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Abstract: 'The generalized Poisson regression model has been used to model
dispersed count data. It is a good competitor to the negative binomial re-
gression model when the count data is over-dispersed. Zero-inflated Poisson
and zero-inflated negative binomial regression models have been proposed
for the situations where the data generating process results into too many
zeros. In this paper, we propose a zero-inflated generalized Poisson (ZIGP)
regression model to model domestic violence data with too many zeros. Es-
timation of the model parameters using the method of maximum likelihood
is provided. A score test is presented to test whether the number of zeros
is too large for the generalized Poisson model to adequately fit the domestic
violence data.
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1. Introduction

The generalized Poisson regression (GPR) model proposed by Consul and
Famoye (1992) and Famoye (1993) is used to model count data that are affected by
a number of known predictor variables. The model is based upon the generalized
Poisson distribution which had been extensively studied by researchers. The
reader is referred to Consul (1989) and the references therein for more details.
The GPR model has been used to model a household fertility data set (Wang
and Famoye, 1997) and to model injury data (Wulu et al., 2002).

Count data with too many zeros are common in a number of applications.
Ridout et al. (1998) cited examples of data with too many zeros from various
disciplines including agriculture, econometrics, patent applications, species abun-
dance, medicine, and use of recreational facilities. Several models have been pro-
posed to handle count data with too many zeros than expected: Lambert (1992)
described the zero-inflated Poisson (ZIP) regression models with an application
to defects in manufacturing; Hall (2000) described the zero-inflated binomial
(ZIB) regression model and incorporated random effects into ZIP and ZIB mod-
els; and Lee et al. (2001) generalized the ZIP model to accommodate the extent
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of individual exposure. Other models in the literature include the hurdle model
(Mullahy, 1986), the two-part model (Heibron, 1994), and the semi-parametric
model (Gurmu, 1997). Details of these models can be found in Ridout et al.
(1998) and additional references on ZIP models can be found in Bohning et al.
(1999).

A feature of many count datasets is the joint presence of excess zero obser-
vations and the long right tails, both relative to the Poisson assumption, Gurmu
and Trivedi (1996). Both features may be accounted for by over-dispersion in
the data. The excess zeros can occur as a result of clustering. Over-dispersion
has the tendency to increase the proportion of zeros and whenever there are too
many zeros relative to Poisson assumption, the negative binomial regression and
the generalized Poisson regression tend to improve the fit of the data. For a
better fit, an over-dispersed model that incorporates excess zeros should serve as
an alternate. This point was illustrated by Gurmu and Trivedi (1996) who found
that the negative binomial hurdles model, which allows for over-dispersion and
also accommodates the presence of excess zeros, is more appropriate among all
the models they considered. Also, Ridout et al. (1998) considered various ZIP
regression models for an Apple shoot propagation data. They concluded that
the ZIP models were inadequate for the data as there was still evidence of over
dispersion. They went on to fit zero-inflated negative binomial models to the
data.

Gupta et al. (1996) studied the zero-adjusted generalized Poisson distribu-
tion. They estimated the model parameters by the method of maximum likeli-
hood. They studied the effect of not using adjusted (inflated or deflated) model
when the occurrence of zero differs from what is expected. They showed that
more errors are committed for small values of the count if adjustment is ignored.
They noted that the zero-adjusted generalized Poisson distribution fitted very
well the fetal movement data and the death notice data of London times. In
this paper, we extend their work to a more general situation where the count
dependent variable is affected by some covariates.

In our research work, we have seen cases where the ZIP models were inad-
equate and the zero-inflated negative binomial regression model could not be
fitted to the data sets. The major problem in these cases was that the iterative
technique to estimate the parameters of zero-inflated negative binomial regres-
sion model failed to converge. This observation is similar to the one made by
Lambert (1992) and we quote her remark here: “Of course, inflating a negative
binomial model with ‘perfect zeros’ might provide an even better model for the
printed-wiring-board data than ZIP regression does. Such a model was not suc-
cessfully fit to these data, however.” This realization motivated us to develop
a zero-inflated generalized Poisson regression model for modeling over-dispersed
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count data with too many zeros.

The rest of the paper is organized as follows: In section 2, we describe the
domestic violence data. We develop the zero-inflated generalized Poisson (ZIGP)
regression model in section 3. Estimation of its parameters via the maximum
likelihood method is presented in section 4. A score statistic for testing zero
inflation in generalized Poisson model is proposed in section 5. The results of
applying ZIGP regression to model the number of domestic violence are presented
in section 6. In section 6, we also provide some concluding remarks.

