M∗ and model averaging. The greater variability under BMA for a better
accounting of uncertainty is noticed. Also note the skewness of the BMA posterior
due to the shrinkage property. Bayesian model averaging provides a natural ap-
proach to incorporating these desirable aspects into a solution for the estimation
problem.

Table 5: Interval Estimates from BMA and M∗

parameter BMA 90% interval Model M∗ 90% interval

µ1 10.22 (8.43,11.94) 10.3 (8.76,11.83)
µ2 10.45 (8.73,12.33) 10.3 (8.76,11.83)
µ3 16.03 (13.55,18.05) 16.5 (14.96,18.03)
µ4 17.17 (15.13,19.94) 16.5 (14.96,18.03)
µ5 21.33 (18.76,23.69) 21.6 (19.40,23.77)
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Figure 5: Posterior distributions for µ5 under M∗
(dashed curve) and model averaging (solid curve).

5. Concluding Remarks

The multiple comparisons problem is well known among statistical practition-
ers. Although fairly simple to state, a challenge to solving the problem lies in
that one is testing several related, precise hypotheses. Bayesian inference has an
advantage over traditional frequentist approaches to multiple comparisons testing
in that degree of belief is quantified. One can avoid the illogical conclusions which
arise from an “accept/reject” decision process. The Bayesian approach in this
paper is novel in that the precise hypotheses used to define multiple comparisons
testing are the hypotheses that are actually being tested. Bayesian approaches
derived from continuous prior distributions do not possess this characteristic. We
are able to compute the probability on the event of equal means, as the statement
of the multiple comparisons test requires.
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Appendix: Approximating the Posterior Model Probability

We present a justification for expression (2.3). A detailed proof (Cavanaugh
and Neath, 1999) is rather lengthy. The purpose here is to provide a heuristic
development designed to give the reader some background.

Consider a model Mk from among the candidate class {M1, . . . ,ML}. As
expressed in (2.2), the posterior probability on Mk is given by

π(k|Yn) = h(Yn)−1π(k)
∫

Θ(k)
g(θk|k)L(θk|Yn) dθk.

For ease of exposition, we use a uniform prior for π(k) (i.e., π(k) = 1/L for all k),
and a “flat,” improper prior for g(θk|k) (i.e., g(θk|k) = 1). (These specifications
are not required for a formal proof.) We then have

−2 ln π(k|Yn) = −2 ln
∫

L(θk|Yn) dθk + cn, (A.1)

where cn is constant with respect to k.
Consider the integral which appears in (A.1). To obtain an approximation to

this term, we take a second-order Taylor expansion of the log-likelihood about
θ̂k. Since

∂ ln L(θ̂k|Yn)
∂θk

= 0,

we have

lnL(θk|Yn) ≈ ln L(θ̂k|Yn) − n

2
(θk − θ̂k)

′
[In(θ̂k)](θk − θ̂k),

where

In(θ̂k) = − 1
n

∂2 ln L(θ̂k|Yn)
∂θk ∂θ

′
k

is the observed Fisher information matrix. Thus,∫
L(θk|Yn) dθk ≈ L(θ̂k|Yn)

∫
exp{−n

2
(θk − θ̂k)

′
[In(θ̂k)](θk − θ̂k)} dθk. (A.2)

The integrand in (A.2) is the kernel for the multivariate normal density. Then∫
L(θk|Yn) dθk ≈ L(θ̂k|Yn) (2π)dim(θk/2)|nIn(θ̂k)|−1/2. (A.3)
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We use (A.1) and (A.3) to justify writing

−2 ln π(k|Yn) ≈ −2 ln L(θ̂k|Yn) + dim(θk) ln(n) + βn,

where βn represents those terms that are either constant with respect to k or
bounded as the sample size grows to infinity. Define

Bk = −2 ln L(θ̂k|Yn) + dim(θk) ln(n).

Then

π(k|Yn) ≈ exp(−Bk/2) exp(−βn/2).

With respect to the candidate model class {M1, . . . ,ML}, we obtain

π(k|Yn) ≈ exp(−Bk/2)∑L
l=1 exp(−Bl/2)

.
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