2. Description of Domestic Violence Data

In 1989, the Portland Police Bureau in collaboration with the Family Violence
Intervention Steering Committee of Multnomah County in Oregon developed a
plan to reduce domestic violence in Portland. A special police unit called Do-
mestic Violence Reduction Unit was created for accomplishing two goals: (i)
Increasing the sanctions for batterers, and (ii) Empowering victims. A study was
designed and data were collected from official records on batterers and from sur-
veys on victims for 1996-1997. For more details the reader is referred to Annette
et al'. (1998), ICPSR 3353. We consider Survey Part 12 data set for illustrating
the usefulness of the ZIGP regression model. Data in Part 12 (Wave 2 Victim
Interview Data) represent victims’ responses to the second wave of interviews,
conducted approximately six months after the study case victimization occurred.
The descriptive statistics for the variables are given in Table 1.

The variable, violence, is the number of violent behavior of batterer towards
victim. In general, an incident of violence may be classified as ‘minor’ or ‘severe’.
In this paper we develop a violence index by summing the responses to questions
53 through 62. These questions deal with severe form of violence, for example,
threw something; pushed, grabbed, or shoved; slapped; kicked, bit, or hit with a
fist; hit or tried to hit with something; and beat up. The independent variables
used in the regression models are level of education, employment status, level of
income, having family interaction, belonging to a club, and having drug problem.
Each of these variables was measured for both victim and batterer. The level
of education (from 1 to 3) and income level (from 1 to 5) are ordinal. Other
variables are dichotomous with 1 (yes) and 0 (no). After excluding the cases
having missing information we have 214 cases.

! Annette, J., Fountain, R., Feyethern, W., and Friedman, S. (1998). Portland (Oregon).
Domestic Violence Experiment, 1996-97 [computer file], ICPSR Version, Portland, OR: Portland
State University (Producer). Ann Arbor, MI: Inter-university Consortium for Political and
Social Research (distributor), 2002.
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Table 1: Descriptive statistics for the variables

Variable Description Mean + SD  Proportion of 1’s
Eduv  Education level, victim 2.2897+ 0.7507

Edub  Education level, batterer 2.0654+ 0.7785

Emp_v  Full time employment, victim 0.5047
Emp_b Full time employment, batterer 0.6589
Inc_v Income level, victim 2.5654+1.3083

Inc_b Income level, batterer 3.0701+1.4727

Fam_v  Interact with family, victim 0.8224
Fam_b  Interact with family, batterer 0.7196
Club_v  Belong to a club, victim 0.2710
Club_b  Belong to a club, batterer 0.1916
Drug.v Have drug problem, victim 0.1355
Drug.b Have drug problem, batterer 0.6215

Violence Number of domestic violence 4.20564+10.6014

SD = standard deviation

3. Zero-Inflated Generalized Poisson Regression Model

Let the response variable y;,7 = 1,2, ...,n, be the number of violent behavior
of batterer towards victim. The generalized Poisson regression (GPR) model

f(uis a;95), is given by

. Yi (1 Nyi—1 — (1 .
f(:u”u avyi) = < i > ( T ayZ) €xp M ) (31)
1+ apy yi! 1+ ap;

yi = 0,1,2,...; where p; = pi(x;) = exp (X xii535), 2 = (xa = 1, 20,..., k)
is the i-th row of covariate matrix X, and 3 = (81, (2, ..., k) are unknown k-
dimensional column vector of parameters. The mean of y; is given by p;(x;) and
the variance of y; is given by V (y; | ;) = pi(1+ ap;)?. In a more general setting,
the mean of y; can be written as E(y; | ;) = pi(x;) = ¢;A(z;, 3) where A(z;, 3) is
a known function of z; and 3, and ¢; is a measure of exposure. The link function
A(z;, B) is differentiable with respect to 3. The GPR model in (3.1) is a natural
extension of the Poisson regression model given by Frome et al. (1973). In model
(3.1), v is called the dispersion parameter. When o = 0, the probability model in
(3.1) reduces to the Poisson regression model and this is a case of equi-dispersion.
When a > 0, the GPR model in (3.1) represents count data with over-dispersion.
When a < 0, the GPR model represents count data with under-dispersion.
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A zero-inflated generalized Poisson (ZIGP) regression model is defined as
PY =yi|lzi,zi) = i+ 1 —9i)f(pi;0;0), y =0
(L= i) f (s> 5 0), yi >0 (3.2)

where f(ui,o;yi),y; = 0,1,2,... is the GPR model in (3.1) and 0 < ¢; < 1.
In (3.2), the functions u; = p;(x;) and ¢; = p;(z;) satisfy log(u;) = Z?:l xi; 05

and logit(p;) = log(pi[1 — ¢i]) ™! = > 2ij0; where z; = (zi1 = 1,zi2, .., 2im)
is the i-th row of covariate matrix Z and § = (d1,92,...,0,,) are unknown m-

dimensional column vector of parameters. In this set up, the non-negative func-
tions ; and pu; are, respectively, modeled via logit and log link functions. Both
are linear functions of some covariates. Other appropriate link functions that can
allow ¢; being negative, in the terminology of generalized linear models, may be
used.

The mean and variance of the ZIGP model in (3.2) are given, respectively, by

E(y; |z:) = (1 — i) () (3.3)
and
Vigile) = (1—o)uf + mi(l+ amw)?] = (1= ¢i)?uf
= B(y|=)[(1 + am)? + pipuil. (3.4)

From (3.4), the distribution of y; exhibits over-dispersion when ¢; > 0. The
model in (3.2) reduces to the GPR model when ¢; = 0. It reduces to the ZIP
model given by Lambert (1992) when o = 0. For positive values of ;, it repre-
sents the zero-inflated generalized Poisson regression model. When ¢; is allowed
to be negative, it represents zero-deflated generalized Poisson regression model.
However, zero-deflation rarely occurs in practice.

The covariates affecting ¢; and p; may or may not be the same. If the same
covariates affect ; and u;, we can write o; as a function of u; to obtain

K k
. Pi
log (i) = j§:1 zij3; and logit(p;) = log (1 — %) =T 3§=1 ij 0 (3.5)

The ZIGP regression model with logit link for ¢; and log link for u; as defined
in (3.5) will be denoted by ZIGP(7). When 7 > 0, the zero state becomes less
likely and when 7 < 0, excess zeros become more likely. When a = 0, the
ZIGP(7) reduces to the ZIP(7) defined by Lambert (1992).

If y; are independent random variables having a zero-inflated generalized Pois-
son distribution, the zeros are assumed to occur in two distinct states. The only
occurrences in the first state are zeros which occur with probability ;. These are
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referred to as ‘structural’ zeros. The second state occurs with probability (1— ;)
and leads to a generalized Poisson distribution with parameters v and p;. The
zeros from the second state, i.e. from the generalized Poisson distribution, are
called ‘sampling’ zeros. The two state process leads to a two-component mixture
distribution with probability mass function given in (3.2).

In many applications, there is little prior information about how ¢; is related
to u; (Lambert, 1992). Depending on the data generating process, one can think
of a situation in which both ¢; and u; depend on some covariates and a situation
in which this is not the case. Consider a data set on adults, aged 65-70 years. We
may count how many accidents adult aged 65-70 years had while driving during
the past five years. A large number of these adults may not have any accidents as
they did not drive in the past five years (as opposed to being careful drivers with
no accidents). We may be able to model whether an adult drove (during the past
five years) depending on a number of covariates related to whether the adults
drove or not. We may also model how many accidents an adult had depending
on a number of covariates having to do with his/her driving. Thus, we can think
of different covariates that will affect ¢; and p;. On the other hand, suppose the
data is collected from adult drivers who drove through out the past five years.
The data could still have too many zeros. In this situation, the ZIGP(7) model
will be more appropriate. Alternatively, one can use the ZIGP regression model

with p; = pi(z;) and p; = @;(zi1).

4. Parameter Estimation

When ¢; and p; are related, the log-likelihood for ZIGP(7) regression model
is given by

log(Ly) = = log(1+pu; ")+ Y log(p; " + expl—pi/(1+ ap)))
=1 y;=0
+ > {yiloglps/(1+ ap)] + (yi — 1) log(1 + ay;) — log(y; )
y:>0
— (1 +ay;) /(1 + ap)} (4.1)

In the rest of the paper, we shall use & = w;[1 + aw;] L, n; = ul exp(=&),
and v; = exp(—&;). On differentiating (4.1), the likelihood equations are given
by

dlog (L) i log(p:) T log(p) (4.2)

or L1l L+n

i=1 ;=0

dlog(L;) ~=~ Ty (T + Eni /i) ir (yi — 1) Tir
go\Er) N T i A o Vi 4.
B ZlJrMiT Z L+ +Z (14 ap;)?’ (43)

= yi=0 yi>0
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r=1,2,...,k; and

dlog(Lr) _ > 5?7%' £y {—ﬁz‘yz‘ n yilyi —1)  pa(ys _Ni)}' (4.4)

Oa 1+ ay; (14 api)?

The parameters 7, 3, and « are estimated by the Newton-Raphson algorithm.
To fit this model, we first fit the GPR model in (3.1) and the final estimates from
GPR are used as the initial values for ZIGP (7). The final estimate of 7 in ZIP(7)
can be taken as an initial guess for 7.

When ¢; and p; are not related, the log-likelihood for ZIGP regression model
is given by

log(L) = — Zlog(l +wi) + Z log(w; + v;)

i=1 ;=0
+ > {yilog(&) + (yi — 1) log(1 + ay,)
yi>0
—log(y;i!) — &(1 +ayi)}, (4.5)

where w; = ¢;/(1 — ;) = exp(Z:T:1 2j0;). By using a similar argument as in
Lambert (1992), the maximum likelihood via the EM algorithm can be exploited
to estimate the parameters 3,8 and a in the above log-likelihood function. By
differentiating (4.5), we obtain the likelihood equations as follows:

Olog(L) _ Z : Vi T n Z (yi — 1) Tir =12k (4.6)

o, = Wit v g (T ap)?
0dlog(L) WiZit WiZit
= S o — t=1,2,...,...,m, 4.7
00 ;)14—&% y_Z:Owi—i—vi ( )

and

dlog(L) vi€} yilyi — 1) iy — )
T e (e BTG 6

Based on the asymptotic normality of the maximum likelihood estimator
(B, 3, &), inferences on the regression coefficients and the dispersion parameter
can be made.

The Newton-Raphson algorithm may be used to find the solutions of the
likelihood equations for both ZIGP(7) and ZIGP. In the application in section 6,
we have used the SPLUS function ‘nlminbd’, to obtain the maximum likelihood
estimates. In all of the examples we have considered, the algorithm converged in
less than 20 iterations.
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5. Score Test for Zero Inflation in Generalized Poisson Model

A score test is proposed to test whether the number of zeros is too large for
a generalized Poisson model to adequately fit the data. The reader is referred to
Cox and Hinkley (1974) for a discussion of the score test. The score statistics
will be obtained for a case with no covariates and for a case with covariates.

5.1 The Case with no Covariates

The inflated generalized Poisson distribution can be obtained from the model
in (3.2) if the mean yu;(= p) and the probability ¢;(= ¢) are constants. Consider
the case where there are n observations, among them ng zero, and no covari-
ates. By using 0 = (1 — )~ !, the log-likelihood function for the zero-inflated
generalized Poisson distribution can be written as

log(Ly) = — Zlog(l +6)+ Z log(6 + exp(—pu/(1 4+ ap))
i=1 y;=0

+ > {wiloglp/(1 + aw)] + (v — 1)log(1 + ay;)
yi>0

—log(y:!) — p(1 +ay;) /(1 + ap)} (5.1)

The score function U(u, «,0) and the expected information matrix I(u, «, 0)
can be calculated from (5.1). The score statistic for testing 6 = 0 is

S(ﬂv OA‘) - S(ﬂv a, 0) = U,(ﬂv a, 0) [I(ﬂv aQ, 0]_1U(ﬂ7 a, 0) (52)

The elements of the score function U(«, «, 0) are

dlog(Ls)
S =0 (5.3)
dlog(Ly) <~ [yilyi—1)  pyi plyi—p)
da _Z{ l+ay,  l1+ap (I+ap)?f’ (54)
and
dlog(L,
st o

where fo = exp[u/(1+ ap)]. The entries in the 3 x 3 symmetric matrix I(u, «,0
are given by Iy = nu ' (1+ap) ™% Iy = In = 0; I13 = Iy = —n(l4+ap)?; I
2np?(1 4 2a) 1 (1 + ap)™2; Iz = Iso = np?(1 + ap)2; and I33 = nfexp(u/(1

~—

+
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ap)) — 1]. On using these values in (5.2), we obtain

(1 + 2&)(1 + af)? N (1+ 24)* 2

~ (1 +2d8)(nofo —n)c n (nofo — n)27 (5.6)
b b
where
- Y
b = n(fo—1) — ni__n(5+a) and

C+an?  (1+an)?

. i yilyi—1)  pyi plyi— )
— | l+ay 1+ap (1+ap)? )"

Table 2: Percentile points of the statistic based on 2000 samples of size n from
the generalized Poisson model with parameters o and p, and the same points
of a x? distribution.

Percentile points of a x? distribution

n « w pr=107 pg=164 pg=271 pg5s =384 pgg=6.63

100 0.50 0.5 1.10 1.63 2.61 3.73 6.45
0.80 0.6 1.10 1.64 2.70 3.90 6.19
0.75 0.8 1.13 1.64 2.72 3.75 6.35
0.25 1.0 1.05 1.58 2.55 3.90 6.98
025 24 1.14 1.72 2.78 3.73 6.36
200 0.50 0.5 1.12 1.73 2.71 3.75 6.48
0.80 0.6 1.12 1.73 2.74 3.87 6.54
0.75 0.8 1.06 1.63 2.70 3.80 6.19
0.25 1.0 1.10 1.60 2.75 3.59 6.10
025 24 1.11 1.72 2.88 3.96 6.84

When a = 0, the last term in b will be zero as it is obtained from a derivative
with respect to a. Also, ¢ will be zero since it is from a derivative with respect to
a. Thus, b reduces to n(e” —1) —nu and the score statistic in (5.6) reduces to the
result obtained by van den Broek (1995) for the Poisson distribution. Under the
null hypothesis of generalized Poisson model, the score statistic has an asymptotic
chi-square distribution with 1 degree of freedom.

Remark: The information matrix on page 212 of Gupta et al. (1996) appears
to be incorrect. Only two of the entries in the matrix should be zero as opposed
to the four given by them. The authors set A = (1 — ®)(1 — e~ %) in the log-
likelihood function. However, on differentiating the log-likelihood function with
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respect to A and 6, it appears this functional relationship between A and 6 was
not considered.

A simulation study was carried out in order to see if the chi-square approxi-
mation is appropriate. From a generalized Poisson distribution (GPD) with the
sets of parameter values in Table 2, we generated 2000 samples of sizes n = 100
and 200. These sets of parameter values were chosen so that the GPD mean will
be low and there will be a lot of zeros in the generated data. For every sample,
the score statistic in (5.6) was calculated. The 70-th, 80-th, 90-th, 95-th, and
99-th percentiles are reported in Table 2. These percentile points look reasonable
when compared to the percentile points of a chi-square distribution with one de-
gree of freedom. When the mean of the GPD is large, there is hardly any zero.
For this situation, the chi-square approximation is not as good. However, there
is little or no need for a zero inflation test for large means.

5.2 The Case with covariates

The score function U (3, «,0) and the expected information matrix I(3, «, 0)
can be calculated from the log-likelihood in (5.1) with replacing p by p; = pi(zi),
which depends on the covariates. A score test in the inflated generalized Poisson
distribution has the advantage that one does not need to fit the ZIGP regression
model but just the GPR model which is the distribution under the null hypothesis.
The score statistic for testing whether the GPR model fits the number of zeros
well is, in this case, given by

Se(B, &) = S.(B,6,0) = U'(B,,0)[I(B,4,0)] 1U(B,&,0), (5.7)

where & and [5’ are the maximum likelihood estimates of @ and 3 under the null
hypothesis of GPR model. Under the null hypothesis, the score statistic has an
asymptotic chi-square distribution with 1 degree of freedom.

5.3 Goodness-of-fit test

A measure of goodness-of-fit of the ZIGP regression model may be based on
the log-likelihood statistic. The ZIGP regression model in (3.2) reduces to the
ZIP regression model when the dispersion parameter a« = 0. To test for the
adequacy of the ZIGP model over the ZIP regression model, one may test the
hypothesis Hy : a = 0 against H, : « # 0. The addition of the dispersion
parameter « in the regression model is justified if Hy is rejected. To test the
null hypothesis Hy, one can use the likelihood ratio statistic. Alternatively, one
can use the asymptotic Wald statistic for parameter o which is calculated after
fitting the ZIGP regression model.
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Note: The second derivatives of (4.1) and (4.5) with respect to the parameters
and the entries of U(8,«,0) and I(8,,0) in (5.7) are available from the first
author.

6. Results and Discussion

The results of using the ZIP and ZIGP models are given in Table 3. The data
set has too many zeros (observed proportion of zeros is 66.4%) which led us to
apply the ZIP model. The estimated proportions of zeros from ZIP and ZIGP
regression models are, respectively, 63.7% and 65.7%. The zero-inflated negative
binomial (ZINB) regression model is a competitor to the ZIGP model when there
is a situation of over-dispersion and of too many zeros. The domestic violence
data are over-dispersed with 66.4% zeros. However, the ZINB regression model
did not converge in fitting the data. Lambert (1992) also observed this problem
in fitting ZINB regression model to an observed data set. This realization led us
to develop and to apply the ZIGP regression model for modeling over-dispersed
data with too many zeros.

Table 3: Estimates from ZIP regression and ZIGP regression models

Z1P Z1GP

Variable Estimate £ SE  ¢-value Estimate &= SE  t-value
Intercept 3.4206 £+ 0.1729 19.78**  5.4332 £1.2620 4.31**
Edu_v -0.3569 4+ 0.0550 -6.49** -1.5005 + 0.4967 -3.02**
Edub 0.0370 4+ 0.0527  0.70 0.5907 £ 0.3035 1.95

Emp_v 0.1252 + 0.0897 1.40 0.3419 £ 0.5027  0.68

Emp_b 0.0211 + 0.1051 0.20 1.2458 £+ 0.7711 1.62

Inc_v -0.0878 4+ 0.0362 -2.43* -0.4814 + 0.2154 -2.24*
Inc_b -0.2012 £ 0.0384 -5.25"* -0.4183 + 0.2466 -1.70

Fam_v 0.1245 4+ 0.0999 1.25 0.1804 + 0.4629  0.39

Fam_b -0.1645 £+ 0.0696 -2.36* -0.6656 & 0.4951 -1.34
Club_v 0.7804 4+ 0.1050 7.43** 1.7158 + 0.7047  2.43*

Club_b -0.8548 4+ 0.1222 -7.00** -1.9866 =+ 0.7128 -2.79**
Drug v -0.7577 £ 0.1275 -5.94** -1.0645 £ 0.5377 -1.98*
Drug_b 0.6305 4+ 0.0929  6.79"*  1.5428 £+ 0.4019 3.84**
T -0.2456 £+ 0.0619 -3.97** -0.1242 4+ 0.0570 -2.18*
« 0.3050 £ 0.0556  5.49**
Log-likelihood -641.09 -365.84

* indicates significant at 0.05 level; ** indicates significant at 0.01 level; SE =
standard error
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The score statistic in (5.6) is computed from the data and we obtained a value
of 20.02. This value is significant at 5% level when compared to the tabulated
chi-square distribution with one degree of freedom. By using the score statistic,
we conclude that the data have too many zeros and the GPR model is not an
appropriate model. Thus, the ZIGP regression model is more appropriate than
the GPR model for the domestic violence data. From Table 3, a test of « = 0 by
using the asymptotic Wald statistic showed that « is significantly different from
zero. Based on this test, the ZIP regression model is not an appropriate model
for the domestic violence data. The ZIGP regression model fits the data better
than the ZIP model with almost one fold increase in the value of the likelihood.

In Table 3, there is a significant negative relationship between the victim’s
income and the level of violence. Thus, victims with high income tend to re-
ceive lower number of violence. This finding is also supported by Farmer and
Tiefenthaler (1997). Only the ZIP model, but not the ZIGP model gave a similar
conclusion for the batterer’s income. The victim’s education is negatively related
to the level of violence. There is a significant positive relationship between the
victim’s belonging to a club and the level of violence. However, it is a signifi-
cant negative relationship for the batterer. In regard to drug problem, there is
a significant positive relationship between the batterer having drug problem and
the level of violence. This indicates that more drug problems the batterer has,
more violent the batterer becomes. The relationship between drug problem and
the level of violence is negative and significant for the victim in both regression
models. Overall, six independent variables are significant at 1% level under the
ZIP model whereas only three are significant at 1% level under the ZIGP model.

7. Conclusion

Even though the ZIGP regression model is a good competitor of ZINB re-
gression model, we do not know under what conditions, if any, which one will
be better. The only observation we have in this regard at this time is that in
all the datasets fitted to both models, we successfully fitted the ZIGP regression
model to all datasets. However, in a few cases, the iterative technique to estimate
the parameters of ZINB regression model did not converge. This observation is
similar to the one made by Lambert (1992) as we remarked in the introduction
section. The application of the ZIGP regression model to the domestic violence
data illustrates the usefulness of the model.
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